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Abstract: Chronic myeloid leukemia (CML) is a hematologic neoplasm characterized by the expres-
sion of the BCR::ABL1 oncoprotein, a constitutively active tyrosine kinase, resulting in uncontrolled
growth and proliferation of cells in the myeloid lineage. Targeted therapy using tyrosine kinase
inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, bosutinib, ponatinib and asciminib has drasti-
cally improved the life expectancy of CML patients. However, treatment resistance occurs in 10–20%
of CML patients, which is a multifactorial problem that is only partially clarified by the presence
of TKI inactivating BCR::ABL1 mutations. It may also be a consequence of a reduction in cytosolic
TKI concentrations in the target cells due to transporter-mediated cellular distribution. This review
focuses on drug-transporting proteins in stem cells and progenitor cells involved in the distribu-
tion of TKIs approved for the treatment of CML. Special attention will be given to ATP-binding
cassette transporters expressed in lysosomes, which may facilitate the extracytosolic sequestration of
these compounds.

Keywords: tyrosine kinase inhibitor; drug transporting proteins; ABC transporters; cellular distribution;
chronic myeloid leukemia; treatment resistance

1. Introduction

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell (HSC) disorder
characterized by a reciprocal translocation between chromosome 9 and chromosome 22.
This mutation results in the fusion of the breakpoint cluster region (BCR) gene with the
Abelson murine leukemia viral oncogene homolog 1 (ABL1) [1]. The truncated chromosome
22 containing the BCR::ABL1 fusion gene is known as the Philadelphia (Ph) chromosome.
The Ph chromosome encodes the cytoplasmic localized chimeric BCR::ABL1 oncoprotein,
which displays abnormally high and constitutive tyrosine kinase activity [2]. Tyrosine
kinases catalyze the transfer of an ATP-derived phosphate group to tyrosine residues on
protein substrates. These protein substrates become activated and subsequently trigger
various cellular signaling pathways involved in the regulation of cell proliferation and
differentiation [3]. The aberrant tyrosine kinase activity of BCR::ABL1 also provides pro-
survival signals to malignant cells, which results in increased resistance to apoptosis [4,5].
Ultimately, this causes a massive accumulation of myeloid cells in all stages of maturation in
the bone marrow, peripheral blood, and spleen. CML patients suffer from hypermetabolism,
fatigue, a loss of appetite, and visual and hearing disturbances. CML has an incidence
of 1–2 cases per 100,000 adults and accounts for approximately 15% of newly diagnosed
leukemia patients [6]. If inadequately treated or in case of resistance, CML progresses from
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the chronic phase to a blast phase known as “blast crisis”, which is mostly fatal within
6 months [7]. In the blast phase, CML has all the features of acute myeloid leukemia and
results in bone marrow failure.

Imatinib (STI-571, Gleevec) was introduced as a first-line treatment for CML patients
in 2001. It is a small molecule that competes for binding to the ATP-binding site of the
BCR::ABL1 protein, stabilizing the inactive form of the oncoprotein [8]. Imatinib has proven
to be quite effective in comparison to other targeted therapies, with an estimated overall
survival rate of 83% at 10 years [9]. Despite the success of imatinib, treatment fails in
about half of the patients because of resistance or intolerance, therefore leading to the
exploration of other treatment options [10]. Currently, four tyrosine kinase inhibitors (TKIs)
are approved for first-line treatment: imatinib, dasatinib, nilotinib, and bosutinib, whereas
ponatinib and asciminib are only available in the second or third line of treatment [10,11].
The choice of first-line treatment depends on multiple factors, including individual patient
characteristics, preferences, expected drug adherence, lifestyle preferences, comorbidities,
distinct drug toxicity profiles, and the experiences of physicians and clinical centers [12].

Resistance to first-line treatment of CML occurs in 10–20% of patients and may be
caused by several mechanisms. Pharmacokinetic issues can contribute to lowered cytosolic
TKI concentrations, limiting the effectiveness of TKI treatment. Drug–drug interactions that
potentially lead to diminished gut absorption, increased metabolism, or drug adherence
problems may cause insufficient TKI plasma levels [13]. To achieve satisfactory treatment
outcomes, it is critical for TKIs to reach adequate pharmacological concentrations in the
cytosol of leukemic hematopoietic stem cells and progenitor cells, where the BCR::ABL1
oncoprotein resides. A key parameter influencing intracellular TKI concentrations is the ex-
pression level and activity of drug-transporting proteins [14]. A disturbed balance between
transporter-mediated TKI influx and efflux over the cell membrane might explain resistance
phenotypes caused by ineffective uptake and/or excessive extrusion, as has been shown
with polymorphisms in organic cation transporters [15,16]. Recently, the involvement
of transporters in lysosomal accumulation and retention of TKIs has been of increasing
interest as an additional potential resistance mechanism [17]. This review addresses the
currently available knowledge on transporter-mediated cellular (re)distribution of TKIs in
CML stem cells and progenitor cells, with special emphasis on lysosomal transporters.

2. CML Stem Cells and Progenitor Cells

Cells from the hematopoietic system are continually regenerated from HSCs residing
in the bone marrow. Healthy HSCs are multipotent primitive cells that can develop into
all types of blood cells, including myeloid-lineage and lymphoid-lineage cells. They are
characterized by their ability to repopulate the bone marrow of irradiated recipients [18,19].

The cells that initiate the ongoing proliferation and expansion of malignant myeloid
cells are known as CML leukemic stem cells (LSCs), and they can be found in the CD34+CD38−
population [20]. In vitro studies have confirmed that LSCs can remain viable in a quiescent
state, even in the presence of growth factors and imatinib [21]. This is in accordance with
clinical observations in which CML patients may relapse even after prolonged TKI therapy
when BCR::ABL1 has been undetectable for a longer time [22]. Apparently, a population of
quiescent LSCs persists in the majority of patients with chronic-phase CML, even in those
in deep remission [23–25]. This is probably due to the fact that while committed progenitor
cells and mature myeloid cells are very sensitive to BCR::ABL1 inhibition by TKIs, this
is not the case in quiescent CML stem cells, hereby leaving this population as a disease
reservoir [26]. Moreover, it has previously been proposed that TKI therapy itself drives
an adaptive ‘quiescence’ response in LSCs by altering their gene expression profile [27].
Single cell analyses have demonstrated an enrichment of LSC populations with quiescent
transcriptional signatures during TKI treatment [28,29].

Purifying CML LSCs for in vitro study is not trivial. These cells are located within the
CD34+/CD38− cell population but not exclusively. Recently, CD26 (dipeptidyl-peptidase
IV) has been identified as a specific CML LSC marker, as it is consistently expressed in
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chronic-phase CML patients but not in normal HSCs or stem cells of other (myeloid)
neoplasms [30].

Remarkably, low levels of BCR::ABL1 transcripts have been detected in the peripheral
blood of otherwise healthy individuals with an increasing frequency upon aging [31,32].
This may imply that BCR::ABL1 is not the only essential factor for the development of
CML or suggest that this BCR::ABL1 expression comes from cells lacking stem cell capacity.
Alternatively, it could mean that the transformation of HSCs into LSCs and their ability
to function as leukemia-initiating cells is the result of an interplay between intrinsic and
extrinsic cellular factors.

3. Resistance Mechanisms against TKIs in CML

Resistance to TKI treatment can occur de novo or during treatment and is a complex,
multifactorial process that culminates in the selection of a cancer clone able of evading
treatment. The development of TKI resistance can be divided into BCR::ABL1-dependent
and BCR::ABL1-independent mechanisms [33]. Examples of BCR::ABL1-dependent mech-
anisms include the overexpression of the BCR::ABL1 oncoprotein and mutations in the
TKI-binding domains of the ABL moiety of the BCR::ABL1 fusion protein, which impair
the binding of TKIs to their targets [34]. Over 100 BCR::ABL1 mutations have been detected
that may cause acquired TKI resistance, with the most commonly occurring threonine-315
to isoleucine substitution (T315I) remaining difficult to treat [35]. BCR::ABL1-independent
resistance is mediated through the activation of alternative survival pathways, such as
changes in epigenetics, cellular signaling, the CML microenvironment, and transport pro-
tein expression [36,37]. In addition, the main cytochrome P450 (CYP) enzyme, CYP3A4, is
involved in the metabolism of almost all TKIs and could also contribute to TKI resistance in
leukemia cells [38]. CYP1B1 is expressed in hematopoietic CD34+ stem cells and progenitor
cells and is involved in the biotransformation of imatinib [39,40]. The association between
TKIs used in the CML treatment and drug metabolizing enzymes is discussed in more
detail elsewhere [41].

4. Drug Transporter Expression in HSCs and LSCs

The cytosolic TKI concentration and associated BCR::ABL1 inhibition is dependent on
the presence of drug-transporting proteins in these cells. In this section, an overview will
be given of transporter expression in normal HSCs and CML LSCs.

The organic cation influx transporter OCT1/SLC22A1 has been associated with the
uptake of imatinib into leukemic cells [42]. The expression of this transporter is enhanced
in the more mature CD34+CD38+ sub-population of hematopoietic cells when compared
to their primitive counterparts [43]. This possibly indicates an increase in imatinib influx,
and thus, BCR::ABL1 inhibitory potential in this more mature sub-population.

HSCs express several membrane transporters of the ABC superfamily, including P-
glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) [44–46].
Both transporters have previously been shown to play a role in the membrane transport
of various endogenous and xenobiotic substrates, including anticancer agents such as
TKIs [47–49]. P-gp expression has been proven to correlate with an immature immunophe-
notype in normal hematopoietic cells [45,50]. ABCB1 mRNA expression in healthy bone
marrow cells was higher in immature CD34+CD38− cells compared to more mature
CD34+CD38+ cells, an effect that was even more pronounced in CML-derived sam-
ples [51,52]. Functional assays, using epifluorescence microscopy in combination with
single-cell image analysis, were used to confirm the transporter-mediated efflux of the
fluorescent P-gp substrate rhodamine 123 in highly purified viable CD34+CD38− cells [53].
It was also shown that substrate efflux was higher in CD34+CD38− cells compared to more
differentiated CD34+CD38+ progenitors [53]. Logically, this would result in more efflux
of TKIs that are P-gp substrates in primitive HSCs compared to more mature progenitor
cells. In vitro P-gp overexpression was also observed in the CML cell line K562 as an inter-
mediate step during the development of resistance to imatinib [54]. In addition, ABCG2
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mRNA was found at relatively high levels in CD34+CD38− HSCs, but the expression
was reduced in more committed CD34+38+ progenitor cells [55]. P-gp protein expression
was enhanced in TKI-naïve CML samples compared to healthy bone marrow samples,
indicating a greater potential for efflux from leukemic cells before any exposure to TKIs [51].
Less-studied ABC transporters, such as ABCA1, ABCB2, ABCC1, ABCD4, and ABCG1,
are also mainly expressed in the immature CD34+CD38− sub-population of HSCs and are
down-regulated at the mRNA level in normal human primitive HSCs after differentiation
into the CD34+CD38+ sub-population [44,56]. Strikingly, both ABCA1 and ABCG1 are
transporters known to be involved in cholesterol efflux. Increased intracellular cholesterol
levels promote proliferation and mobilization of HSCs, and thus, these transporters might
contribute to their quiescent nature [57]. ABCB2 is known to be involved in the transport
of cytosolic proteins into the endoplasmic reticulum [58]. Multidrug resistance protein 1
(MRP1), encoded by the ABCC1 gene, has been suggested to mediate drug resistance in
stem cells. A large number of organic anionic drugs and metabolites, including several
anticancer agents, are transported by MRP1 [59,60]. Although in vitro data using the K562
cell line has suggested that MRP1 only plays a minor role in the efflux of imatinib and
dasatinib, it would be interesting to investigate whether other TKIs are substrates and
whether MRP1 is differentially expressed in chronic phase CML patients [61]. ABCD4
is known to be involved in the transport of vitamin B(12) across liposomal membranes
in vitro [62]. ABCA3 mRNA expression in bone marrow specimens from adult CML pa-
tients was significantly upregulated compared to the expression in human bone marrow
progenitor cells from healthy volunteers [63]. Expression of ABCA4, ABCA8, ABCC9, and
ABCG4 mRNA was hardly detectable in HSC samples, although it was shown that these
transporters are consistently expressed in other types of stem cells, like unrestricted somatic
stem cells obtained from cord blood and adult adipose tissue mesenchymal stem cells [64].

Several polymorphic variants of influx and efflux drug transporter genes that result
in lower gene expression and altered cellular localization or protein activity have been
described, potentially influencing TKI transport and thus the pharmacokinetics of these
drugs [65–67]. Such variants may influence TKI treatment efficacy but will not be addressed
in further detail.

5. TKIs and Cellular Transport Mechanisms

Currently, six different TKIs are approved for the treatment of CML (Figure 1). In
cases of an insufficient response, the TKI dose can be increased, or a switch to another TKI
can be made. Except for asciminib, all TKIs available for the treatment of CML target the
ATP-binding pocket of the tyrosine kinase. As this ATP-binding site is highly homologous
across the human kinome, these compounds are relatively nonselective. Off-target activities
of these compounds, like the inhibition of other kinases besides BCR::ABL1, may contribute
to the differences in adverse event profiles observed for different TKIs. For example, it has
been shown that the Src family of kinases is not inhibited by imatinib, whereas dasatinib
is a potent inhibitor of these kinases [68,69]. Other important kinases like KIT, ARG, and
platelet-derived growth factor receptors α and β may also interact with TKIs used in CML
treatment and thus cause side effects [70,71]. Asciminib binds to the myristoyl pocket of
the ABL1 kinase domain and induces an inactive conformational change in ABL, thereby
switching off its enzymatic activity [72]. Conventional TKIs used in the treatment of
CML can be divided into type I or type II inhibitors [34]. Type II inhibitors stabilize an
inactive enzyme conformation [34]. They exhibit more stringent binding requirements,
making them more vulnerable to mutations, but they do have the advantage of increased
selectivity [73]. Type I inhibitors recognize the active kinase conformation and compete
more directly with ATP for binding [34]. They tend to be more promiscuous but are less
prone to the mutational landscape [34]. Imatinib, nilotinib, ponatinib, and asciminib are
type II inhibitors [74], dasatinib is a type I inhibitor, and bosutinib exhibits features of
both [34].
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Interpreting the ATPase assay of ABC transporters is complex because there are
transported substrates that inhibit ATPase activity, and substrates that enhance ATPase
activity. Furthermore, a TKI may act as a substrate of a particular transporter at low
concentrations, while an inhibitory effect can be seen at higher concentrations. Therefore,
the compound concentration and binding mode must be considered.

Molecular monitoring of the ratio of BCR::ABL1 to ABL1 mRNA transcripts by RT-
qPCR is used to assess patient response to TKI therapy and thereby guides clinical patient
management [75]. Clinical studies have shown that optimal survival correlates with
obtaining a major molecular response, i.e., that the BCR::ABL1 level is ≤0.1%. Patients
who attain a stable deep molecular response ≤ 0.01% may attempt to stop TKI therapy.
Remarkably, around 40% of patients do not relapse after drug discontinuation, although in
many cases, low BCR::ABL1 levels remain detectable [76].

5.1. Imatinib

In 2001, imatinib mesylate was the first TKI approved by the FDA and EMA for the
treatment of CML. Imatinib is an active site type II inhibitor and is administered in the
mesylate form for increased stability and bioavailability [34]. Currently, the recommended
therapeutic plasma concentration of imatinib is between 2 and 6 µM, although it has been
suggested that this upper limit is too high [77]. Common side effects related to imatinib
treatment are nausea, diarrhea, edema, muscle cramps, bone pain, and hematological
toxicities [78].

OCT1/SLC22A1 has been reported as the main influx transporter involved in imatinib
uptake into CML cells [42]. Higher SLC22A1 mRNA levels have been shown to be predic-
tive of improved patient response to imatinib treatment [79]. On the other hand, patients
with low OCT1 activity and trough plasma levels of less than 2.4 µM have inferior outcomes
and may benefit from dose intensification [80]. The functional activity of the OCT1 protein
in CML patients at diagnosis can be used as a prognostic indicator for both short- and
long-term patient response [81]. Although OCT1 is generally accepted as the main influx
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transporter for imatinib, some studies have reported contradicting results, leaving its role
not fully elucidated [82]. For example, OCT1 was shown to be overexpressed in K562
cell lines resistant to imatinib and dasatinib compared to their parental cell line [61]. The
authors did not provide an explanation for this rather contradictory result, as decreased
expression of influx proteins would be expected in resistant CML cells. Other transporters
associated with imatinib influx are OATP1A2, OATP1B3, and OCTN2 [83,84].

The interaction of imatinib with the efflux transporter P-gp has been studied in vitro,
and the results indicate that ABCB1/P-gp overexpression is likely associated with the devel-
opment of imatinib resistance [54,85,86]. Flow cytometry of peripheral blood lymphocytes
from 59 CML patients showed a significant increase in P-gp expression in patients who
did not respond to imatinib treatment compared to responding patients [87]. In the higher
concentration range (>10 µM), imatinib was able to inhibit the ATPase activity of P-gp,
indicative of transporter inhibition [88]. The inhibitory potential of imatinib on P-gp is
interesting from a mechanistic point of view, but the clinical relevance of this finding is
questionable, as these high drug levels may not be achievable in vivo [89].

Multiple studies have reported on the interaction of imatinib with ABCG2/BCRP [46,90–93].
Some studies have observed imatinib to be a substrate of BCRP [93–95], while others sug-
gest that it is an inhibitor [92,96,97]. Recently, cryo-EM has confirmed that imatinib traps
the transporter in an inward-facing conformation that ultimately prevents ATP hydrolysis
in a similar fashion as the established BCRP inhibitor Ko143 [98]. It has previously been
shown that murine Bcrp1 translocation from the membrane to the intracellular compart-
ment is promoted upon treatment with the PI3K inhibitor LY294002 [99]. On the other
hand, BCR::ABL1 causes activation of the PI3K/AKT pathway [100]. It has therefore been
hypothesized that imatinib inhibition of BCR::ABL1 downregulates PI3K/Akt-signaling,
which may, in turn, reduce plasma membrane BCRP activity in CML cells, resulting in less
resistance to imatinib [91].

ABCC3/MRP3 mRNA expression was significantly increased in peripheral blood
leukocytes of CML patients failing imatinib treatment compared to responders [101]. Ad-
ditionally, imatinib transport was observed in an MRP3-transfected cell monolayer. This
effect could be reversed after addition of the MRP3 inhibitor probenecid [101]. In vitro
experiments showed that specific MRP6 inhibitors had no effect on the imatinib IC50,
denoting imatinib as an unlikely substrate of this transporter [102].

ABCA3 is known as a lipid transporter involved in the regulation of pulmonary surfac-
tant homeostasis [103]. The protein has been shown to protect leukemic cells from the cyto-
toxic effects of imatinib. Moreover, transporter expression was enhanced in patient-derived
CD34+ cells after exposure to 2 µM imatinib for 48 h in both leukemic and non-transformed
hematopoietic stem cells compared to the untreated control, potentially indicating imatinib
as an ABCA3 substrate [104].

5.2. Nilotinib

In 2007, nilotinib was approved by the FDA and the EMA for CML patients who
had developed resistance to or could not tolerate imatinib. Nilotinib, an active site type
II inhibitor, is a product of rational drug design based on crystallographic studies on the
interaction between imatinib and the ABL kinase domain [105]. The mean trough plasma
concentration in CML patients treated with 400 mg of daily nilotinib was 1 µM [106,107].
Nilotinib-mediated antiproliferative activity and inhibition of BCR::ABL1 autophospho-
rylation in various BCR::ABL1 expressing murine and human cell lines proved to be
considerably higher compared to imatinib [108,109]. This finding was clinically confirmed
in a phase 3 trial that showed an increased rate of major molecular response at 12 months
in newly diagnosed chronic phase Ph+ CML patients treated with nilotinib rather than
imatinib, albeit without an improvement in survival rates [110].

In contrast to other TKIs, nilotinib influx is not mediated by OCT1 [42]. In fact, cellular
uptake is thought to be predominantly passive, although in vitro experiments using CHO
cells transfected with OATP1B1 and OATP1B3 showed increased accumulation of nilotinib,
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indicating that these proteins may facilitate influx [42,111]. Additionally, nilotinib has been
shown to act as an inhibitor of various cationic influx transporters, including OCT1, -2 and
-3 [112].

Contradictory results have been reported when it comes to nilotinib as a P-gp/ABCB1
transporter substrate. On the one hand, it was shown that P-gp had only a minor effect on
nilotinib cytotoxicity in K562 cells overexpressing the transporter [113]. Also, in MDCKII
cells expressing P-gp, no evidence of transport of radiolabeled nilotinib was observed [114].
In this study, nilotinib efflux was not modulated in the presence of the P-gp inhibitors
PSC-833, tariquidar, and verapamil [114]. On the other hand, it was shown that nilotinib
resistant K562 cells demonstrated up to 4.7-fold greater levels of ABCB1 mRNA com-
pared to control cells and a significant increase in P-gp surface protein expression was
observed [54]. At concentrations > 500 nM, nilotinib inhibited the efflux of the prototypic
P-gp substrate rhodamine 123 [49,115]. The fact that nilotinib acts as an inhibitor of P-gp in
the higher nanomolar range was confirmed by the increased intracellular concentration
and sensitivity to chemotherapeutic drugs transported through P-gp when co-incubated
with micromolar concentrations of nilotinib [116,117]. This finding could be used as an
argument for combinatorial TKI therapy.

Nilotinib is a confirmed BCRP substrate, as in vitro experiments using BCRP-transduced
K562 cells demonstrated that overexpression of the transporter has a protective effect
against nilotinib-mediated cell death [46,113]. Furthermore, nilotinib competed with the
established BCRP substrate [125I] IAAP and stimulated the ATPase activity of the trans-
porter [46]. It was also found that nilotinib potentiates the cytotoxicity of widely used
BCRP drug substrates such as mitoxantrone and doxorubicin [116].

ABCA3 mRNA induction was observed in CD34+ ABL::BCR1+ leukemic cells after
exposure to nilotinib [104]. Although this is not direct proof of nilotinib transport, it is a
strong indication that ABCA3 may be involved in the cellular efflux of the drug.

5.3. Dasatinib

Dasatinib is an Src inhibitor with ABL inhibitory properties and was thus evaluated
for its potential to treat CML [118]. In the Dasision trial, dasatinib showed higher rates
of confirmed complete cytogenetic response and major molecular response compared
to imatinib treatment, which eventually led to FDA and EMA approval in 2006 for the
treatment of CML [119]. After a 5-year follow-up period, the study showed that dasatinib
treatment was associated with higher rates of major molecular responses. However, like
with nilotinib, no differences were observed in progression-free survival or overall survival
between patients treated with imatinib and dasatinib [120]. The peak plasma levels after
daily administration of 100 mg dasatinib ranged from 12 to 493 nM [121]. Dasatinib is an
active site type I inhibitor and has shown to be highly effective against most of the clinically
relevant imatinib-resistant BCR::ABL1 isoforms except for the T315I mutation [122,123].

The intracellular uptake of dasatinib was not significantly reduced when the dual
OCT1 and OCT3 inhibitor prazosin was added to mononuclear cells of chronic phase
CML patients, indicating that it is not transported by these proteins [124]. Dasatinib
uptake into K562 cells was temperature-independent, suggesting a predominantly passive
transport mechanism [124]. In K562 and VBL-100 cells overexpressing P-gp, the uptake
and retention of dasatinib was significantly lower compared to the respective parental cell
lines, indicating a role for this transporter in dasatinib efflux [124]. P-gp overexpression
in K562 cells resulted in dasatinib resistance, an effect that could be fully reversed by the
addition of the specific P-gp inhibitor PSC833 [113]. Dasatinib inhibited the efflux of the
P-gp substrate calcein from these cells at concentrations > 10 µM [113]. As therapeutic
plasma concentrations are much lower, the clinical relevance of dasatinib-mediated P-gp
inhibition seems limited.

Dasatinib is transported by BCRP, as shown by decreased intracellular concentrations
in BCRP-overexpressing cell lines K562-ABCG2 and Mef-BCRP1 compared to their parental
cell lines [113]. In the K562-ABCG2 cell line, the uptake and retention were significantly
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increased with the addition of the BCRP inhibitor Ko143, an effect that was not observed in
the parental K562 cell line [124].

ABCA3 expression was induced in CD34+ ABL::BCR1+ leukemic cells upon exposure
to dasatinib [104]. Taken together with the observation that ABCA3 overexpression induces
a significant reduction in susceptibility to cytotoxic agents like daunorubicin, mitoxantrone,
and vincristine, it is likely that dasatinib is a substrate of the transporter, although direct
evidence is lacking [125].

5.4. Ponatinib

Ponatinib was approved by the FDA in 2012 but was shortly thereafter withdrawn
due to serious cardiovascular safety concerns. It returned to the market in 2013 with an
indication limited to patients with a T315I mutation or for whom no other TKI therapy was
indicated, with revised warnings and precautions [126]. Ponatinib is a third-generation
type II inhibitor designed to overcome the gatekeeper T315I mutation, which confers
resistance to imatinib, dasatinib, nilotinib, and bosutinib [127]. The mean steady-state
peak plasma concentration reached after a once-daily oral dose of 45 mg in patients with
advanced hematologic malignancies was 137 nM [126]. A phase 2 trial investigated the
effect of ponatinib on heavily pretreated CML patients who had either unacceptable side
effects from dasatinib or nilotinib or who had the BCR::ABL1 T315I mutation. A major
cytogenetic response, i.e., no more than 35% of the cells in the bone marrow contain the Ph
chromosome, was seen in 51% of the patients with unacceptable side effects from dasatinib
or nilotinib and in 70% of the patients with a T315I mutation [128].

To establish whether ponatinib is taken up by OCT1-3, in vitro experiments with the
inhibitors prazosin, procainamide, and ibuprofen were performed in K562 cells. Inhibition
of the transporters had no effect on ponatinib-mediated cytotoxicity, indicating that it is
not a substrate [129].

Unlike most other TKIs, ponatinib is not transported by P-gp and BCRP [129]. Never-
theless, the interaction of ponatinib with these proteins turned out to induce a significant
concentration-dependent accumulation of P-gp and BCRP substrates in K562 cells over-
expressing these efflux transporters [130]. Moreover, ponatinib acted synergistically with
chemotherapeutic drugs that are BCRP substrates by inducing cytotoxicity and apoptosis
in 8226/MR20 cells overexpressing BCRP [130]. It can thus be concluded that ponatinib is
an inhibitor of BCRP and P-gp.

Ponatinib was also shown to interact with MRP7, a protein encoded by the ABCC10
gene [131]. Intracellular accumulation of the MRP7 substrate paclitaxel was significantly
enhanced in MRP7-expressing human embryonic kidney (HEK) 293 cells upon ponatinib
treatment [131]. This effect was facilitated by the inhibition of the MRP7 transporter
function and downregulation of the protein in a time- and concentration-dependent man-
ner [131]. Whether ponatinib is solely an inhibitor, or whether it is also transported by
MRP7, remains to be elucidated.

5.5. Bosutinib

Bosutinib is a second-generation active site TKI approved by the FDA in 2012 and
by the EMA in 2013 for treatment of CML patients. In vitro experiments have shown that
bosutinib has antiproliferative activity against multiple BCR::ABL1-positive leukemia cell
lines as well as the ability to block BCR::ABL1 phosphorylation at sub-micromolar concen-
trations [132]. The mean trough and peak levels in newly diagnosed chronic phase CML
patients within 3 months after the administration of 500 mg/day of bosutinib were 294 nM
and 456 nM, respectively [133]. Bosutinib appeared to be effective in both imatinib-resistant
and -intolerant patients across all BCR::ABL1 mutations except for the T315I mutation [134].
The drug has the important advantage that it is not efficiently extruded by multidrug
resistance transporters [135]. In the BFORE trial, the efficacy and safety of bosutinib versus
imatinib in the first-line treatment of chronic phase CML was assessed [136]. The total
major molecular response rate at 5 years was significantly higher with bosutinib than with
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imatinib (74% vs. 65%, respectively) [136]. It was concluded that bosutinib is effective and
has an acceptable safety profile that is different from that of other TKIs, which might offer a
new treatment option for patients with chronic phase CML who are resistant or intolerant
to imatinib [136].

Passive uptake is thought to play an important role in the cellular distribution of
bosutinib as it is a relatively hydrophobic compound. Bosutinib has been proposed as an
OCT2 inhibitor because serum levels of creatinine, a known OCT2 substrate, were elevated
in CML patients treated with the drug [137].

Conflicting results have been reported when it comes to the interaction between
bosutinib and P-gp. The cellular concentration of bosutinib was significantly lower in P-gp-
overexpressing K562 cells compared to the parental cell line [138]. Moreover, BCR::ABL1
phosphorylation was reduced by dual treatment with the P-gp inhibitor verapamil and
bosutinib [138]. However, another study showed that the P-gp overexpression in K562
cells had no significant effect on its cellular toxicity [113]. The efflux of the fluorescent P-gp
substrate Hoechst 33343 was inhibited in a concentration-dependent manner when high
concentrations of bosutinib were added [113]. Whether bosutinib is transported by P-gp
therefore remains an open question.

BCRP overexpression in K562 cells showed a minor protective effect against bosu-
tinib treatment, although this did not result in altered intracellular bosutinib levels [113].
High micromolar concentrations of bosutinib were shown to inhibit the BCRP ATPase
activity [113].

5.6. Asciminib

In October 2021, asciminib was approved by the FDA for the treatment of chronic
phase CML patients with resistance or intolerance to two prior lines of TKI therapy and
for patients with a T315I mutation [11]. A daily dose of 40 mg asciminib resulted in
a maximum plasma concentration of 765 nM in patients [139]. Asciminib differs from
previously approved ABL1 kinase inhibitors in that it does not bind to the ATP-binding
pocket of the kinase. Instead, the compound acts as an allosteric inhibitor and engages a
vacant pocket at a site of the kinase domain normally occupied by the myristoylated N-
terminal of ABL1. This motif serves as an allosteric negative regulatory element but is lost
on fusion of ABL1 to BCR [140]. The binding of asciminib in this pocket mimics the binding
of myristate and thus stabilizes the assembled inactive state of the ABL kinase [140]. Because
of the distinct conformation of the myristoyl pocket, the selectivity of asciminib for ABL1 is
high [141]. Additionally, it results in asciminib activity against ATP-binding site mutated
forms of the BCR::ABL1 kinase [141]. In vitro experiments with BCR::ABL1-transfected cells
showed potent asciminib-mediated inhibition of proliferation [142]. In addition, synergistic
apoptosis-inducing effects of asciminib and ponatinib were observed in CD34+/CD38−
CML stem cells obtained from chronic phase and blast phase patients with the T315I
gatekeeper mutation [143]. The combination of asciminib with nilotinib and asciminib with
imatinib resulted in increased cytotoxicity in both parental and asciminib-resistant K562
cells [144]. This could be due to competitive inhibition of BCRP as in vitro studies have
suggested that asciminib is a BCRP substrate [145,146]. An alternative explanation may be
that the simultaneous targeting of the myristate binding pocket as well as the ATP-binding
pocket is more effective than targeting either site alone [144].

Asciminib-mediated cell death was significantly decreased in P-gp-overexpressing
K562 cells compared to their parental cells, an effect that was nullified by the addition of the
P-gp inhibitor cyclosporine [144,145]. Upon exposure to asciminib the P-gp overexpressing
cell line K562-Dox showed a 2.1-fold further increase in P-gp protein expression as com-
pared to control [144]. These findings are indicative of P-gp -mediated asciminib transport.

Research regarding the influence of drug transporting proteins involved in asciminib
distribution is still relatively scarce, due to its recent introduction. Further studies are
required to elucidate whether other efflux proteins are also involved.
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6. Lysosomal TKI Sequestration

Until now, most research on the relationship between drug-transporting proteins and
TKIs has focused on transporters located in the plasma membrane. However, lipophilic
cationic drugs like TKIs tend to accumulate in lysosomes, a process known as lysosomal
trapping [147]. Drug transporters expressed in lysosomes might also contribute to the
reduction in TKI effectiveness by limiting their access to the target site in the cytosolic
compartment. Lysosomes are acidic organelles that have been suggested to play a role in
the accumulation of hydrophobic weak-base anticancer drugs such as TKIs [17,148]. Once
these drugs encounter the acidic pH of the lysosomal lumen, they become protonated and
are no longer able to diffuse across the lysosomal membrane [149].

Various ABC transporters, including ABCA2, ABCA3, ABCA5, ABCB6, ABCB9, and
ABCD4, are present in the lysosomal membrane (Figure 2) [125,150]. Given their membrane
orientation in which the ATP-binding domain faces the cytoplasm, an influx function is
predicted, implying the uptake of substrates into the lysosomes [150]. This process could
further contribute to the lowering of cytosolic TKI concentrations and thus the ineffec-
tiveness of the TKIs. The contribution of ABCA3 to lysosomal imatinib sequestration has
been demonstrated in CML cell lines [151]. Imatinib storage capacity was 2.9 times higher
in isolated ABCA3-expressing lysosomes compared to ABCA3-negative lysosomes [151].
In addition, increased expression of ABCA3 has been associated with an unfavorable
treatment outcome in acute myeloid leukemia [63]. Whether ABCA3 expression is also
associated with poor efficacy of TKIs in CML remains to be investigated. P-gp/ABCB1 has
been localized to various intracellular compartments, including lysosomes [150]. Whether
the transporter is functional or merely present as digested fragments in the lysosomes is
not yet clear [152].
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7. Discussion

The development of TKIs has revolutionized CML therapy in a way that the life
expectancy of patients is approaching that of the general population [153]. This has
resulted in a rising prevalence of CML and thus increasing numbers of patients who
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are dependent on TKI treatment. The effectiveness of the six orally administered TKIs in
CML is largely dependent on their cytosolic concentration in CML cells. Drug-transporting
proteins expressed at both the plasma membrane and lysosomes influence the cytosolic
TKI concentration and may thus play a role in resistance to TKI therapy. This review article
gives an overview of current knowledge on the involvement of drug-transporting proteins
in the distribution of TKIs used for CML treatment.

In this review, different types of studies have been included, in which a distinction
can be made between studies that directly prove the interplay between drug-transporting
proteins and TKIs and studies that provide more indirect types of evidence, such as an
improved patient response with higher transporter expression (Table 1). The latter type does
give a strong indication of the involvement of the drug-transporting protein in question but
does not provide a definitive answer to the question of whether the TKI is a substrate of the
transporter. A wide variety of influx and efflux transporters are involved in TKI distribution,
and some TKIs can also act as inhibitors of these transporters. The question remains
whether the influence of transporter-mediated cellular distribution of TKIs can significantly
impact patient treatment. A previous study using a CML mouse model has shown that
the loss of Abcb1a/b expression in HSCs does not improve the imatinib response [154].
Nevertheless, certain single nucleotide polymorphisms in drug-transporting proteins have
been associated with altered response rates to TKI therapy [155,156]. Further research is
thus warranted to elucidate the magnitude of the contribution of drug transporters to TKI
resistance in CML patients. This is especially true for the more recently approved TKIs, as
their interaction with drug-transporting proteins has not been studied as extensively.

In vitro studies have previously demonstrated the effectiveness of P-gp inhibitors in
reversing imatinib resistance, suggesting that these compounds could function as TKI-
sensitizers [157,158]. However, the systemic expression of ABC transporters makes the
translation of in vitro results challenging in the clinical setting. The use of these inhibitors
could lead to unexpected organ-specific toxicity or affect the pharmacokinetics of co-
administered drugs [15]. Up until now, chemo-sensitizers designed to inhibit drug trans-
porters in vivo have been unsuccessful [159]. Whether inhibitors of drug-transporting
proteins could be a feasible treatment option in CML patients should be thoroughly evalu-
ated in clinical trials.

Some TKIs are substrates for certain drug-transporting proteins, whereas other TKIs
have an inhibitory effect on the same proteins. This implies that if co-administered, these
TKIs could have an additive positive effect in CML treatment. Currently, multiple clinical
trials are evaluating the feasibility of combining asciminib with other TKIs used in CML
treatment, as asciminib targets a different region on the BCR::ABL1 oncoprotein [160].

Even with the current success rate of TKIs, there is still a considerable number of
patients who do not attain optimal responses and are thereby at risk of developing a blast
crisis. Allogeneic stem cell transplantation is a last resort for multi-TKI-resistance in CML,
but this is often not feasible due to unfitness of the patient because of age or comorbidities.
Optimizing treatment outcomes for CML patients, potentially involving the modulation of
transport proteins, therefore remains an unmet medical need. A better understanding of
the role of drug transporters in TKI distribution can aid in developing more effective and
personalized treatment options. Since multiple first-line options are currently available in
the treatment of CML, it can be envisioned that the patient-specific transporter expression
profile could be taken into account in the choice of the TKI [161]. Insight into the transport
mechanisms of TKIs in leukemic hematopoietic stem cells and progenitor cells may also
contribute to the drug discovery process by designing molecules with less affinity for efflux
transporters and a lower risk of developing resistance.
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Table 1. Overview of the current knowledge regarding drug-transporter-mediated TKI efflux. Direct
evidence is defined as assays where overexpression of a drug transporting protein resulted in reduced
intracellular TKI concentrations; all other assay types are listed as indirect evidence.

Compound Drug Transporting
Protein

Direct/Indirect
Evidence Readout Source

Imatinib

P-gp Indirect
Increased intracellular uptake and retention in P-gp
overexpressing LLC-PK1 cells upon addition of the
specific P-gp inhibitor cyclosporin A.

[85]

BCRP Direct

Decreased imatinib uptake in BCRP overexpressing
cell lines and increased intracellular uptake and
retention upon addition of the specific BCRP
inhibitor Ko-143.

[93]

ABCC3 Direct
Increased efflux in ABCC3 overexpressing MDCKII
cell monolayers that could be nullified by the
addition of the ABCC3 inhibitor probenecid.

[101]

ABCA3 Indirect Enhanced transporter expression in CD34+
BCR::ABL1+ leukemic cells after imatinib exposure. [104]

Nilotinib

P-gp Indirect

No evidence of radiolabeled nilotinib efflux in P-gp
overexpressing MDCKII cells, but significant
upregulation of P-gp expression in nilotinib
resistant K562 cells.

[54,114]

BCRP Indirect BCRP overexpression in K562 cells protects against
nilotinib-mediated cell death. [46,113]

ABCA3 Indirect Enhanced transporter expression in CD34+
BCR::ABL1+ leukemic cells after nilotinib exposure. [104]

Dasatinib

P-gp Direct
Reduced intracellular uptake and retention of
dasatinib in P-gp overexpressing K562 cells, which
could be reversed by a specific P-gp inhibitor.

[113,124]

BCRP Direct
Reduced intracellular uptake and retention of
dasatinib in BCRP overexpressing K562 cells, which
could be reversed by a specific BCRP inhibitor.

[113,124]

ABCA3 Indirect Enhanced transporter expression in CD34+
BCR::ABL1 leukemic cells after dasatinib exposure. [104]

Bosutinib
P-gp Indirect

Lower intracellular uptake and retention of
bosutinib in P-gp overexpressing K562 cells and
reduced BCR::ABL1 phosphorylation upon
co-treatment of bosutinib and a specific P-gp
inhibitor. However, P-gp overexpression had no
effect on bosutinib-mediated cellular toxicity.

[113,138]

BCRP Indirect Minor protective effect against bosutinib treatment
in BCRP overexpressing K562 cells. [113]

Asciminib P-gp Indirect
Decreased asciminib-mediated cell death in P-gp
overexpressing K562 cells, which was nullified upon
inhibition of P-gp.

[144,145]
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