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Abstract: Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic ac-
tivity towards tumor cells by activating photosensitizers (PSs) with light exposure to produce reactive
oxygen species (ROS). Compared to traditional treatment strategies such as surgery, chemother-
apy, and radiation therapy, PDT not only kills the primary tumors, but also effectively suppresses
metastatic tumors by activating the immune response. However, the anti-tumor immune effects
induced by PDT are influenced by several factors, including the localization of PSs in cells, PSs
concentration, fluence rate of light, oxygen concentration, and the integrity of immune function.
In this review, we systematically summarize the influence factors of anti-tumor immune effects
mediated by PDT. Furthermore, an update on the combination of PDT and other immunotherapy
strategies are provided. Finally, the future directions and challenges of anti-tumor immunity induced
by PDT are discussed.

Keywords: photodynamic therapy; innate immunity; specific immunity; influence factors; combination
therapy

1. Introduction

Photodynamic therapy (PDT) utilizes an administered photosensitizer (PS) activated
by light to achieve localized cytotoxicity for treatment of various indications (Figure 1).
At present, PDT has been proven to be an effective strategy in various cancer treatment,
including cervical cancer, skin cancer, nasopharyngeal carcinoma, etc. [1,2]. There are three
mechanisms of PDT-induced tumor destruction. Firstly, ROS generated by PDT directly
kill the primary tumor cells. Secondly, ROS disrupt the tumor vascular system by inducing
the release of vasoconstrictors and the form of blood clots. Finally, the immune system
is activated by PDT, which can not only eliminate primary tumors, but also effectively
destroy metastatic lesions through the activation of T cells [3]. However, the PDT-mediated
immune effects are influenced by several factors, such as the localization of PSs in cells,
PS concentration, fluence rate of light, oxygen concentration, and the integrity of immune
function. Therefore, comprehensive consideration of these factors to achieve the optimal
outcome of PDT is important for the physician to make a treatment protocol. In addition,
the combination of PDT with immune checkpoints, DC vaccines, and chemotherapy have
been reported to effectively improve the immune effects of PDT [4,5]. Herein, we first
analyze the mechanism and influence factors of anti-tumor immunity mediated by PDT.
Then, the recent advances on combination of PDT with other immunotherapies are also
summarized. Finally, the future direction and challenges of anti-tumor immunity induced
by PDT are discussed.
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Figure 1. The mechanism of action of photodynamic therapy.

2. Immunological Effects of PDT

Many studies have demonstrated that innate and specific immunity can be activated
by PDT. Tumor cell necrosis induced by PDT is frequently accompanied by an acute
inflammatory response and infiltration of inflammatory cytokines, which can trigger innate
immunity [6]. Meanwhile, immunogenic cell death (ICD) induced by PDT leads to the
release of damage-associated molecular patterns (DAMPs) and the activation of specific
immune response [7].

2.1. Activation of Innate Immunity

The mechanism of PDT-mediated innate immunity has been widely studied, which
mainly include three parts [8–10]. Firstly, nuclear factor κB (NF-κB) and activator protein
1 (AP-1) in the tumor cells can be activated after PDT and contribute to the activation of
acute inflammatory response [11,12]. Secondly, the activation of inflammatory signaling
pathway results in the secretion of inflammatory cytokines and chemokines, such as
interleukin (IL), tumor necrosis factor (TNF), and interferon (IFN) [13]. Interleukin-1β (IL-
1β) plays an important role in neutrophils infiltration of tumors. The increased activation
of neutrophils is an essential symbol for innate immune response induced by PDT [14].
Kousis et al. reported that the activation and proliferation of CD8+ T cells is influenced by
exhaust of neutrophils [15]. It is widely known that CD8+ T cells can preferentially attack
tumor cells by recognizing antigens. Thirdly, the activation of the complement system is
conducive to clearance of tumor cells after PDT. Stott et al. have demonstrated that C3, C5,
and C9 have significantly increased in Lewis lung carcinoma (LLC) cells after Photofrin-
PDT [16]. Cecic et al. also discovered that the cure rate of LLC tumors after PDT can be
influenced by complement antagonists of C3aR or C5aR [17]. These studies suggested that
the complement system is a pivotal part of PDT-mediated anti-tumor immunity.

2.2. Activation of Specific Immunity

PDT stimulates specific immune effects by inducing the immunogenic death (ICD)
of tumor cells. ICD is a form of cell death to activate immune system, which provokes
specific immune response by eliciting danger signals released from dying tumor cells. The
occurrence of ICD is one precondition of anti-tumor immunity. Therefore, the development
of ICD inducers has become a research hotspot. PSs are considered an efficient ICD inducer
under irradiation, especially Hypericin (Hyp) (Scheme 1, Compound 1), which can target
endoplasmic reticulum (ER) [18] and trigger ER stress by producing ROS, resulting in the
release of a variety of damage-associated molecular patterns (DAMPs) and the activation
of specific immune response [19–21].
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Scheme 1. Chemical structure of the PSs that can induce immune effects. Scheme 1. Chemical structure of the PSs that can induce immune effects.

ER stress is an adaptive response of cells to the over-accumulation of damaged proteins.
ER receptors are activated when ER is under stress. In order to relieve ER stress and achieve
self-help, signaling pathways such as PERK, ATF6 and IRE1 are activated [22]. Among
them, PERK is an important regulatory molecule in immunogenicity. It can incite the
release of DAMPs such as calreticulin (CRT), high-mobility group protein 1 (HMGB1),
and ATP [23]. DAMPs are a kind of dangerous signal released into the extracellular space
during tumor cell death [24]. The characteristics of PSs known to trigger ICD and their
immune activation effects are summarized in Table 1.

The process of anti-tumor immune activation of PDT is briefly introduced as follows.
Firstly, CRT, as an “eat me” signal for APCs, is the most important DAMP that triggers ICD.
It can be translocated to the outer surface of the plasma membrane of dying tumor cells
after PDT, and then recognized by the low-density lipoprotein receptor-related protein 1
(LRP1) receptor on dendritic cells (DCs). Then, DCs become matured and boost anti-tumor
immune response by sparking antigen presentation [25–27]. Extracellular ATP, as a “find
me” signal, can bind to the purinergic receptor P2Y2 (P2Y2R) and purinergic receptor P2X7
(P2X7R) on DCs. It is worth mentioning that ATP can attract the recruitment of monocytes
by recognizing P2Y2 receptors, as well as promote formation of the inflammasome and se-
cretion of inflammatory stimulating factors by combining P2X7 receptors [28]. Additionally,
heat shock protein (HSP) and HMGB1 are also important DAMPs which can be triggered
by PDT. HSPs can effectively promote DC maturation and stimulate T cells by binding to
Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) [29,30].
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Overall, PDT, as an ICD inducer, generates ROS in tumor cells to stimulate massive
exposure of DAMPs, which in turn promotes maturation of DCs and activation of cytotoxic
T lymphocytes. Finally, the activated DCs and T cells mediate patient-specific immune
effects for the elimination of primary and metastatic lesions (Figure 2). The existing PSs
capable of triggering the ICD effects are summarized and listed in the Table 2. The structural
formulas of classic PSs are shown in Scheme 1.
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Table 1. Common DAMPs and their functions.

DAMP PRR Receptor Function References

1 CRT LRP1 (CD91) As a pro-phagocytic signal and promoting antigen presentation [25,26]

2 ATP
P2RX7 Activate inflammatory bodies and promote the secretion of inflammatory factors

[28,31]
P2RY2 Attract recruitment of monocytes

3 HMGB1 TLR2, TLR4, TLR9 Promote DC maturation (especially its metastasis to lymph nodes) and activate T cells [28,30]

4
HSP70

TLR2, TLR4 Induce DC expression and maturation, and promote cytokine release, especially IL-12 and TNF-α [32–34]
HSP90

5 Annexin A1 FPR1 Help DC move to dying cells [35]

6 CpG DNA TLR9 Expression of high levels of MHCII and costimulatory molecules (CD80, CD86) and production of IL-12,
interleukin, and other cytokines to promote DC maturation and activation [36,37]

7 CXCL10 CXCR3 Induction of DC activation and T cell infiltration [38]

8 ExRNA TLR3 Release TNF-α, IL-1β, or IL-6 and other inflammatory cytokines [39–41]

9 dsDNA TLR3, RIG-I Promote the expression of proinflammatory cytokines type I IFN, etc. [42]

10 dsRNA TLR3 Promote the expression of proinflammatory cytokines type I IFN, etc. [43]

11 Type I IFNs IFNAR1/IFNAR2 Enhance the function of CTL and NK cells and promote the secretion of CXCL10 [44–46]

12 ssRNA TLR7, TLR8 Promote the release of other DAMPs, release cytokines, and promote DC maturation [47,48]

CRT: Calreticulin; HMGB1: High-mobility group protein box 1; HSP: Heat shock protein; DC: Dendritic cell; TNF: Tumor necrosis factor; IFN: Interferon; IL: Interleukin; MHC: Major
histocompatibility complex; CTL: Cytotoxic T lymphocyte.
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Table 2. PS-induced ICD.

Photosensitizer Cell Line Cell Death
Type

Subcellular
Localization DAMP Immunological Effects of

Tumor Cells In Vitro
Immunological Effects of Tumor Cells

In Vivo Reference

Indocyanine green
(Scheme 1, Compound 9)

CT26 Apoptosis

ER CRT N/D

Maturation of DCs; CD8+T cells ↑;
TNF-α, IFN-γ ↑; Tregs cells ↓;

[49]
B16 N/D

Maturation of DCs
(CD11c+/CD80+/CD86+↑); CD4+ T
cells, CD8+ T cells ↑; IL-6 ↑, TNF-α,

IFN-γ ↑; Tregs cells ↓;

TCPP-TER 4T1 N/D ER CRT, HMGB1
Maturation of DCs

(CD80+CD86+ ↑); IL-12,
TNF-α ↑;

CD8+ T cells ↑; IL-12, TNF-α, INF-γ ↑; [50]

Hypericin
(Scheme 1, Compound 1) T24 Apoptosis ER CRT, ATP

Phenotypic maturation of
DCs (MHC II, CD80+, CD83+

and CD86+ ↑);

DC phenotype maturation (CD80+,
CD83+, CD86+, MHC II ↑); IL-1β ↑,

IL-10 ↓;
[18]

5-aminolevulinic acid
(Scheme 1, Compound 6) PECA Apoptosis ER CRT, HSP70, and

HMGB1

Phenotypic maturation of
DCs (CD80+, CD86+ and
MHC II↑); IFN-γ, IL-12 ↑;

N/D [51]

Porphyrazines (Pz I and
Pz III) MCA205

Apoptosis Pz-I: GA and Lys

ATP, HMGB1 Maturation of DCs (CD80+,
CD86+ ↑); N/D [52]Ferroptosis,

Necrosis Pz-III: ER and Lys

Verteporfin
(Scheme 1, Compound 7) CT26 Apoptosis,

Necrosis N/D CRT, HSP70, and
HMGB1

Maturation of DCs
(CD11c+CD40+CD86+ ↑);

Phenotypic maturation of DCs
(CD86+↑); CTL ↑; IFN-γ ↑; Tregs ↓; [53]

TPE-PR-FFKDEL 4T1 N/D ER CRT, ATP, HMGB1,
and HSP70 N/D

DC phenotype maturation
(CD80+CD86+ ↑); CD8+ T cells,

NK cells ↑;
[54]

Photosens
(Scheme 1,

Compound 10)

GL261,
MCA205

Apoptosis,
Ferroptosis Lys CRT, HMGB1,

and ATP
Maturation of DCs
(CD86+ ↑); IL-6 ↑; N/D [55]

Photodithazine GL261,
MCA205 Apoptosis ER and GA CRT, HMGB1,

and ATP
DC phenotype maturation

(CD86+ ↑); IL-6 ↑; N/D [55]
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Table 2. Cont.

Photosensitizer Cell Line Cell Death
Type

Subcellular
Localization DAMP Immunological Effects of

Tumor Cells In Vitro
Immunological Effects of Tumor Cells

In Vivo Reference

Photofrin
(Scheme 1, Compound 2) C-26 Apoptosis,

Necrosis N/D HSP Maturation of DCs (IL-2 ↑); CD8+ T cells, NK cells ↑; [56]

Cu-TBP nMOF B16F10 Apoptosis N/D CRT N/D Maturation of DCs (CD11+ ↑); IFN-β,
CD4+ T cells and CD8+ T cells ↑; [57]

Chlorin e6
(Scheme 1, Compound 5) 4T1 Apoptosis N/D CRT Phenotypic maturation of

DCs (CD80+, CD86+ ↑);
DC phenotype maturation (CD86 ↑);

CD8+ T cells, CD4+ T cells ↑; [58]

Chlorin e6
(Scheme 1, Compound 5) B16 Apoptosis N/D CRT, HSP90,

HMGB1, and ATP

MI macrophage activation
(GBP5, iNOS and MHC-II ↑);

IFN-β ↑;
N/D [59]

Indocyanine green
(Scheme 1, Compound 9)

MC38
Apoptosis N/D CRT, HSP70,

and ATP
Maturation of DCs

(CD86+ ↑); IL-12-p40 ↑; Significantly inhibited tumor growth; [60]
CT26

Pyrolipid 4T1 Apoptosis,
Necrosis N/D CRT N/D

TNF-α, IL-6 and IFN-γ ↑; B cells, CD8+

T cells ↑; Significantly inhibited
tumor growth;

[61]

Chlorin e6
(Scheme 1, Compound 5) 4T1 Apoptosis N/D CRT DC phenotype maturation

(CD80+CD86+ ↑);
DC phenotype maturation

(CD80+CD86+ ↑); CD8+ T cells ↑; [62]

Chlorin e6
(Scheme 1, Compound 5) 4T1 Apoptosis N/D CRT, HMGB1,

and ATP
Phenotypic maturation of

DCs (MHC II, CD86 ↑);
CD8+ T cells, CD4+ T cells and

NK cells ↑; [63]

Pyropheophorbide CT26 Apoptosis,
Necrosis N/D CRT N/D TNF-α, IL-6 and IFN-γ ↑; [64]

Porphyrin
(Scheme 1, Compound 4) CT26 Apoptosis N/D CRT, ATP, and

HMGB1 N/D DC phenotype maturation
(CD80+CD86+ ↑); CD8+ T cells ↑; [65]

Chlorin e6
(Scheme 1, Compound 5) LLC or A549 Apoptosis N/D CRT, HSP 90, and

HMGB1 MHC I ↑ Ce6-PDT showed excellent anti-tumor
efficacy; MHC I ↑; [66]

Indocyanine green
(Scheme 1, Compound 9) 4T1 N/D N/D CRT N/D

Phenotypic maturation of DCs (CD86,
CD80 ↑); IL-10 and IFN-γ ↑; CD8+ T

cells, CD4+ T cells and NK cells ↑;
TGF-β ↓;

[67]
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Table 2. Cont.

Photosensitizer Cell Line Cell Death
Type

Subcellular
Localization DAMP Immunological Effects of

Tumor Cells In Vitro
Immunological Effects of Tumor Cells

In Vivo Reference

Core-shell gold
nanocages coated with

manganese dioxide
(AuNC@MnO2)

4T1 Apoptosis N/D CRT, ATP, and
HMGB1

DC phenotype maturation
(CD83, CD86 ↑); IL-12 ↑;

Maturation of DCs (CD86+ ↑); NK cells,
CD8+ T cells and CD4+ T cells ↑;

Treg cells↓;
[68]

Chlorin e6
(Scheme 1, Compound 5) 4T1 Apoptosis,

Necrosis Cytoplasm CRT, ATP Maturation of DCs
(CD80+CD86+ ↑);

Significantly inhibited tumor growth;
CD4+ T cells, CD8+ T cells ↑; [69]

2-(1-hexyloxyethyl)-2-
devinyl

pyropheophor-bide-a
(HPPH)

B16F10 Apoptosis Endo/Lys then
in ER CRT N/D IL-6, TNF-α ↑; CD8+ T cells ↑; [70]

Zinc-phthalocyanine MC38 Apoptosis Mitochondria CRT N/D Significantly inhibited tumor growth [71]

Zinc-phthalocyanine TC-1 Pyroptosis Mitochondria CRT, HMGB1 N/D Significantly inhibited the growth of
primary tumors and metastatic tumors [72]

IR780 CT26 N/D Mitochondria CRT, ATP, HMGB1,
and HSP90

Phenotypic maturation of
DCs (CD80+CD86+ ↑);

CD4+T cells and CD8+T cells ↑;
Significantly inhibited the growth of

primary tumors and metastatic tumors
[73]

TPE-DPA-TCyP 4T1 N/D Mitochondria CRT, ATP, HMGB1,
and HSP70 N/D

DC phenotype maturation (CD80+

CD86+ ↑); Significantly inhibited the
growth of primary tumors and

metastatic tumors; CD4+ T cells,
NK cells ↑;

[74]

N/D: Not detected; ER: Endoplasmic Reticulum; GA: Golgi Apparatus; Lys: Lysosomes; CRT: Calreticulin; HMGB1: High-mobility group protein box 1; HSP: Heat shock protein; DC:
Dendritic cell; TNF: Tumor necrosis factor; IFN: Interferon; IL: Interleukin; MHC: Major histocompatibility complex; Tregs: Regulatory T cells; ↑: Increase in proportion; ↓: Reduction
in proportion.
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3. Influence Factors of the Anti-Tumor Immunity Induced by PDT

The three elements of PDT are PSs, light, and oxygen, which determine the efficacy of
PDT and the death mode of cancer cells. Hence, the immunity induced by PDT relies on
several factors, including the localization and dose of PSs, light fluence, and concentration of
oxygen in tumors. Understanding and regulation of these influencing factors are important
to improve the anti-tumor immune effects of PDT.

3.1. Localization of PSs

The immune effects induced by PDT is highly related to the intracellular localization
of PSs. The mitochondria, ER, Golgi apparatus, and lysosomes are the binding sites
of PSs in the cells [75]. Different PSs mainly bind to the different organelles. Among
these organelles, ER maintains the intracellular calcium homeostasis and protein folding,
which plays a central role in immunogenic cell death [3,66]. Many studies have examined
the relationship between ER stress and the efficiency of induction of ICD. Garg et al.
found that Hyp-PDT could trigger CRT exposure, but not Photofrin-PDT under the same
conditions because Hyp is primarily located in the ER, whereas Photofrin (Scheme 1,
Compound 2) is dispersed within the cells and binds to the ER, mitochondria, and Golgi
apparatus [76]. Brodin [77] and Alzeibak [78]’s studies highlight the role of ER stress
response for incited ICD. Therefore, ER targeting of PSs is a decisive factor for the anti-
tumor immunity of PDT. Currently, a few PSs can target the ER have been reported,
including mTHPC (Foscan) (Scheme 1, Compound 3) [79], Benzoporphyrin derivative
(BPD) [80], and Hyp [81]. However, there is still a lack of ER-targeted PSs in the clinic.
Turubanova et al. developed a new PS porphyrins III (Pz III) [52], which targets to ER and
causes ER stress and DAMP release under 630 nm laser irradiation (Figure 3A). Particularly,
there was a significant increase in HMGB1 and ATP release (Figure 3B,C). In addition, the
activation and maturation of BMDCs were induced by MCA205 dying cells treated with Pz
III-PDT (Figure 3D). Similarly, in C57BL/6J mice model, the inhibitory effects on tumor
growth of the Pz III-PDT group were more pronounced than PBS-injected group (Figure 3E).
These results indicated that tumor dying cells after Pz III-PDT can be immunogenic, which
would contribute to the stimulation of an adaptive immune response.

Li et al. designed a new ER-targeted PS, TPE-PR-FFKDEL, which has been proven
to be effective in inducing ICD [54]. The exposure of CRT and the release of HSP70,
HMGB1, and ATP were detected in 4T1 cells after TPE-PR-FFKDEL-PDT. This marked
preponderance of released DAMPs can be attributed to the ability of TPE-PR-FFKDEL
targeting ER. Furthermore, TPE-PR-FFKDEL-PDT observably led to higher numbers of
CD8+ T cells and NK cells in the spleen of mice, indicating the effective provoking of
specific and innate immunity. All these results indicate that designing ER-targeted PSs are
an effective strategy to induce ICD and adaptive anti-tumor immune response.

In addition, transporting PSs with nanoparticles (NPs) to the subcellular organelles is
another strategy for improving immunity of PDT. Zhang et al. obtained Ce6-IMDQ NPs
via self-assembly, which combined chlorin e6 (Ce6) (Scheme 1, Compound 5) with TLR7
agonists (IMDQ) (Figure 4A) [58]. Upon 660 nm laser irradiation, Ce6-IMDQ NPs could
induce tumor cell death and antigen release, which effectively upregulated CRT exposure
and induced DC maturation (Figure 4D). Flow cytometric analyses confirmed that the
Ce6-IMDQ NPs group induced higher level of CD8+ T cells and CD4+ T cells in the spleen
and the distant tumors. In particular, the numbers of CD8+ T cells increased from 7.85%
to 14.14% (Figure 4E). Therefore, the stronger anti-tumor effects of PDT were elicited by
Ce6-IMDQ NPs through promoting the infiltration of cytotoxic T lymphocytes. Similar
results were also obtained in primary and distant animal tumor models. Tumor growth
was more effectively inhibited in the Ce6-IMDQ NPs treatment group compared to the
other treatment groups (Figure 4B,C).
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Figure 3. (A) Confocal microscopy showed co-localization of porphyrins III with ER, scale bar 20 µm.
(B) Quantitative analyses of HMGB1 release. (C) Quantitative analyses of ATP release. (D) Flow
cytometry analysis showed maturation of BMDCs in vitro induced by different treatment killed
cancer cells. (E) Volume changes of tumors after different treatments in vivo, *, # p < 0.05 [52].
Copyright, 2021, published by the Author(s).

Deng et al. [50] developed new NPs, Ds-sP/TCPP-TER, which consist of reduction-
sensitive Ds-sP NPs (PEG-s-s-1,2distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino-
(polyethylene glycol)-2000] NPs) and an efficient ER-targeting PS TCPP-TER

(Figure 5A). Ds-sP/TCPP-TER NPs could selectively accumulate in the ER. Upon 670 nm
laser irradiation, ICD was induced by the expression of ecto-CRT and HMGB1 (Figure 5B,C).
The immunogenic effects of Ds-sP/TCPP-TER-PDT were further demonstrated in vivo
(Figure 5D–F). Therefore, PSs modified by NPs with ER-targeting function can effectively
boost immune effects induced by PDT and show extraordinary performance in eliminating
primary and metastatic tumors.

In addition to the ER, other organelles targeted by PSs can also induce the release of
DAMPs under laser irradiation. For instance, mitochondria are the primary site for aerobic
respiration and participate in energy supply, signal transduction, and apoptosis [82]. Wang
et al. have demonstrated that 5-aminolevulinic acid (5-ALA) (Scheme 1, Compound 6),
as a mitochondrial-targeted PS, was able to substantially increase the expression of CRT,
HSP70, and HMGB1, followed by maturation of DCs [51]. Another important organelle is
the lysosome which, as the main recycling organelle of the cell, is associated with digestion
and autophagy [83]. When cells are damaged, the lysosomal membrane will rupture to
trigger cell death by initiating the release of tissue proteases and ROS [84]. Therefore,
lysosome-mediated cell death in various forms has received wide attention in recent years.
Turubanova et al. [55] found that a PS-targeting lysosome named Photosens (Scheme 1,
Compound 10) can induce CRT exposure and HMGB1 and ATP release after 635 nm laser
irradiation. MCA205 tumor growth was significantly inhibited when the mice were injected
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with the dead MCA205 cells treated by Photosens-PDT. These results indicated that the
specific immune response was successfully triggered. In a word, mitochondria play a
more important role in cell death, especially in apoptosis induced by PDT than lysosomes
because pro-apoptotic cytochrome c is located in the mitochondria. However, lysosomes
have a greater contribution in the immune activation of PDT.
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Figure 4. (A) Schematic of PDT immune-enhanced based on Ce6-IMDQ NPs. (B) Volume changes of
tumors in primary tumors of mice after different treatments in the 4T1 tumor models. (C) Volume
changes of tumors in distant tumors of mice after different treatments in the 4T1 tumor models.
(D) Flow cytometric analysis of DC maturation (CD86) in tumor-draining lymph nodes after different
treatments. (E) Flow cytometric analysis of the percentage of CD4+ and CD8+ T cells in spleen [58].
** p < 0.01. Copyright, 2021, published by Royal Society of Chemistry.
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Figure 5. (A) The preparation and principle of ER-targeting Ds-sP/TCPP-TER NPs. (B) CLSM showed
co-localization of Ds-sP/TCPP-TER and TCPP-TER with the ER in 4T1 cells. (C) Western blot showed
the effects of different treatments on the expression levels of HMGB1 and CRT in 4T1 cells. (D) Growth
curves of primary tumors in mice after different treatments of the 4T1 tumor models. (E) Growth
curves of distal tumors in mice after different treatments of the 4T1 tumor models. (F) Flow cytometry
showed the proportion of IFN-γ+ CD8+ T cells in mice tumor tissues [50]. ** p < 0.01. Copyright,
2020, published by American Chemical Society.

3.2. Dose of PSs

In addition to subcellular localization, the dose of PS also influences PDT-mediated
antitumor immunity. For example, PDT-treated of SCC cells with 1 µM OR141 can evoke
more release of HSP90 and HMGB1 compared to 10 µM OR141, which indicates that a
stronger ICD is induced by low dose of OR141 [85]. It was further confirmed by in vivo
experiments that the growth of SCC tumors is more efficiently inhibited after treatment
with 4 mg/kg OR141 in comparison with 40 mg/kg. In addition, Morais et al. showed
that the AlPc (Scheme 1, Compound 8) can cause the release of HMGB1 at concentrations
of 4.3 nM, 7.8 nM, and 12.2 nM under the same dose of laser irradiation, but the release
of ATP only happened at a concentration of 12.2 nM [86]. It is hypothesized that this is
due to a non-linear correlation between PSs dose and ICD effects. Therefore, the dose of
PSs is an important parameter for PDT-induced ICD effects. The dose of PSs should be
selected to provide maximum activation of the immune effects while minimizing damage
to normal cells.
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3.3. Light Fluence Rate

The laser energy used in PDT is another factor that may affect the anti-tumor immune
response. The excitation of PSs is influenced by the energy density and power density of
the laser. These two parameters are capable of influencing PDT-induced inflammatory
response and tumor suppression by altering the oxygen concentration in tumor tissues.
Henderson et al. compared the inflammatory response induced by different energy density
(48 J/cm2, 128 J/cm2) and power density (14 mW/cm2, 112 mW/cm2). They revealed that
low power density and low energy density could trigger the stronger inflammatory re-
sponse [87]. However, this PDT regimen had poor local tumor suppression. In contrast, the
strongest anti-tumor effects as well as the smallest inflammatory response was obtained by
high energy density and low power density. In a subsequent study, it was found that high
energy density (128 J/cm2) and high power density (224 mW/cm2) displayed the worst
tumor suppression effects [88], because the oxygen in the tumor tissues were seriously
depleted by the higher light energy. The sharp decrease in oxygen concentration within
tumor tissues may lead to remarkable reduction in ROS production, which ultimately
severely limited the therapeutic efficacy of PDT. To solve this problem, a two-step com-
bination therapy was designed, which combined low energy density (48 J/cm2) and low
power density (14 mW/cm2) with high energy density (132 J/cm2) and low power density
(14 mW/cm2) [89]. This combination therapy has significant advantages in enhancing
anti-tumor immunity, especially in promoting the recruitment of CD8+ T cells and inhibit-
ing the growth of murine colon and mammary tumors. Therefore, the treatment protocol
formulated with optimal light parameters not only significantly inhibits the growth of
primary tumors, but also effectively activates anti-tumor immunity.

3.4. Oxygen Content

Recently, many studies have revealed the association between specific immunity of
PDT and oxygen content in tumors [2]. The tumors will develop a hypoxic microenvi-
ronment due to the continuous consumption of oxygen during PDT, which can cause the
immune suppression of tumors. Therefore, alleviating the hypoxic state of tumors is one of
the effective strategies to improve the anti-tumor efficacy of PDT.

Strategy one: constructing a hypoxia-reverse nanosystem to alleviate tumor hypoxia
during PDT. As an example, Li et al. developed novel NPs with double ER targeting
function [49]. The NPs consisting of indocyanine green (ICG) (Scheme 1, Compound 9)
conjugated-hollow gold nanospheres (named: fAL-ICG-HAuNS) and oxygen-delivering
hemoglobin (named: FAL-Hb lipo) are endowed with the ability to target ER after modifica-
tion with pardaxin (FAL) peptides (Figure 6A). Under hypoxic conditions, the ICG-HAuNS
plus Hb-lipo group resulted in approximately 46% cell death compared to only 20% in free
ICG, HAuNS, and ICG-HAuNS groups (Figure 6B). Correspondingly, in mice with B16 tu-
mors, fAL-ICG-HAuNS plus FAL-Hb lipo treatment dramatically reduced the proliferation
rate of tumors and effectively extended the life of mice. It can be speculated that the ICG-
HAuNS plus FAL-Hb lipo treatment can induce 33.1% DC maturation (MHC I+/MHC II+)
in the tumors and activate specific effector cells (CD8+ T cells high) (Figure 6C). Therefore,
this double ER-targeting strategy was demonstrated to induce anti-tumor immunity and
eliminate primary tumors.

Liang et al. [68] designed a PDT oxygen enhancement generator, which is a core gold
nanocage with a shell of manganese dioxide (named: AuNC@MnO2, AM) (Figure 7A).
Under laser stimulation, a high level DAMP release and DC maturation (CD83 high, CD86
high) can be triggered by AM-PDT. The immunogenic effects of AuNC@MnO2-PDT were
further demonstrated in vivo to effectively inhibit the growth of primary tumors and lung
metastases in 4T1-bearing mice (Figure 7B–D). Therefore, the results indicated that oxygen-
enhanced PDT serves as a potent pathway for triggering ICD, which dramatically enhances
PDT-mediated immune effects by promoting the recruitment of effector T cells.
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the Author(s).
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4T1 tumor models. (C) Growth curves of distal tumors in mice after different treatments of the 4T1
tumor models. (D) Counts of the number of metastatic lesions from resected lungs (white spots as a
sign of metastatic lung nodules) [68]. * p < 0.05, ** p < 0.01, *** p < 0.001, # p < 0.05. Copyright, 2018,
published by Elsevier.
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In addition to improving oxygen delivery efficacy, developing PSs with type I mecha-
nisms to decrease oxygen consumption of PDT is another strategy to improve immuno-
logical effect. Compared to the type II mechanism, the type I mechanism of PDT has less
oxygen consumption, thereby alleviating the anoxic microenvironment of tumors during
PDT [90]. Huang et al. developed a self-degrading conjugated polyelectrolyte (named:
CP+) consisting of aggregation-induced emission (AIE) and imidazole units, which can ef-
fectively generate O2

•− by a type I mechanism [91]. At the same time, CP+ was loaded with
the immunoadjuvant cytosine-phosphate-guanine (CpG). Compared with other groups, the
CP+-CpG NPs group resulted in a significant increase in the proportion of CD4+ T cells and
CD8+ T cells, which indicated successful activation of the immune effects and inhibition of
primary and metastatic tumors. Chen et al. designed a set of acridinium derivatives with
extended D-π-A systems (named: IMA, QMA, MAMA, BMA, and BAMA) [92]. BAMA-
PDT treatment showed significant anti-tumor efficacy in 4T1 tumor models. These results
showed that the infiltration of CD8 + T cells increased 4.8 fold and the proportion of Treg
cells decreased in the BAMA-PDT group compared with the PBS group in 4T1 tumors.
Therefore, the type I mechanism of PDT can mitigate the decreased anti-tumor immune
effects caused by hypoxia.

3.5. Immune System

In addition to the above effectors, the integrity of the patient’s immune system function
is crucial for long-term inhibition of tumor growth. Korbelik et al. found that the majority
of tumors with neutrophil-depleting treatment by Photofrin (Scheme 1, Compound 2)-
PDT recurred at 2–3 weeks, although the immediate therapeutic effect was unaffected
significantly [93]. This may be due to that immune deficiency commonly accompanies
abnormal function of immune cells, such as T lymphocytes and B lymphocytes. Cytotoxic
T lymphocytes are integral parts of the adaptive immune system which play an important
role in the direct killing of tumor cells [94]. It was confirmed by further experiments that
after depletion of CD8+ T cells, PDT treatment reduced the tumor cure rate from 100%
to 50%, with a more significantly impact than CD4+ T cells depletion. In addition to
specific immune cells, the activation of innate cells are also essential for immune effects [95].
Korbelik et al. detected that the growth of tumors in mice with severe combined immune
deficiencycould not be effectively inhibited by PDT [96]. And, with the depletion of natural
killer cells (NK cells), the anti-tumor effect of PDT in mice of immune deficiency was
noticeably diminished. Therefore, the integrity of immune system plays a critical role in
PDT-mediated immune effects.

4. PDT Combined with Other Therapies

Although it has been demonstrated that PDT can trigger immune effects in vivo, the
efficacy is often limited by negative factors such as the tumor hypoxic microenvironment
and tumor immune escape [97]. At present, PDT in combination with DC vaccines, immune
checkpoint inhibitors, chemotherapy, and radiotherapy has been proposed to improve the
anti-tumor effect [61,98,99].

4.1. PDT Combines with DC Vaccines

Dendritic cells are powerful antigen-presenting cells that can efficiently present anti-
gens to T and B lymphocytes [100]. Many studies have suggested that injecting DC vaccines
into patients can induce T lymphocyte activation and IL-12 expression [101,102]. The ICD
induced by PDT can achieve the establishment of DC vaccines [58]. Garg et al. produced a
DC vaccine based on Hyp-PDT, which can promote the infiltration of T lymphocytes (CD8+

T cells, CD4+ T cells) and reduce the number of Treg cells in GL261 tumors [103]. The
results indicate that Hyp-PDT-based DC vaccines can lead to the alleviation of the immuno-
suppressive microenvironment. Zhang et al. found that DC vaccines made from ALA-PDT
can enhance the activity of effector T cells (CD8+ T cellshigh, CD4+ T cellshigh) and promote
the release of cytokines (IL-12high, IFN-γhigh) in mice with PECA tumors [104]. The same
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results were also found in another study with the H22 vaccine prepared by hematopor-
phyrin monomethyl ether (HMME)-PDT (Scheme 1, Compound 11). Compared with the
control group, the H22 vaccine group induced an increased number of CD4+CD8+CD19+ T
cells and significantly inhibited tumor growth [105]. Therefore, the DC vaccine produced
by PDT can effectively ameliorate the immune suppression microenvironment, thereby
inhibiting tumor growth and enhancing survival rate.

4.2. PDT Combines with Immune Checkpoint Inhibitors

The inhibitory effects of the immune system on tumors are affected by receptors
and ligands on tumors and immune cells. These receptors and their ligands are called
immune checkpoints, which will be upregulated in tumor microenvironment to resist
anti-tumor immunity [106]. Therefore, the blockade of immune checkpoint can improve
the recognition of the immune system to tumor cells. In order to enhance the therapeutic
efficacy of immune checkpoint blockade (ICB), the combination of immune checkpoint
inhibitors-PDT has been extensively studied [107]. The details of the PSs and the types
of immune checkpoint inhibitors are summarized in Table 3. As an example, Duan et al.
loaded PS pyrolipid in the Zn-pyrophosphate (ZnP) NPs (Figure 8A), ZnP@pyro-PDT
treatment sensitizes tumors to immunotherapy mediated by PD-L1 antibodies [61]. The
combination of ZnP@pyro-PDT with PD-L1 checkpoint blockade therapy can increase
the infiltration of T cells (CD8+ T cellshigh, CD4+ T cellshigh) (Figure 8D) and significantly
eradicate the growth of primary tumors and prevent lung metastases in 4T1 mice models
(Figure 8B,C).
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Table 3. Photodynamic therapy and immune checkpoint blockade.

Photosensitizer Cell Line Animal Type Immune Checkpoint
Inhibitor Anti-Tumor Effect In Vivo Reference

Cu-TBP nMOF B16F10 C57BL/6 Anti-PD-L1 Effectively restrain the growth of the primary tumors and metastatic tumors; CD4+ T
cells, CD8+ T cells ↑; [57]

Verteporfin CT26 BALB/c Anti-PD-L1 Combined therapy can effectively inhibit the primary tumors and lung metastasis, and
establish specific immune memory to prevent tumor recurrence; [53]

Indocyanine green MC38 C57BL/6J,
BALB/c Anti-CTLA4 Significantly inhibited tumor growth; CD8+ T cells ↑; [60]

Pyrolipid 4T1 BALB/c Anti-PD-L1 Combined therapy effectively inhibited the growth of primary tumors and lung
metastasis; CD4+ T cells, CD8+ T cells ↑, NK cells ↑; [61]

Pyropheophorbide
MC38

C57BL/6 Anti-PD-L1
Effectively inhibit the growth of primary tumors and metastatic tumors; CD8+ T cells ↑;

[64]
CT26 Effectively inhibit the growth of primary tumors and metastatic tumors;

Chlorin e6 4T1 BALB/c Anti-PD-L1 Significantly inhibited tumor growth; CD8+ T cells ↑; [69]

Zinc-phthalocyanine B16F10 C57BL/6 Anti-PD-L1 Combined therapy can significantly inhibit tumor growth; CD8+ T cells ↑; [108]

Chlorin e6 4T1 BALB/c Anti-PD-L1 Effectively inhibit the growth of primary tumors and metastatic tumors; Tregs ↓; IL-6,
IFN-γ and TNF-α ↑; [109]

IR780 B16F10 C57BL/6 Anti-PD-L1 Combined therapy can significantly inhibit tumor growth and effectively promote T
cell infiltration; [110]

ZnF16Pc B16F10 C57BL/6 Anti-PD-L1 Significantly inhibited tumor growth; Memory T cells, CD8+ T cells ↑; Tregs ↓; [111]

Fe-TBP CT26 BALB/c Anti-PD-L1 Combined therapy can significantly inhibit tumor growth; CD4+ T cells, CD8+ T cells ↑; [112]

Talaporfin MC38 C57BL/6 Anti-PD-L1 Combined therapy inhibited tumor growth on both the unirradiated side and the
irradiated side; CD4+ T cells, CD8+ T cells ↑; PD-L1 ↓; [113]

PdPc (OBu) 8 4T1 BALB/c Anti-PD-L1 The treatment of PdPc-PDT plus anti-PD-L1 can induce an anti-tumor immune
response to delay the growth of primary and distant tumors; CD8+ T cells ↑; [114]

PpIX CT26 BALB/c Anti-PD-L1
ATO/PpIX-PDT plus Anti-PD-L1 can improve tumor hypoxic immunosuppressive

microenvironment and inhibit tumor growth; CD80+CD86+↑; TNF-α, IFN-γ, IL-12 ↑;
CD8+ T cells ↑;

[115]

Chlorin e6 4T1 N/D BMS-1 Drastically reduced the lung and liver metastasis; Fas, PD-L1 ↑; CD8+ T cells ↑; [116]

TNF: Tumor necrosis factor; IFN: Interferon; IL: Interleukin; Treg: Regulatory T cells; ↑: Increase in proportion; ↓: Reduction in proportion.
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Choi et al. developed the NPs LT-NPs, which is self-assembled from the PS verteporfin
(VPF) (Scheme 1, Compound 7), cathepsin B-specific cleavable peptide (FRRG) and dox-
orubicin (DOX) conjugates (Figure 9A) [53]. As a visible-light-triggered prodrug, the
NPs (LT-NPs) can transform the tumor immune suppressive microenvironment into one
with high immunogenicity, thereby enhancing checkpoint blocking immunotherapy. In
the model of bilateral CT26 tumor-bearing mice, the combination of LT-NPs and PD-L1
checkpoint blockade therapy had shown significant advantages in inhibiting tumor growth.
The combined therapy completely regressed the tumors within 100 days, and effectively
alleviated the lung metastasis of tumors (Figure 9B,C). It is worth noting that ICB combined
with PDT treatment is usually accompanied by multiple injections of immune checkpoint
inhibitors and even multiple laser irradiation [117].
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Figure 8. (A) Schematic of the anti-tumor effect of ZnP@pyro. (B) Growth curves of tumors after
different treatments in the 4T1 tumor models. (C) The numbers of tumor nodules in the lungs of mice.
(D) Flow cytometry showed the percentage of CD8+ T cells and CD4+ T cells in mice metastases after
different treatments, * p < 0.05, ** p < 0.01, *** p < 0.001 [61]. Copyright, 2016, published by American
Chemical Society.
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4.3. PDT Combines with Chemotherapy

Chemotherapy (chem), surgery, and radiotherapy are known as the three major treat-
ment methods for tumors. Some chemotherapy drugs, such as doxorubicin [118], idaru-
bicin [119], and oxaliplatin [120], have been shown to cause immunogenic cell death.
Therefore, chem/PDT-induced ICD can trigger a systemic anti-tumor immune affect and
reverse the immunosuppressive microenvironment of the tumors. The relevant studies on
chem/PDT are summarized in Table 4. Yao et al. synthesized a self-cascading unimolec-
ular prodrug (named AIE-pep-DOX), which is formed by coupling doxorubicin and the
aggregation-induced emission PS to a caspase-3 response peptide [121]. Compared to the
control group, in 4T1 murine models, the AIE-pep-DOX group can alleviate the tumor
suppressor microenvironment by increasing the percentage of cytotoxic T cells (CD8+ T
cellshigh, Tregslow), thereby inhibiting tumor growth. Hypoxia and high GSH are typical
features of the tumor-suppressing microenvironment, which seriously affects the therapeu-
tic efficacy of PDT by reducing ROS production. Wang et al. constructed a multicomponent
supramolecular nanomedicine (named NPCe6/Pt) which combined β-cd modified chlorine
e6, cisplatin and hydrophilic poly (oligoethylene glycol) methacrylate [122]. NPCe6/Pt
can be used for GSH depletion, that is, triggering azo cleavage under hypoxic conditions.
Therefore, NPCe6/Pt induced more DAMP release, further enhanced immunogenicity, and
improved the DC maturation rate from 5.2% to 28.8% in 4T1 tumor. The percentage of CD8+

T cells and CD4+ T cells increased 1.35 fold and 1.26 fold, respectively, in the NPCe6/Pt
group. In conclusion, the chem–PDT combination strategy will shed light on enhancing the
immunogenicity of the tumors and improving the efficacy of PDT.
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Table 4. Photodynamic therapy and chemotherapy.

Photosensitizer Drug NPs Cell Line Experiment In Vitro Experiment In Vivo Reference

Chlorin e6 1-methyl-tryptophan
(1MT)

The MSUCNs were modified with folic
acid (FA) as a tumor-targeting ligand, Ce6
as a PS, and 1-methyl-tryptophan (1MT)

as an
indoleamine 2,3-dioxygenase (IDO)

inhibitor

Hela
Inhibit the IDO pathway,

thereby promoting T cell activity
(CD4+ T cells, CD8+ T cells ↑)

N/D [123]

AIEgen Doxorubicin

A self-cascading unimolecular prodrug
(named: AIE-pep-DOX), which is formed

by coupling doxorubicin and the
aggregation-induced emission PS to a

caspase-3 response peptide

4T1
DC maturation (CD40, CD80,

CD86 ↑); TNF-α, IL-12 and
IFN-γ ↑;

AIE-pep-DOX can delay tumor growth;
AIE-pep-DOX + anti PD-L1 showed the
strongest anti-tumor effects; functional T

cell activation (Tregs ↓, CD8+/CD4+ T
cells ↑);

[121]

ICy-NH2

The indoleamine
2,3-dioxygenase

1 inhibitor
NLG919

Conjugated ICy-NH2 with NLG919
through a glutathione (GSH)-cleavable

linker. (Named: ICy-NLG)
4T1 DAMPs release (CRT, HMGB1

and ATP ↑);

ICy-NH2 can efficiently
inhibit the growth of primary tumors; DC

maturation (CD80, CD86 ↑); CTL
recruitment (CD8+ T cells ↑, Tregs ↓);
TNF-α, IFN-γ, IL-6 and IL-12p70 ↑;

[124]

IR68 Berberine
Constructed tumor-targeting liposome by
combining IR68 with berberine. (Named:

BBR@IR68-Lip)
CT26, MB49

Reverse hypoxia in tumors;
Decrease the expression of

PD-L1; DAMP release (CRT ↑);

BBR@IR68-Lip can significantly inhibit
tumor growth in CT26 tumor models;
downregulate the expression of PD-L1

and IDO1 protein; effector T cell
infiltration (CD4+ T cells, CD8+ T cells ↑);

[125]

Bodipy A platinum complex
Pt-NHC

Formation of nanoparticles by
electrostatic interaction of bodipy and

Pt-NHC in water. (Named: NP2)
4T1

DAMP release (CRT, HMGB1
and ATP ↑); DC maturation

(CD80, CD86 ↑);

NP2 can be effectively delivered to the
tumor site and significantly inhibit tumor
growth; DAMP release (CRT, HMGB1 ↑);

DC maturation (CD80, CD86 ↑); T cell
infiltration (CD4+ T cells, CD8+ T cells ↑);

[126]

Porphyrin
metal-organic

framework
PCN-224

Rapamycin

A multifunctional nanoplatform was
formed by wrapping bovine serum
albumin (BSA) with rapamycin and

loading it on PPCN-224, subsequently
coated with hyaluronic acid (HA).
(Named: RAPA@BSA-PCN@HA)

4T1 DAMP release (CRT, HMGB1 ↑);

RAPA@BSA-PCN@HA can effectively
inhibit tumor growth in 4T1 tumor

models; DAMPs release (CRT, HMGB1 ↑);
T cell infiltration (CD4+ T cells, CD8+ T

cells ↑);

[127]
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Table 4. Cont.

Photosensitizer Drug NPs Cell Line Experiment In Vitro Experiment In Vivo Reference

Chlorin e6 Olaparib

A multifunctional biomimetic
nanoplatform was developed by

combining Ce6 and olaparib and coating
it with 4T1 cell membrane. (Named:

4T1Mem@PGA-Ce6/Ola)

4T1

Promote the expression of
proinflammatory cytokine (IFN-

β ↑); DAMPs release (CRT,
HMGB1 and ATP ↑); DC

maturation (CD80, CD86 ↑);

4T1Mem@PGA-Ce6/Ola can effectively
inhibit primary and metastatic tumor

growth in 4T1 tumor models; DC
maturation (CD80, CD86 ↑); CTL

recruitment (CD4+ T cells, CD8+ T cells
↑and Tregs ↓);

[128]

Chlorin e6 Cisplatin

Multicomponent supramolecular
nanomedicine was constructed by

combining β-cd modified chlorine e6,
cisplatin and hydrophilic poly

(oligoethylene glycol) methacrylate.
(Named: NPCe6/Pt)

4T1 DAMP release (CRT, HMGB1
and ATP ↑); DC maturation;

NPCe6/Pt treatment group showed
excellent inhibition of tumor growth and

even tumor regression in 4T1 tumors;
DAMP release (CRT, HMGB1 ↑); DC

maturation (CD80, CD86 ↑); T cell
infiltration (CD4+ T cells, CD8+ T cells ↑);

[122]

Chlorin e6

Glutaminase (GLS)
inhibitor compound

968
(C968)

A double-synergistic carrier-free
immunotherapy nanosynergist was

constructed by self-assembling C968 with
chlorine e6. (Named: C9SN)

4T1 DAMP release (CRT, HMGB1 ↑);
DC maturation (CD80, CD86 ↑);

C9SN can inhibit the tumor growth in 4T1
tumor models; T cell infiltration (CD4+ T

cells, CD8+ T cells ↑); TNF-α,
IFN-γ ↑;

[129]

↑: Increase in proportion; ↓: Reduction in proportion.



Pharmaceutics 2023, 15, 2617 22 of 27

5. Conclusions and Perspectives

PDT not only kills primary tumors but also inhibits metastatic tumors by mediating
both innate and specific immunity of the body. PDT-induced immune response is influenced
by the localization and dosage of PSs in cells, parameters of light, concentration of oxygen
in tumors, and integrity of immune function. To figure out the relationship between
these influencing factors and the immune effect of PDT is very important, which assists
physicians to make an optimum treatment plan to patients. Therefore, we summarized
and analyzed the influencing factors of PDT-induced anti-tumor immunity in this review.
Furthermore, the future direction and challenges of anti-tumor immunity induced by PDT
are discussed.

Firstly, ER plays a very important role in inducing immunogenic death of tumor cells.
Therefore, the development of ER-targeting PSs is an important option to enhance the
anti-tumor immunity of PDT. The biosafety of new PS- or NP-packaged PSs should be
further evaluated by sufficient pharmacokinetic research. Secondly, the hypoxia of tumors
severely inhibits the PDT-mediated ICD effect. Therefore, the development of type I PSs
with oxygen non-dependence is another strategy to improve the anti-tumor immunity of
PDT. Improvement of the synthetic efficiency and quantum yield of type I PSs is an urgent
problem to be solved. Finally, the combination of PDT and other immunotherapy strategies
is a promising direction of improvement of outcome of PDT. Although the synergistic
immune effect of combination therapies has been demonstrated by many preclinical studies,
only a few combined strategies have progressed to the clinical stage. Meanwhile, the safety
of the combination therapy also needs to be evaluated. Anti-tumor immunity is the most
accurate and effective tumor-killing strategy. We believe that anti-tumor immunity induced
by PDT will benefit more patients after comprehensive consideration of the influencing
factors, such as improving the anti-tumor immunological effect through combination of
PDT with PD1/PDL1, balancing the elimination efficacy to local tumors and the killing
efficacy to metastatic tumors of PDT through regulating the dosage of irradiation and PSs.
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