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Abstract: In recent years, to treat a diverse array of cancer forms, considerable advancements have
been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple
challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in
cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavail-
ability, polymer micelles present potential solutions by enabling precise drug delivery to the target
site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive
survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies
include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of
immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization
of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells,
and targeting other components of the TME. Subsequently, we delve into the present state and
constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles
demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges
associated with conventional cancer immunotherapies.

Keywords: polymeric micelles; cancer immunotherapy; tumor microenvironment; responsive
delivery systems; targeted drug delivery

1. Introduction

Cancer remains a major threat to human health. Cancer cells evade immune detection
through various mechanisms, including immune checkpoint molecules and cellular systems
that promote immune suppression [1,2]. Cancer cells and the tumor microenvironment
(TME) can express various signaling molecules, such as programmed death receptor 1
(PD-1), programmed death ligand 1 (PD-L1), cytotoxic T lymphocyte antigen-4 (CTLA-4),
and indoleamine 2,3 oxygenase (IDO), which can help them evade immune surveillance
and induce immune cell anergy [3–5]. Cancer immunotherapy has become an effective
treatment following surgery, chemotherapy and radiotherapy [6] Cancer immunotherapy is
a concept of utilizing intrinsic mechanism of host immune system to distinguish and destroy
malignant cells, involving passive immunotherapy, active immunotherapy, and immune
checkpoint blockade [7,8]. At present, cancer vaccines, immune-activating cytokines,
adoptive cell transfer therapy (ACT), and immune checkpoint inhibitors (ICIs) are the
most popular and available cancer immunotherapy modalities so far [9–11]. One of the
earliest immunotherapies is that use high dose interleukin-2 to activates T-cells [12]. ICIs
and ACT have been proved to be effective for various malignant tumors [13–15]. It has
been confirmed that cancer immunotherapy can prevent the metastasis, recurrence and
reversal of multidrug resistance of tumor cells [16–18]. So far, cancer immunotherapy has
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been proven to be effective for head and neck cancer, lung carcinoma, leukemia, breast
carcinoma, ovarian carcinoma, renal carcinoma, and bladder tumor [19–23].

However, immunotherapies have side effects and are not as effective due to problems
such as tumor heterogeneity, short half-life, and unintended toxic effects. For example, ICIs
like PD-L1/PD-1 have been employed in diverse tumor immunotherapies; however, they ex-
hibit low response rates in a subset of cancer patients [24–28]. Nanotechnology can address
pharmacokinetic deficiencies by enhancing permeation and retention (EPR) using synthetic
nanocarriers with specific features such as dimensions, morphology, surface ligands, load-
ing techniques, zeta potential, water affinity, flexibility, and biocompatibility [29,30]. These
nanocarriers can serve as suitable carriers for immunotherapeutic molecules, extending
their biological half-life, protecting them during circulation, penetrating barriers, or having
targeting effects, and facilitating precise payload release within the TME while minimizing
biotoxicity [31].

Polymeric micelles consist of amphiphilic copolymers, featuring an external hy-
drophilic shell and an internal lipophilic core. These spherical colloidal particles typically
exhibit sizes ranging from 10 to 100 nm. They excel in encapsulating and ferrying poorly
water-soluble drugs, mitigating micelle biofouling to extend circulation half-life, facilitat-
ing sustained drug release at optimal concentration levels, and offering the possibility of
additional functionalization with targeting ligands to achieve precise delivery [32,33]. Even
at exceedingly low polymer concentrations, the structural stability of polymer micelles
retains its utmost importance. This stability is attributed to their low critical micelle con-
centration, which enhances their circulation in the bloodstream compared to surfactant
micelles [34]. The properties of polymeric micelles, such as their straightforward formula-
tion, uncomplicated structure, drug solubilization capabilities, enhanced biocompatibility,
pharmacokinetics, biodistribution improvements, and the potential for further customiza-
tion, make them widely used in anti-tumor research [35]. Ongoing clinical trials involving
polymer micelles loaded with anticancer drugs, for instance, paclitaxel loaded micelles
Genexol®-PM and NK105, docetaxel-micelles Nanoxel®M and BIND-014, doxorubicin-
micelles NK911 and SP1049C [33,36]. As cancer immunotherapy advances, research on
the use of polymeric micelles in this field has become very extensive. This review will
concentrate on the responsive application of polymeric micelles, their role in remodeling
the TME, and their applications in cancer immunotherapy, shown in Figure 1.
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[37,38]. Unfortunately, the immunosuppressive TME limits the efficacy of immunother-
apy [39]. In contrast to healthy tissue, the TME exhibits an acidic pH, upregulation of cer-
tain enzymes, increased redox potential, ROS, and hypoxia [40,41]. Polymeric micelles, as 
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Figure 1. Micelle responsive and remodeling TME, immunosuppressive cells in the TME and
ICIs. Micelle responsive TME contain pH, MMPs: Matrix Metalloproteinases, GSH: Glutathione;
ROS: Reactive Oxygen Species. Tumor−associated immunosuppressive cells include TAM:
MDSC: Myeloid−Derived Suppressor Cell; Tumor−Associated Macrophages; Treg: Regulatory
T Cell; CAF: Cancer−Associated Fibroblast. DC Cell: Dendritic Cells; NK cell: Natural Killer Cell;
T cell: Thymus Derived cell. ICIs include PD−L1: Programmed Death Ligand 1; IDO: Indoleamine 2,3
Oxygenase; CTLA−4: Cytotoxic T Lymphocyte Antigen−4; PD−1: Programmed Death Receptor 1.
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2. Responsive and Remodeling of the TME

TME is a highly intricate milieu comprising normal and cancerous tissue-resident cells,
immune cells, vascular cells, fibroblasts and components of the extracellular matrix [37,38].
Unfortunately, the immunosuppressive TME limits the efficacy of immunotherapy [39]. In
contrast to healthy tissue, the TME exhibits an acidic pH, upregulation of certain enzymes,
increased redox potential, ROS, and hypoxia [40,41]. Polymeric micelles, as a nanocarrier
that responds to the tumor microenvironment, could enhance tumor immunotherapy, and
are shown in Figure 2.
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Figure 2. TME−responsive polymeric micelles in tumor immunotherapy. Polymeric micelles achieve
targeted drug release to tumor tissues after intravenous administration by responding to a pH range
of 6.5−6.9. MMP−2: Matrix Metalloproteinase−2; GSH: Glutathione; ROS: Reactive Oxygen Species.

pH-responsive polymeric micelles: TME is often characterized by acidity, primarily
due to the abnormal vasculature and hypoxia within the tumor. Tumor cells heavily
rely on glycolysis, an oxygen-independent metabolic pathway, to generate energy. This
metabolic process results in increased production and excretion of H+ ions, leading to
a decrease in the extracellular pH of the TME to a range of 6.5−6.9, in contrast to the
normal extracellular pH of 7.2−7.4 [42]. pH-responsive polymer micelles can undergo self-
assembly into micelles at ambient pH values above their specific pKa, which is determined
by functional groups within the polymer chains, such as pyridine, L-histidine, and tertiary
amine moieties. This property allows the micelles to respond to the acidic TME and
undergo structural changes, enabling targeted drug delivery to the tumor site [43–45].
Numerous investigations have reported the use of pH-responsive micelles for various
applications, including vaccine platforms. For instance, histidine-modified stearic acid-
grafted chitosan, dilauroyl phosphatidylcholine and deoxycholic acid, diblock copolymer,
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comprising carboxyl-modified poly(2-ethyl-2-oxazoline), and poly(d, l-lactide) have been
utilized as pH-responsive micelles for loading ovalbumin as vaccine platforms. These pH-
responsive micelles have shown their capability in triggering cellular immunity, resulting in
improved antitumor immune reactions [46–48]. The precise pH-responsive co-delivery of
imiquimod and doxorubicin using micelles exhibited not only elevated tumor accumulation
and decreased side effects but also a marked rise in the quantity of mature dendritic cells
(DCs), activated cytotoxic T cells, and M1-like macrophage polarization [49].

Redox-responsive polymeric micelles: Tumor cells regulate their reducing environ-
ment through the presence of NADPH and glutathione (GSH). GSH regulates the microen-
vironment and exhibits elevated levels in tumor tissue compared to normal tissue [50].
Redox-sensitive micelles release drugs rapidly and deform in the reducing intracellular
environment due to high GSH concentration in tumors [51]. The cRGD-functionalized and
reduction-sensitive polymeric micellar mertansine prodrug (cRGD-MMP), characterized
by enhanced stability, drug loading, and the ability to target αvβ3, presents an appealing
substitute for antibody-maytansinoid conjugates in the treatment of malignant tumors [52].
A redox-sensitive polymer, POEG-co-PVDGEM, which incorporates gemcitabine (GEM),
was employed as a compact nanocarrier to simultaneously transport hydrophilic GEM
and hydrophobic paclitaxel. This approach proved to be an efficient strategy for improved
tumor penetration and enhanced antitumor immune responses [53]. Another co-delivery
system used a polymeric prodrug carrier, incorporating an immune checkpoint inhibitor
(NLG919) and the chemotherapeutic agent doxorubicin. This strategy markedly suppressed
tumor growth in mice with 4T1.2 tumors and fostered a more immune-responsive tumor
microenvironment [54]. Chitosan-coated hyaluronic acid micelles that are responsive to pH
and redox conditions were designed to improve the targeted delivery of doxorubicin and
siPD-L1 to tumors. This method represents a promising approach to synergize chemother-
apy and siRNA-based immunotherapy for enhanced effectiveness [55].

ROS-responsive polymeric micelles: Reactive Oxygen Species (ROS) have a close asso-
ciation with cancer development, with cancer cells exhibiting ROS levels up to 100 times
greater than those in normal cells [56,57]. ROS-responsive vesicles for cancer targeting
have sparked scientific interest due to their outstanding biocompatibility, rapid response
time, and the ability to load a significant amount of drug [58]. Galactose-functionalized
zinc protoporphyrin IX grafted poly(l-lysine)-b-poly(ethylene glycol) polypeptide mi-
celles loaded with Poly I:C efficiently repolarized TAMs to M1 macrophages via ROS
generation [59]. A potential platform technology for cancer immunotherapies involves a
polyion complex consisting of a cationic polyamine-poly-polyamine triblock copolymer
with ROS-scavenging side chains, an anionic poly(acrylic acid), and a protein [60]. Recently,
I-P@NPs@M, is documented inhibits lung metastasis by chemotherapy, photodynamic
therapy, and immunotherapy gathering. The chlorin e6 within I-P@NPs@M is capable
of converting a 650 nm laser into ROS, which induces the transformation of spherical
micelles into nanofibers, enhancing their retention within the tumor region. As a result, the
elongated nanofibers can stably release drugs over time [61]. Another sequential-targeting
micelle was developed, consisting of a cationic amphiphilic copolymer core loaded with
chlorin e6, and a pH-sensitive charge-altering layer designed for tumor targeting. This
layer is derived from 2,3-dimethylmaleic anhydride-modified Biotin-PEG4000-NH2 through
electrostatic interactions. This innovative approach utilizes the sensitivity of cellular or-
ganelles to ROS and proves to be an effective method for promoting efficient photodynamic
therapy and immune response [62].

Enzyme-responsive polymeric micelles: The overexpression of enzymes by tumor cells
and the TME represents another significant trigger for the responsiveness of TME-targeted
micelles. Matrix Metalloproteinases (MMPs), a class of calcium-dependent endopeptidases,
utilize a trio of amino acids to serve as ligands for coordinating zinc ions, enabling them to
perform their catalytic functions. Dysregulation of MMPs can impact various physiological
processes such as morphogenesis, tissue remodeling, embryonic development, and the
control of cellular growth and apoptosis [63]. Given that MMPs play a crucial role at all
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stages of metastasis, this study delves into their involvement in cancer, focusing on the
distribution and mobility of MMPs within cells and tumors to exploit their potential for
cancer-targeting applications [64]. A dual-sensitive micelle system, responsive to both
MMPs and pH, has been developed for co-delivering anti-PD-1 antibodies and paclitaxel,
resulting in a high response rate to immune checkpoint inhibitors (ICIs) and an effective
chemoimmunotherapy that leverages the TME’s sensitivity [65]. Similarly, there is promis-
ing potential in a dual-sensitive micelle–liposome system, which responds to both enzymes
and pH. This system co-delivers paclitaxel (PTX) and the PD-1/PD-L1 inhibitor HY19991
for the treatment of breast cancer [66].

Remodeling TME: Cancer cells employ diverse mechanisms to restructure the TME,
thereby evading immune surveillance and fostering tumor proliferation and metastasis.
The TME encompasses an intricate interplay of cancer cells, the extracellular matrix (ECM),
stromal cells, and immune cells. Throughout the course of cancer development and pro-
gression, the ECM within the TME undergoes extensive remodeling. This remodeling
can exert inhibitory effects on immune responses, frequently resulting in inadequate or
less-than-optimal tumor responses to immunotherapy in most instances. Strategies in
immunotherapy encompass a range of approaches such as adoptive cell therapy (ACT),
vaccines, and immunomodulatory antibodies, all aimed at reshaping the immunosuppres-
sive milieu of the tumor microenvironment towards an environment conducive to immune
support [67]. Many researchers have attempted to enhance drug-loaded nanocarrier de-
livery efficiency by modifying the ECM within the TME [68,69]. Chanyoung Song and
colleagues investigated an innovative approach using an injectable immunomodulatory
multidomain nanogel (iGel), which effectively addresses this challenge by converting the
pro-tumoral TME into anti-tumoral immune-friendly niches. The iGel is formed through
electrostatic interactions between negatively charged non-concentric multi-nanodomain
vesicles and positively charged nanoliposomes, both loaded with immunomodulatory
agents. The gel structure can be temporarily disassembled under shear force during syringe
injection and reassembled once shear force is removed at the treatment site. The iGel
serves as an immunotherapeutic platform capable of reshaping immunosuppressive TMEs
and synergizing with checkpoint therapies in cancer immunotherapy, all while reducing
systemic toxicity [70]. Furthermore, micelle-like PLGA-PEG-anisamide nanocarriers loaded
with cisplatin and rapamycin, when co-encapsulated with rapamycin, exhibited a 3.5-fold
improvement in rapamycin loading efficiency. Co-delivery of these micelles resulted in re-
duced numbers of tumor-associated fibroblasts and decreased levels of collagen expression
within xenograft tumors. These micelles demonstrated antiangiogenic effects, normaliza-
tion of tumor blood vessels, and enhanced penetration in A375-luc human melanoma [71].
Additionally, SUNb-PM, an engineered polymeric micelle delivery system, exhibited syn-
ergistic effects when used in conjunction with vaccine therapy in an advanced mouse
melanoma model. SUNb-PM not only facilitated the transformation of TAFs, collagen, and
tumor vasculature but also induced tumor cell apoptosis, reducing tumor immune evasion
by inhibiting the Stat3 and AKT signaling pathways [72].

3. Regulating Immune-Suppressing Cells in the TME

Tumor-associated immunosuppressive cells encompass tumor-associated macrophages
(TAMs), myeloid-derived suppressor cells (MDSCs), and Regulatory T Cells (Tregs) [73].
TAMs constitute the most prevalent immune cell population within the TME [74]. Indeed,
TAMs play a pivotal role as orchestrators of cancer-associated inflammation and are increas-
ingly recognized as essential contributors to tumor advancement while simultaneously
impeding antitumor immune reactions [75]. Diverse therapeutic approaches targeting
TAMs have been devised, encompassing measures to prevent macrophage recruitment
to the tumor, eliminate TAMs directly, reprogram TAMs from their pro-tumoral M2-like
state to an anti-tumoral M1-like state, and utilize TAMs for the delivery of therapeutic
payloads [76]. In this review, we discuss published studies that have utilized micelles to
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modulate TAMs, including depleting TAMs, reprogramming TAMs, and targeting TAMs
(Table 1).

Table 1. Overview of polymeric micelles for modulate TAMs.

Mechanism of Action Polymer Payloads Tumor Models Ref.

Targeting TAMs

Phenylboronic acid-poly (ethylene
glycol)—poly (ε-caprolactone) and

acetylated chondroitin
sulfateprotoporphyrin

Imiquimod (R837) and
doxorubicin Breast cancer [77]

Targeting TAMs GD modified
polycaprolactone-polyethylene glycol

Wortmannin, a specific
PI3K inhibitor, pancreatic cancer [78]

Targeting TAMs Hyaluronic acid (HA)-g-poly
(histidine) polymeric Doxorubicin Breast cancer [79]

Depleting TAMs PEG−PLA and Man-PEG-DSPE Dasatinib Breast cancer [80]

Reprogramming TAMs

galactose-functionalized zinc
protoporphyrin IX (ZnPP) grafted

poly(L-lysine)-b-poly(ethyleneglycol)
polypeptide

Poly I:C (PIC, a TLR3
agonist) Melanoma tumors [59]

Targeting
M2 And

Reprogramming TAMs

M2pep targeting peptide modified
polyethyleneimin—stearic acid

(PEI-SA) and DSPE-PEG

PI3K-γ inhibitor
NVP-BEZ 235 and

CSF-1R-siRNA
Pancreatic cancer [81]

Depleting TAMs DSPE-PEG2000-maleimide Scrambled MCP-1
peptides Melanoma [82]

Depleting TAMs Dextran-grafted-poly (histidine)
copolymer CSF-1R inhibitor: BLZ945 Breast cancer [83]

Targeting CD206 of
TAM

Quercetin-dithiodipropionic
acid-oligomeric hyaluronic
acid-mannose-ferulic acid

Curcumin and Baicalin Lung tumor [84]

Reprogramming TAMs PEG-CDM-HES(Hydroxyethyl starch) Sorafenib and TG100-115 Liver tumor [85]

Tregs which are one of the tumor-associated immunosuppressive cells, have been
observed to facilitate tumor cell growth and advancement. To address this issue, a multi-
functional immunostimulatory polymeric prodrug carrier, PEG2k-Fmoc-1-MT, was created
to deliver 1-methyl tryptophan and the chemotherapeutic doxorubicin. This carrier effec-
tively promotes the activation of CD4+ and CD8+ T cells, while concurrently decreasing
the expression of Tregs, thus enhancing the efficacy of immunochemotherapy for breast
cancer [86]. Another effective approach involves the use of hybrid micelles (SK/siIDO1-
HMs) for the delivery of shikonin and siRNA targeting IDO-1 knockdown, which have
shown promising results in suppressing Tregs in the tumor microenvironment [87].

In addition, MDSCs are among the crucial immunosuppressive cells within the tu-
mor microenvironment, fostering the growth and advancement of tumor cells. In order
to specifically target and counteract MDSCs, a dual-pH-sensitive conjugated micelle sys-
tem (PAH/RGX-104@PDM/PTX) has been created for the targeted delivery of the liver-X
nuclear receptor agonist RGX-104 and paclitaxel to the perivascular region and tumor
cells. This system effectively eliminates MDSCs and enhances the infiltration of cytotoxic
T lymphocytes, thus exerting potent antitumor effects [88]. Another promising approach is
the use of dual-functional micelles, such as Dox/PEG-Fmoc-NLG, which have the ability to
decrease both MDSCs and Tregs. These micelles hold great potential for immunochemother-
apy in lymphoma treatment [89]. Sun et al. developed a TME charge reversal system,
HA/pIL-12/DOX-PMet, which synergistically enhances NK cell and tumor-infiltrating
cytotoxic T lymphocyte activity, shifts M2 macrophage polarization to an activated antitu-
mor M1 phenotype, reduces Tregs, and elevates cytokine expression (IL-12, TNF-α, IFN-γ).
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These combined effects improve antitumor and anti-metastatic outcomes in a 4T1 breast
cancer lung metastasis mouse model [90].

4. Enhancing Immune Checkpoint Inhibitors (ICIs)

ICIs have demonstrated tremendous potential in leveraging the immune system to
combat cancer. Some prominent examples of ICIs include PD-1, PD-L1, IDO, CTLA-4,
CD47, and CD40, among others.

PD-1, part of the CD28 immunoglobulin superfamily, is predominantly found on
the surface of activated T cells, B cells, and various other immune cells, including NK
cells and myeloid cells. Its immunosuppressive function relies on the interaction with
its ligands, PD-L1 and PD-L2, which also function as immune checkpoints. PD-L1 and
PD-L2 are mainly found on tumor cells, further contributing to the immunosuppressive
microenvironment [91]. Despite their clinical success, there are limitations to the use of
PD-1/PD-L1 inhibitors, such as predicting patient response to these inhibitors and immune
escape remain challenges [92]. Polymer micelles can enhance the efficacy of antibodies;
however, their broad adoption is impeded by factors such as high cost, instability, and
the potential risk of autoimmune diseases. Additionally, polymer micelles have shown
promise in augmenting patient response to checkpoint immunotherapy while simultane-
ously reducing treatment complications. The utilization of siRNA@PPDS micelles in the
combined therapy targeting PD-L1-KD and HDACIs represents a potential and effective
approach to overcome immune checkpoint inhibitor resistance and provide a promising
treatment option for inhibiting tumor growth [93]. Cancer immunotherapy through pho-
todynamic therapy (PDT) has been established utilizing a versatile micelleplex system.
This system integrates an acid-activatable cationic micelle, small interfering RNA, and
photosensitizer [94]. In addition, a hyaluronic acid (HA) linked to chlorin e6 (Ce6) forms
a HA-Ce6 conjugate (HC). Encapsulation of a small-molecule inhibitor, BMS 202 (BMS),
within BMS/HC micelles improves the PD-1/PD-L1 blocking efficacy and facilitates effi-
cient photoimmunotherapy [95]. Researchers have investigated the co-delivery of paclitaxel
and anti-PD-1 antibody using micelles to enhance tumor chemoimmunotherapy [65,96].
In one study, a dual-responsive carboxymethyl chitosan micelle functionalized with a
targeting peptide GE11 was developed. This micelle allowed the concurrent transport
of doxorubicin and PD-L1 siRNA. The micelle effectively inhibited immune escape and
significantly improved the anti-tumor immune response, resulting in suppressed tumor
growth [97]. In another study, a cocktail strategy involving paclitaxel, thioridazine, and the
inhibitor HY19991 of PD-1/PD-L1 was incorporated into the micelle for the treatment of
breast cancer. This micelle formulation led to a decreased proportion of cancer stem cells
and increased T cell infiltration within tumor tissues [66]. Seungpyo Hong and his research
team have conducted thorough investigations into the utilization of nanopolymer mate-
rials for cancer therapy. They employed hyperbranched, multivalent poly(amidoamine)
dendrimers to prepare dendrimer-ICI conjugates, which improved the PD-L1 blockade
effect through the binding affinity of the inhibitor to the target proteins [98]. They found
that poly(amidoamine) (PAMAM) exhibited the greatest proficiency in capturing exosomes
cultured in human serum [99]. Recently, they harnessed PAMAM to engineer an innovative
hybrid NP system that melds the favorable biological traits of exosomes with gene delivery,
leading to a substantial reduction in PD-L1 expression (3.8-fold more than dendrimers
alone, p < 0.05). Their findings illustrate that both exosomes and dendrimers propose a
novel nanomicelles design strategy [100].

CTLA-4 is upregulated upon T cell activation, and its protein sequences of CTLA-4
share high homology with CD28. CTLA-4 possesses two ligands, namely CD80 (B7-1) and
CD86 (B7-2) [101]. Monoclonal antibodies that target CTLA-4, such as Ipilimumab and
Tremelimumab, have been used in clinical treatments [102]. In a combination approach, a
polymer micelle was employed to co-encapsulate the PARP inhibitor Niraparib and the
PI3K inhibitor HS-173, alongside anti-CTLA-4 immunotherapy and X-ray irradiation [103].
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IDO is an enzyme responsible for catalyzing the conversion of the vital amino acid
l-tryptophan into kynurenine, leading to local depletion of tryptophan. This depletion
has been demonstrated to trigger anergy and apoptosis in effector T cells [104]. Moreover,
IDO is frequently overexpressed in various types of cancer and has been implicated in
tumor-mediated immunosuppression [105]. IDO inhibitors include NLG919, PF-06840003,
Norharmane, and 1-methyl-DL-tryptophan (1-MT) [106]. Given that IDO is expressed in
numerous immunotherapy-resistant cancers, one suggested approach involves constructing
PEG micelles effectively inhibiting IDO with 1-MT, such as INCB024360 [107]. NLG919 an
IDO-1 inhibitor, has entered clinical trials, demonstrating high IDO selectivity with an EC50
of 75 nM.s [108]. Nonetheless, NLG919 faces a significant hurdle in its clinical application
due to its poor water solubility, which hinders therapeutic delivery [109]. Co-delivery IDO
inhibit NLG919 and chemotherapy drug (paclitaxel, doxorubicin) micelles a significantly
improved anticancer response [54,110,111]. A study revealed that the administration
of gefitinib through PEG5k-Fmoc-NLG919 micelles with immunostimulatory properties
enhanced the susceptibility of lung cancer cells to gefitinib [112]. The combination of
NLG919/IR780 micelles with immunotherapy and photothermal therapy (PTT) not only
allows for effective tumor margin suppression through PTT, but also enhances the immune
response to inhibit distal tumors [113].

5. Engineering Targeting Polymeric Micelles as Cancer Vaccine Platforms

A cancer vaccine is a method that utilizes tumor antigens, immunocytes, or other
immune molecules to stimulate the immune system and trigger an immune response [114].
The cytotoxic T-lymphocyte (CTL) response is a crucial immune response in cancer vaccines.
Re-activating CTL response within tumor tissues through checkpoint blockade has shown
significant success in tumor immunotherapy. PEG-PE micelles, serving as cancer vaccine
platforms, enable co-delivery of tumor antigens and monophosphory lipid A adjuvant,
leading to a remarkable increase in CTL response [115]. Based on the origin of cancer
vaccines, they can be categorized into several types, including tumor cell vaccines, den-
dritic cell (DC) vaccines, lymph node (LN) vaccines, peptide vaccines, gene vaccines, and
more [116,117]. However, there are obstacles in the development of cancer vaccines, such
as weak immunogenicity, short half-life, susceptibility to immune tolerance, and major
histocompatibility complex (MHC) restrictions [118]. Polymer micelles offer a solution to
these challenges and have emerged as excellent platforms for tumor vaccines. By modi-
fying the properties of polymer micelles, such as pH responsiveness and long circulation,
they can be utilized as carriers for tumor vaccines, enhancing the effectiveness of tumor
immunotherapy [46,48,119,120]. Several studies have reported that the carrier materials
of micelles can serve as immune adjuvants. For instance, cholesteryl PADRE-EGFRvIII
epitope-conjugated lipopeptide self-assembled micelles have been investigated as a po-
tential self-adjuvant vaccine. Additionally, M-COSA micelles have been used to achieve
targeted co-delivery of antigen ovalbumin and plasmid DNA encoding CCR7 [121,122].
Tumor-targeted micelle vaccines have demonstrated the ability to improve therapy for
advanced melanoma by modifying the tumor microenvironment [72]. Cell-penetrating pep-
tides (CPPs), typically comprising 4–30 amino acids, possess the capability to permeate cell
membranes without inducing substantial toxicity. This property renders them a straightfor-
ward and practical choice for intracellular delivery. CPP-conjugated immune modulators
can enhance antitumor immune responses or anti-inflammatory effects, offering potential
applications in the regulation of allergies and autoimmunity [123]. A nanovaccine, engi-
neered by encapsulating OVA modified with CPPs, amplifies the cytosolic processing of
antigens and subsequently augments antigen cross-presentation through MHC-I molecules,
thereby eliciting cytotoxic CD8+ T cell responses [124]. Moreover, by utilizing a small
library of antigenic peptides that undergo antigen folding, the loading efficiency into PC7A
micelles is enhanced, resulting in increased antitumor efficacy against melanoma [125].
Here, we summarize the current polymeric micelles as cancer vaccine platform or cancer
immunotherapy (Table 2). These polymer micelles offer a range of benefits, including
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enhanced immunogenicity, increased uptake by antigen-presenting cells (APCs), and the
stabilization of the antigen.

Table 2. Summary of polymeric micelles as cancer vaccine platforms.

Mechanism of Action Polymer Payloads Models Ref.

Accumulation LNs
Amphiphilic

poly(L-histidine)–poly(ethylene
glycol)

Ovalbumin C57Bl/6 mice [126]

Targeting LNs
Dendritic cell

membrane/histidine-modified
stearic acid-grafted chitosan

Ovalbumin B16-OVA tumorbearing
mice [48]

Accumulation LNs Poly(Lhistidine)-
poly(ethylene glycol) (PLH-PEG) Trp2/CpG B16-F10 tumor-bearing

C57BL/6 mice [127]

Targeting DCs Polyethylene glycol-
phosphatidylethanolamine OVA250–264 peptide

OVA257-264-specific TCR
transgenic mice

C57BL/6-Tg (TcraTcrb)
1100Mjb/J (OT-I)

[128]

Targeting Skin DCs Glyceryl monooleate
Hydrophilized

melanoma antigen
peptide K-TRP-2

Mouse melanoma B16F10
cells and C57/BL6N mice [129]

Targeting DCs
Mannosemodified poly(ethylene

glycol)-block-poly(ε-
caprolactone)

Ovalbumin B16F10-OVA melanoma [130]

Elevated cytotoxic T
lymphocyte

Maleimide-mPEG2000-DSPE-
DOPE-MPL

Gp2,
HER2/neu-derived

peptide
Breast cancer [131]

Improve DCs
activation and enhance
antigen-specific T cell

responses

Mannosylated block copolymer
MAN-P

MHC-I and MHC-II
epitopes B16F10 melanoma [132]

Target DCs in the
Lymph nodes PEG-PCL using disulfide bond CpG ODN1826, a TLR-9

agonist
B16-OVA and lung

metastasis melanoma [133]

6. Modulating Antigen Presentation

Antigen-presenting cells (APCs), including DCs and macrophages, play a crucial role
in immunomodulation. They play a crucial role in antigen presentation, involving the
uptake, processing, and presentation of foreign antigens along with MHC class II molecules
to T cells. Efficiently delivering tumor antigens and immunostimulatory adjuvants to
lymph nodes is vital for APC maturation and activation, ultimately leading to the induc-
tion of adaptive anti-tumor immunity. The specialized vaccine with a cytosol delivery
micelle cascade led to an increased rate of MHC I molecule combination and improved
antigen cross-presentation efficiency, which was further validated by elevated quantities
of CD3+CD8+ T cells, CD3+CD8+25D11.6+ T cells, and post-subcutaneous secretion of
IL-2 and IFN-γ [126]. In another study, Nak Won Kim explored the use of an amphiphilic
triblock copolymer-based dissolving microneedle system to deliver a receptor 7/8 agonist.
The use of microneedles that included a tumor model antigen (OVA) and R848 applied to
the skin of EG7-OVA tumor-bearing mice produced a substantial antigen-specific humoral
and cellular immune response, ultimately leading to remarkable antitumor effects [134].

DCs are the most potent APCs play a vital role in initiating and modulating the
tumor immune response [135]. As described above, polymer micelles serve as effective
delivery platforms for vaccines and can be specifically targeted to DCs through mannose
modification, thereby enhancing tumor immunity [129,130]. Various polymer materi-
als have been explored for the development of micelles that can specifically target DCs.
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These include mannosylated HPMA-LMA block copolymers, HPMA modified with man-
nose or trimannose carbohydrates, laurylmethacrylate-co-hymecromone-methacrylate, α-
galactosylceramide, and the hyperbranched polymer Boltorn H40, among others [136–139].
Activator of transcription 3 (STAT3) plays a significant role in the progression of cancer
cells and cancer-associated DCs. The self-associating polymer, poly(ethylene oxide)-block-
poly(α-carboxylate-ε-caprolactone), loaded with the inhibitor JSI-124 of STAT3, forms
self-assembled polymeric micelles. The results demonstrate that JSI-124 micelles passively
target melanoma tumor cells and tumor-associated DCs, leading to the modulation of
the immunosuppressive microenvironment [140]. Co-delivery of imiquimod and antigen-
encoding plasmid DNA using polymer nanocarriers synergistically enhances immunity,
showing potential for gene-based vaccine approaches [141]. Chenxi Li explored the ap-
plication of an amphiphilic diblock copolymer, poly(2-ethyl-2-oxazoline)-poly(d,l-lactide),
in combination with carboxyl-terminated Pluronic F127 to create mixed micelles for the
co-delivery of ovalbumin antigen and Toll-like receptor-7 agonist CL264 to lymph node-
resident DCs. These mixed micelles elicited robust in vivo immune responses, including
antigen-specific T-cell activation, antigen-specific IgG antibody production, and cytotoxic
T-lymphocyte responses [142].

7. Modulating Engineered T Cells

Chimeric antigen receptor (CAR)—and T cell receptor (TCR)-modified T cells have
arisen as a hopeful avenue for adoptive cell therapy, utilizing artificial receptors to target
advanced cancer forms. CAR-T cells can directly identify tumor antigens without relying
on the major histocompatibility complex. This therapy has shown success in reducing re-
mission rates by up to 80% for hematologic cancers, notably acute lymphoblastic leukemia
and non-Hodgkin lymphomas like large B-cell lymphoma. Initial trials of CAR T cells
focused on B-cell malignancies, targeting CD19 or CD20 antigens. Recently, anti-CD19
CAR therapy (UCART19) has demonstrated efficacy in relapsed/refractory hematologic
cancer [143,144]. Studies by Kristen M. Hege have shown the potential of CAR-T cells
targeting tumor-associated glycoprotein (TAG)-72 in treating solid tumors like colorec-
tal cancer [145]. Despite the remarkable achievements of CAR-T technology in treating
acute lymphocytic leukemia and non-Hodgkin’s lymphoma, there remain challenges and
limitations [146]. The treatment process is complex, involving extraction and in vitro ampli-
fication of T lymphocytes from patients, typically taking 2 to 3 weeks before reinfusion [147].
Moreover, CAR-T cell therapy faces obstacles in treating solid tumors, and cytokine-release
syndrome is a unique acute toxicity associated with this therapy [148].

Micelles can overcome barriers in CAR T cell therapy by efficiently binding to pe-
ripherally circulating T cells and exhibiting high distribution in the bone marrow, lymph
nodes, and spleen. Altered micelles can target solid tumors specifically, boosting CAR T
cell treatment effectiveness. To address traditional CAR delivery system issues, a three-part
amphiphilic co-polymer, mPEG-bPEI-PEBP, is employed to encapsulate DNA plasmids.
This approach solves problems like inadequate biosafety, limited loading capacity, and
reduced transfection efficiency in traditional CAR delivery systems [149].

8. Targeting Other Components of the TME with Micelles

The TME comprises diverse elements, encompassing tumor parenchymal cells, stro-
mal cells, immune cells, ECM, lymphatic vessels, and blood vessels [150]. Recent studies
have focused on utilizing micelles to respond to and remodel the TME, as well as modu-
late immunosuppressive cells within the TME. Among these components, cancer/tumor
-associated fibroblasts (CAFs/TAFs) assume a pivotal role within the tumor stroma. They
engage with cancer cells, fostering tumor advancement and progression. The densely
packed cellular structure and elevated expression of ECM components by cancer cells and
CAFs can hinder drug diffusion, thereby curtailing therapeutic effectiveness. Moreover,
the presence of ECM and CAFs can contribute to drug resistance, as cancer cells with high
ECM expression and interaction with CAFs exhibit increased resistance to chemotherapy
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compared to other tumor cells [151]. To overcome these challenges, harnessing the distinc-
tive attributes of micellar drug delivery systems can enable precise drug targeting to tumor
cells and improve the efficacy of chemotherapy by bypassing drug resistance mediated by
the ECM and CAFs.

Targeting ECM and CAFs/TAFs: ECM is a fundamental component of the TME that
acts bidirectionally, both affecting and being affected by tumor cells. In desmoplastic
tumors, CAFs/TAFs and the resultant pathological tumor stroma significantly hinder the
accessibility and responsiveness of tumor cells to anti-tumor treatments. Remodeling
and targeting ECM and CAFs of the TME can enhance cancer therapy. Angiotensin II
type I receptor (AT1R) is a member of the G protein-coupled receptor superfamily and is
overexpressed on both CAFs and tumor cells, including those found in breast tumors and
pancreatic duct adenocarcinoma [152,153]. Telmisartan, functioning as an angiotensin II
Type I receptor blocker (ARB), exhibits the highest affinity to AT1R among ARBs due to its
distinctive “delta lock” molecular structure [154]. There have been several reports on the
use of telmisartan to target the ECM by inducing apoptosis in CAFs and reprogramming
the TME. For instance, glycolipid-based polymeric micelles were engineered to encapsulate
telmisartan and doxorubicin. Another approach involved telmisartan-grafted glycolipid
micelles in conjunction with doxorubicin to reprogram the TME, making internal breast
cells more vulnerable [155,156]. As previously mentioned, the mannose-modified lipid
calcium phosphate nano-micelles-based Trp2 vaccine has been shown to remodel TAFs,
blood vessels, and collagen in melanoma therapy [72]. Chao Teng developed a polymeric
micelle that responds to fibroblast activation protein-α (FAP-α). This micelle consists of a
CD44-targeting outer layer and a polyethylene glycol (PEG) coating that can be cleaved by
FAP-α. The FAP-α-responsive polymeric micelle exhibited significant anticancer effects
by inducing apoptosis in CAFs and reducing collagen levels within tumor tissues [157].
Moreover, it successfully co-delivered the anti-CAFs agent tranilast and the antitumor
agent docetaxel within the micelle, disrupting the communication between tumor cells
and stromal cells. This led to improvements in the TME and enhanced antiproliferative
effects [158]. In another study, the incorporation of cyclopamine, a sonic hedgehog inhibitor,
with paclitaxel in a polymeric micelle resulted in stromal remodeling and enhanced pancre-
atic cancer therapy [159]. Furthermore, employing a mixed polymeric micelle stabilized
with lecithin and loaded with mPEGylated docetaxel facilitated precise tumor targeting
and the specific recognition of antigens unique to TAFs. This approach resulted in superior
tumor growth inhibition compared to Tynen® while causing fewer adverse effects [160].
Collectively, these studies demonstrate the potential of using micelles for co-delivering
CAFs inhibitors and chemotherapeutic drugs to reprogram the TME and enhance the
efficacy of anti-tumor treatments.

Targeting tumor neovascularization: Tumor neovascularization, driven by the process
of angiogenesis, plays a critical role in supplying nutrients and oxygen to support the
growth of neoplastic cells within a tumor. Angiogenesis involves a complex series of events,
including the activation and growth of neovascular endothelial cells, modifications to
the extracellular matrix, changes in vascular permeability, and the development of new
blood vessels. Additionally, tumor neovascularization can significantly impact the TME.
Targeting tumor neoangiogenesis and impeding its development is considered a potential
therapeutic avenue in cancer treatment. Vascular endothelial growth factor (VEGF) plays
a pivotal role in regulating tumor neovascularization, and its inhibition can effectively
curb tumor angiogenesis. One method involves the concurrent delivery of siVEGF and
PTX, achieved through apelin (Ap)-modified copolymeric micelles and folate-PEG-PHIS
micelles. This approach results in substantial suppression of neovascularization via VEGF
gene silencing [161,162]. Moreover, integrin αvβ3 is a cell adhesion molecule abundantly
present on the surface of neovascular endothelial cells. Yupeng Liu developed c(RGDfk)-
modified glycolipid-like micelles encapsulating incorporating indocyanine green, enabling
dual-targeting of integrin αvβ3 on neovascular endothelial cells and glioblastoma [163].
A d-peptide ligand is a ligand that specifically binds to integrins found in abundance
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on glioma cells and tumor neovasculature. When incorporated into modified micelles
loaded with doxorubicin, it significantly enhances the targeting efficiency for glioma [164].
Numerous Chinese herbal medicines have exhibited inhibitory effects on retinoblastoma
growth in various research studies, although the underlying mechanism remains poorly
understood. Incorporating natural components with chemotherapy drugs in micelles has
shown promising results in increasing the anti-tumor effect by inhibiting tumor neovas-
cularization. Some notable examples of these components include curcumin, celastrol,
triptolide (LA67), luteolin, and ursolic acid [165–169]. The celastrol nanomicelles effectively
inhibited hypoxia-induced VEGF and HIF-1α leading to the suppression of retinoblastoma
growth and angiogenesis. Additionally, luteolin MPEG-PCL micelles induced apoptosis
by down-regulating Pro-caspase9 and Bcl-2 while up-regulating cleaved-caspase9 and
Bax [166,168].

9. Clinical Trials and Application Status of Polymer Micelles

Through extensive laboratory research, numerous anti-tumor micellar formulations
have progressed to the clinical trial phase (Table 3) [170]. Certain chemotherapy drugs en-
capsulated within micelles are currently accessible in the market, which includes products
like NK105, NC-6004, and Genexol-PM® [171]. However, polymer micelles as a platform for
tumor immunotherapy are currently in the laboratory-based research stage. It is anticipated
that in the near future, they will advance to the clinical trial phase.

Table 3. Polymer micelles in cancer interventional clinical trials on ClinicalTrials.gov.

Product Name Drug Study Status Conditions Trial Code

Paclitaxel Micelles for
Injection Paclitaxel Phase I (Recruiting) Advanced Solid Tumors NCT04778839

PPM Paclitaxel Phase I (Recruiting) Non-muscle-invasive
Bladder Cancer NCT05519241

NC-6004 Cisplatin Phase I/II (Completed) Pancreatic Neoplasms NCT02043288

Genexol-PM® Paclitaxel Phase II (Completed) Bladder Cancer/Ureter
Cancer NCT01426126

Genexol-PM® Paclitaxel Phase II (Completed) Non Small Cell Lung
Cancer NCT01023347

NK105 Paclitaxel Phase III (Completed) Breast Cancer Nos
Metastatic Recurrent NCT01644890

10. Limitations of Polymeric Micelles Clinical Application

Polymeric micelles offer the potential to be applied in cancer immunotherapy through
multiple avenues, including enhancing the delivery of immunostimulatory agents, improv-
ing the pharmacokinetics and biodistribution of immune-modulating drugs, and enhancing
the effectiveness of cancer vaccines. While polymeric micelles have shown promise in
cancer immunotherapy, there are several limitations that need to be addressed to maximize
their potential. Firstly, limited drug loading capacity: Polymeric micelles have limited drug
loading capacity, particularly for hydrophilic drugs. This limitation can restrict the quantity
of drug delivered to the target location, potentially diminishing its effectiveness. Secondly,
short circulation time: Polymeric micelles can be rapidly cleared from the bloodstream,
particularly in the presence of serum proteins [172]. This can limit the amount of time
the drug is available to exert its therapeutic effect. Thirdly, immune response: Polymeric
micelles may elicit an immune response, leading to clearance and reduced efficacy. The
last but not least, clinical translation: although polymeric micelles have displayed potential
in preclinical investigations, their translation to the clinic is still limited by issues such as
manufacturing scalability, regulatory hurdles, and cost-effectiveness [173,174].
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11. Conclusions and Future Applications of Polymeric Micelles

The future research directions for active-targeting polymeric micelles in cancer im-
munotherapy can be explored in the following aspects: Firstly, researchers will continue to
explore more efficient methods of encapsulating immunotherapeutic agents into polymeric
micelles, such as exploring new materials and optimizing their physicochemical properties.
Secondly, efforts will be made to enhance the targeting efficiency of polymeric micelles to
cancer cells and tissues, either through surface modification or active targeting strategies.
For example, the design and engineering of CPPs may facilitate the secure transportation
of therapeutic compounds through biological barriers [175]. Thirdly, the development of
multifunctional polymeric micelles capable of concurrently delivering various types of
immunotherapeutic agents simultaneously may become an important research direction.
Fourthly, there is a need to further optimize the release profile of immunotherapeutic agents
from polymeric micelles, such as achieving sustained release and targeted release under
specific conditions. Finally, more in-depth studies on the safety and biocompatibility of
polymeric micelles in vivo are necessary to ensure their clinical translation.

In conclusion, while polymeric micelles have enormous potential in tumor immunother-
apy, their application needs further improvement. This includes enhancing their targeting
and biocompatibility, reducing side effects, and increasing their clinical value for patients.
Further research and development will help address these issues and drive the application
of polymeric micelles in the field of tumor immunotherapy.
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ACT Adoptive Cell Transfer
CAR Chimeric Antigen Receptors
CAFs/TAFs Cancer-associated fibroblasts/Tumor-Associated Fibroblasts =
APCs Antigen-Presenting Cells
CTL Cytotoxic T-Lymphocyte
CTLA-4 Cytotoxic T lymphocyte Antigen-4
AT1R Angiotensin II type I receptor
CPPs Cell-Penetrating Peptides
DCs Dendritic Cells
EPR Enhanced Permeation and Retention
IDO Indoleamine 2,3 oxygenase
GSH Glutathione
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ECM Extracellular Matrix
MDSCs Myeloid-Derived Suppressor Cells
ICIs Immune Checkpoint Inhibitors
LNs Lymph Nodes
MHC Major Histocompatibility Complex
OVA Ovalbumin
PD-L1 Programmed Death Ligand 1
MMPs Matrix Metalloproteinases
PD-1 Programmed Death Receptor 1
ROS Reactive Oxygen Species
TAMs Tumor-Associated Macrophages
TME Tumor Microenvironment
TCR T-Cell Receptor
Tregs Regulatory T Cells
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