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Abstract: Type 2 diabetes mellitus is a major health problem worldwide with a steadily increasing
prevalence reaching epidemic proportions. The major concern is the increased morbidity and mortal-
ity due to diabetic complications. Traditional but also nontraditional risk factors have been proposed
to explain the pathogenesis of type 2 diabetes mellitus and its complications. Hyperglycemia has
been considered an important risk factor, and the strict glycemic control can have a positive impact
on microangiopathy but not macroangiopathy and its related morbidity and mortality. Thus, the
therapeutic algorithm has shifted focus from a glucose-centered approach to a strategy that now em-
phasizes target-organ protection. Sodium-glucose transporter 2 inhibitors is an extremely important
class of antidiabetic medications that, in addition to their glucose lowering effect, also exhibit cardio-
and renoprotective effects. Various established and novel biomarkers have been described, reflecting
kidney and cardiovascular function. In this review, we investigated the changes in established
but also novel biomarkers of kidney, heart and vascular function associated with sodium-glucose
transporter 2 inhibitors treatment in patients with type 2 diabetes mellitus.

Keywords: SGLT2 inhibitors; cardiorenal syndrome; cardiovascular biomarkers; renal biomarkers;
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1. Introduction

The prevalence of type 2 diabetes mellitus (T2DM) has been rising worldwide, reaching
epidemic proportions in both high- and middle-income countries [1]. Morbidity and
mortality have also been rising dramatically due to diabetic complications, mainly chronic
kidney disease (CKD) and cardiovascular disease (CVD) [2].

Diabetic nephropathy is the leading cause of kidney disease globally [3]. Albuminuria
and a reduced glomerular filtration rate (GFR) are the main risk factors for end-stage CKD,
CVD and death [4].

CVD, specifically ischemic heart disease, coronary artery disease (CAD), heart failure
(HEF), stroke and peripheral artery disease, accounts for 50% of deaths in patients with
T2DM, a number that rises in the context of CKD [5].

Multiple initiatives have been launched to prevent diabetes, achieve optimal glycemic
control, and identify and treat diabetic complications as early as possible. Intensive blood
glucose control and the management of body weight, blood pressure and lipid levels are
all recommended for T2DM patients with tailored treatment objectives and plans [6]. The
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fundamental component of T2DM therapy continues to be lifestyle modifications, namely
adopting a customized food plan and engaging in regular physical activity. However, a
significant number of patients fail to adhere to this, and this is occasionally insufficient
to protect the target organs [7]. The current list of antidiabetic medications includes
metformin, dipeptidyl-peptidase-4 inhibitors (DPP4i), glucagon-like peptide-1 (GLP1)
receptor agonists, insulin, sulfonylureas, thiazolinediones and sodium-glucose transporter
inhibitors (SGLT2i).

The target-organ protective strategy has taken the place of the glucose-center approach
since rigorous monitoring of glucose has failed to lower the frequency of complications,
particularly macroangiopathy [8]. Through a recently proposed algorithm, the European
Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD)
have emphasized the importance of taking into account factors other than glucose levels
and HbAlc, such as the protection, early detection and treatment of diabetes’ main target
organs, the kidney and the heart [9]. GLP-1 receptor agonists are recommended as the first
line of therapy for people with risk factors for CVD or those who already have the disease,
based on favorable findings from trials with cardiovascular and renal outcomes [10].

SGLT2i remain the first line of treatment in HF and CKD since they have demonstrated
remarkable outcomes in heart and kidney failure independent of diabetes, indicating that
they act beyond glucose [11]. SGLT2 inhibitors block the SGLT2 transporters and decrease
renal glucose absorption in the early proximal renal tubule, leading to glucosuria and
reduced blood glucose levels [12,13]. As already mentioned, based on cardiovascular and
renal outcomes research, their application has grown dramatically. The Empagliflozin
Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUT-
COME) was the first study that revealed that SGLT2i improved cardiovascular outcomes
in T2DM patients at high cardiovascular risk [14]. According to the DAPA-CKD study,
dapagliflozin lowers all-cause mortality and significant adverse renal and cardiovascular
events in both diabetic and non-diabetic CKD patients. Dapagliflozin might be initiated in
people with an eGFR as low as 25 mL/min, based on the favorable benefit-to-risk ratio in
patients with and without T2DM [15]. Numerous other studies, including the Empagliflozin
Outcome Trial in Patients with Chronic Heart Failure and a Reduced Ejection Fraction
(EMPEROR-Reduced), have confirmed and expanded these findings [16-22]. SGLT2i are
currently included in the 2019 ACC/AHA first-level preventive recommendations for CVD,
and the combination of metformin and dapagliflozin is suggested as the optimal therapy
regimen for glucose-lowering medication treatment of T2DM [23].

The cardiovascular benefits of SGLT2i are thought to be caused by a number of
processes, such as osmotic diuresis and natriuresis, which lower blood pressure, reduce
arterial stiffness and vascular resistance, promote weight loss and reduce uric acid and
oxidative stress. Elevated hemoglobin and hematocrit levels may also be involved, and
glucagon’s control over heart glucose uptake is important for the beneficial inotropic and
anti-arrhythmogenic effects [14,24,25]. Another theory states that SGLT2i increase the
effectiveness of myocardial activity by switching the metabolism of fuel from inefficient
free fatty acids to more effective ketones [26].

The renal protection mechanisms of SGLT2i are also multifactorial. SGLT2i reduce
sodium reabsorption in the proximal tubule, increasing sodium delivery to the macula
densa. This restoration of tubular glomerular feedback results in reduced kidney blood
flow, decreased glomerular hyperfiltration and lowered intra-glomerular pressure [27].
These effects lead to an acute reduction in albuminuria and eGFR, followed by long-term
eGFR stability [28]. SGLT2i also positively impact risk factors for renal impairment that
have been already mentioned, including high blood glucose, hypertension, serum uric acid
and body weight, suggesting potential nephroprotective effects in diabetes patients [29].

According to the definition, a biomarker is “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention”. Biomarkers are used to detect
subclinical disease before it manifests clinically. A biomarker should be easy to test in a non-
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invasive manner using a well-defined approach, and the measurement obtained should
be capable of identifying those who are at risk [30]. Biomarkers can be either a clinical
parameter, a circulating molecule (plasma, serum, or urine) or an imaging characteristic [31].

The non-hypoglycemic effects of SGLT2i have been extensively studied and docu-
mented in several publications, both in original research and review articles [32-34]. In
this comprehensive review, we aimed to focus specifically on cardiovascular and renal
biomarkers, as a way to provide quantitative insights into biological processes, disease
progression and treatment response, and summarize the most recent knowledge on the
changes induced by SGLT2i treatment in T2DM patients.

2. Heart Biomarkers and SGLT?2i Treatment

Heart-related circulating biomarkers are proteins released into the blood either directly
from the heart in reaction to tissue-specific damage, or from other cells as a systemic
response to heart issues and can be easily detected [35].

2.1. Circulating Heart Biomarkers and SGLT2i Treatment
2.1.1. Natriuretic Peptides

Natriuretic peptides (NPs) are hormones that regulate volume and pressure overload
in the cardiovascular system, hence preserving homeostasis [36]. Among the three different
types of NPs—atrial, released from cardiac atria, C-type, released from endothelial cells,
and brain, released from cardiac ventricles—the last one has been proven useful in many
clinical settings [37]. The N-terminal prohormone of brain NP (NT-proBNP) has a strong
tendency to predict CVD even in asymptomatic adults without a known related history [38],
and higher levels have been associated with elevated CV risk [35].

The impact of SGLT2i therapy on NT-proBNP levels in patients with or without T2DM
has been thoroughly investigated. Treatment with empagliflozin significantly reduced
NT-proBNP levels in both diabetic and non-diabetic patients with HF with reduced ejection
fraction (HFrEF) [39,40]. Treatment with empagliflozin, either as a monotherapy [41] or in
combination with insulin [42], was beneficial for patients with T2DM hospitalized for acute
HF. Over 26 weeks, empagliflozin was also linked to a significant decrease in NT-proBNP
levels in patients who had recently experienced myocardial infarction (MI) [43].

Most studies report that canagliflozin significantly decreased the NT-proBNP levels
in patients with T2DM, with either clinically stable HF [44,45], or acute HF after hospi-
talization [46]. Canagliflozin also delayed the rise in NT-proBNP in older patients with
T2DM [47]. Compared to glimepiride, only canagliflozin was found to decrease NT-proBNP
levels in a subgroup of patients with left ventricular (LV) diastolic dysfunction, suggesting
a different therapeutic effect depending on LV function [48].

According to Myhre et al., regardless of baseline NT-proBNP concentrations in HFrEF
or HF with preserved ejection fraction (HFpEF), dapagliflozin improved outcomes, with the
highest absolute benefit found in patients with higher NT-proBNP levels [49]. Patients with
higher baseline NT-proBNP levels also experienced a decrease in NT-proBNP levels when
receiving ipragliflozin compared to conventional treatment for T2DM and HFpEF [50].

Although the majority of studies show a significant effect, some studies found no
difference in the effects of empagliflozin or canagliflozin in patients with T2DM and
clinically stable HF [51-54]. Dapagliflozin did not affect NT-proBNP in patients with
HFrEF with or without DM [55], whereas luseogliflozin failed to show significant results in
comparison to voglibose in patients with T2DM and HFpEF [56]. According to Ueda et al.,
canagliflozin treatment in elderly patients with T2DM and HFpEF produced significant
results after four weeks, but not after 24 weeks [57]. The scarcity of data seems to be due to
the different populations studied that have various comorbidities and DM features, such as
age, diabetes duration or “silent” complications.
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2.1.2. Troponin

Troponin (Tn) is a protein that exists in skeletal and cardiac muscle and has three
isoforms, troponin C, troponin I and troponin T. The cardiac-specific isoforms of Tn (cTn-I,
cTn-T) are exclusively expressed in cardiac muscle [58]. Tn measurement, especially high-
sensitivity cIn (hs-cTn), is being used extensively for the diagnosis of acute coronary
syndromes, while it also has a prognostic value for CVD morbidity and mortality [35].

Numerous studies have examined the effect of SGLT2i treatment on hs-cTn levels
in patients with or without T2DM in various settings of underlying CVD. Vaduganathan
et al. compared the effects of canagliflozin and placebo in diabetic patients with known
CVD disease and showed that canagliflozin halted the rise in hs-cTnT over six years, while
patients with increased hs-cTnT levels had a considerable advantage in terms of significant
CVD events [59]. This was also proved in a study of older patients with T2DM, with no
prior CVD history, as canagliflozin also delayed the rise in hs-cTnl for over two years [47].

Regardless of hs-cTnT baseline levels, empagliflozin had positive effects on CVD
outcomes [60]. Dapagliflozin showed a significantly lowered risk of worsening heart
failure or CVD death and tended to reduce the rate of hs-cInT augmentation with time,
independently of baseline levels [61]. In patients with T2DM and CAD, dapagliflozin was
found to significantly decrease hs-cTnT levels for six months, compared to vildagliptin [62].

On the other hand, only some data such as that from Griffin et al. did not find a
significant effect of empagliflozin on Tn levels in diabetic patients with stable HF [51].

2.1.3. Fibrosis Biomarkers

Soluble suppressor of tumorigenicity 2 (sST2) is a component of the interleukin-1
(IL-1) receptor family [63]. It is generated by the vascular endothelium, cardiomyocytes
and cardiac fibroblasts in reaction to stress or damage [64], and seems to be a prognostic
factor for HF hospitalization outcomes. Elevated sST2 levels have been linked to HF
hospitalization, as well as higher morbidity and mortality [65,66]. Canagliflozin slowed the
increase in sST2 levels in patients with T2DM and CVD over six years, while those that had
levels of sST2 > 35 ng/mL had a greater benefit for major CVD events [59]. This action has
not been proved in older T2DM patients compared to placebo [47]. Empagliflozin also did
not affect sST2 in diabetic patients with CAD [67].

Matrix metalloproteinases (MMPs) are a family of enzymes that play a significant
part in cardiac remodeling [68], being involved in the development of HF following acute
ischemia and used as a predictor of mortality [69]. The only study that investigated the
impact of SGLT2i on MMP-2 in diabetic patients with CAD did not report any significant
results [67].

2.2. Imaging Heart Biomarkers and SGLT2i Treatment

Cardiac imaging is used to evaluate the anatomy and function of the heart and is
crucial in the diagnosis, treatment and monitoring of patients with heart diseases [70].
Lately, there has been growing awareness of the impact of the newest treatments on
ventricular reverse remodeling.

2.2.1. Left Ventricular (LV) Function Parameters

Left ventricular ejection fraction (LVEF) is a widely used biomarker for evaluating
heart function. HF patients are classified into two categories based on LVEF: HF with
reduced systolic contraction and thus decreased ejection fraction (HFrEF), and HF with
diastolic dysfunction but preserved EF (HFpEF) [71].

Studies examining the impact of SGLT2i therapy on LVEF have produced conflicting
results. The EMMY trial investigated the effect of empagliflozin in the acute setting
and found a significant improvement in LVEF in patients who underwent percutaneous
coronary intervention (PCI) for acute MI [72]. In a group of diabetic patients with HFrEF,
canagliflozin showed a significant improvement in LVEF compared to sitagliptin [54].
Empagliflozin demonstrated a difference in T2DM patients with CAD, but this result was
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not statistically significant [67]. Lastly, empagliflozin had a significant impact on LVEF in
non-diabetic patients with HFrEF [73]. Numerous other studies that looked at the impact
of various SGLT2i in LVEF in patients with and without T2DM failed to produce any
conclusive findings [40,57,74-85].

Left ventricular global longitudinal strain (LV-GLS) is one of the newest imaging
cardiac biomarkers that examines longitudinal deformation of the left ventricle and is
decreased in patients with hypertension and diabetes, despite normal LVEF [86-88]. The
relationship between SGLT2i therapy and the potential impact on LV-GLS has only been
studied in a small number of studies. Nesti et al., found that empagliflozin produced a
rapid and sustained amelioration of LV contractility in T2DM patients without CVD, and
subclinical dysfunction (LV-GLS < 16.5%) compared with sitagliptin, while no effect was
found in patients with normal LV function [89]. Diabetic patients treated with SGL2i for six
months showed a significant improvement in LV-GLS [90]. In T2DM patients with stable HF,
dapagliflozin was associated with the improvement in LV-GLS and diastolic function [75],
an effect that was not obvious when added to metformin. However, a significant difference
in global radial strain was noted, suggesting reduced LV contraction [85]. Other studies
failed to show a significant effect of treatment with SGLT2i on LV-GLS in T2DM patients
with various CVD backgrounds [40,74,83,84].

Stroke volume, which represents the amount of blood that is pumped out of the left
ventricle of the heart with each systolic cardiac contraction, does not appear to be affected
by SGLT?2i treatment [77,79,81,83,85].

2.2.2. LV Volume Parameters

In individuals with HE, LV volumes are related to LV remodeling and deteriorate over
time [91]. The most commonly used LV volume parameters are left ventricular end-diastolic
volume (LVEDV) and left ventricular end-systolic volume (LVESV).

Results regarding SGLT2i” impact on LV volume parameters are not entirely consistent,
as an improvement in LVEDV was found with SGLT2i treatment mostly in nondiabetic
patients. Empagliflozin significantly decreased LV volumes in stable HFrEF patients [73,82],
as well as in acute MI within 72 h post PCI [43].

Regarding LVEDYV, there are no data supporting an association with SGLT2i treatment
in T2DM patients, regardless of their CVD status [40,54,79-81,85]. Only Mason et al. found
a positive but not even statistically significant impact of empagliflozin in T2DM patients
with CAD [67].

Concerning LVESV, significant outcomes were primarily observed in non-diabetic pa-
tients on SGLT?2 treatment [43,73,82]. Lee et al. found a significant LVESV decrease in T2DM
and prediabetic patients with HFrEF after treatment with empagliflozin for 40 weeks [40].
Other studies did not report any statistically significant effects [54,67,78-81,85].

2.2.3. Left Ventricular Mass (LVM) Parameters

The excessive growth of LVM is known as LV hypertrophy (LVH), and it has been
noted as a significant risk factor for CVD and mortality [92].

Several studies support a significant reduction in LVM in T2DM patients treated with
different SGLT2i [50,67,79,80,90]. The majority of these patients had underlying CVD, either
LVH [79], HFpEF [50] or CAD [67,80]. Studies in nondiabetic patients with stable HFrEF
also showed some encouraging outcomes in terms of LVM reduction after treatment with
empagliflozin [73,82]. Several studies, however, found no difference [40,76,78,83,93].

2.2.4. Left Atrial (LA) Parameters

Left atrial volume (LAV) depicts diastolic burden and is a reliable indicator of CVD
outcomes [94]. In T2DM patients without a history of CVD, increased LAV was a significant
independent and incremental predictor of cardiovascular morbidity and mortality [95]. The
few studies that investigated the impact of SGLT2i on LAV failed to produce a statistically
significant finding [40,76,81-85,93].
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2.2.5. LV Diastolic Function

LV diastolic function is evaluated using LV filling pressure parameters, expressed as
the ratio of early mitral inflow velocity to early diastolic velocity in the mitral annulus
(E/¢€) [96].

Treatment with various SGLT2i, in particular canagliflozin, dapagliflozin and em-
pagliflozin, in patients who underwent PCI in the presence of an acute MI had a significant
impact on E/¢’ [43,75,97]. However, other studies did not support this kind of association
between LV diastolic function and SGLT2i treatment [50,54,83,84].

2.2.6. Right Ventricular (RV) Parameters

Unlike LV parameters and function, one study in T2DM patients with CAD treated
with empagliflozin did not report any change in the RV mass index (RVMi), RV end systolic
and diastolic volumes (RVESVi, RVEDVi) and RV ejection fraction (RVEF) [98].

2.2.7. Plasma Volume (PV)

PV is an important element of CVD pathophysiology. Estimated PV (ePV) is calculated
using several formulas based on anthropometric parameters and hematocrit and has been
used as a prognostic factor for CV events and mortality [99].

Multiple studies have demonstrated the significant impact of SGLT2i treatment on
ePV. Empagliflozin was found superior in lowering ePV, compared to either placebo
or conventional glucose-lowering treatment, in T2DM patients with HF or underlying
CVD [41,51], exhibiting a positive correlation with NT-proBNP levels [100]. Regardless of
baseline LVEF, the same effect has been noticed for canagliflozin, compared to glimepiride
in T2DM patients with HF [45].

A summary of both circulating and imaging biomarkers related to heart function
affected by SGLT2i treatment is presented in Figure 1.

SGLT2 inhibitors

Circulating
Bicraa e Imaging biomarkers
L ]

LVEF

NT-proBNP LV-GLS

he-=Th LVEDV/LVESV
LVM
sST2 Ele’

ePV

Figure 1. Heart biomarkers affected by SGLT2i treatment. Abbreviations: NT-proBNP: N-terminal
prohormone of brain natriuretic peptide; hs-cTn: high-sensitivity cardiac troponin; sST2: soluble
suppressor of tumorigenicity 2; LVEF: left ventricular ejection fraction; LV-GLS: left ventricular global
longitudinal strain; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic
volume; LVM: left ventricular mass; E/e”: ratio of early mitral inflow velocity to early diastolic
velocity; ePV: estimated plasma volume.

3. Renal Biomarkers and SGLT2i Treatment
3.1. Renal Clinical Biomarkers and SGLT2i Treatment

The renoprotective effect of SGLT2i is largely mediated by osmotic diuresis and
natriuresis-induced blood pressure (BP) reduction, local renin-angiotensin-aldosterone
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system inhibition and a reduction in body mass index (BMI) and arterial stiffness [101,102].
Clinically significant decreases in both systolic and diastolic BP have been observed in
several randomized controlled studies utilizing SGLT2i in T2DM patients without any
compensatory increase in heart rate [103-105]. The EMPA-REG outcome study showed
that the hemodynamic effects of empagliflozin reduce BP by a reduction in intraglomerular
pressure [106].

The regulation of body weight also plays a role in the renoprotective effect of SGLT2i.
Both the EMPA-REG OUTCOME trial and the EMPEROR-Reduced trial demonstrated
a statistically significant weight loss when SGLT-2 inhibitors were used. In subgroups
identified by glucose-lowering medication at baseline and follow-up, a 5 kg decrease in
body weight was observed [105]. Patients in the ALTITUDE study slightly decreased their
body weight as well [107]. Treatment with dapagliflozin caused significant weight loss, an
increase in ketone bodies, an increase in adiponectin, a tendency for high-sensitivity CRP to
decline, an increase in glucagon and no change in immunoreactive insulin (IRI), pointing to
the possibility that SGLT2i may enhance adipocyte function in obese T2DM patients [108].

3.2. Renal Circulating Biomarkers and SGLT2i Treatment

Several regulators of inflammatory response, including nuclear factor-B (NF-B), in-
terleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor-a
(TNF-a), enzymes such as matrix metalloproteinase 7 (MMP-7) and other molecular struc-
tures such as fibronectin-1 have been shown to decrease in response to SGLT2i therapy.
Among these, TNF-a is considered essential for CKD patients’ ability to manage inflam-
mation. TNF-a may bind to any of the several TNF-Receptor (TNFR) isoforms, including
isoforms 1 and 2. Elevated TNFR-1 or TNFR-2, are signs of renal failure. Treatment with
canagliflozin was found to reduce TNFR-1 and TNFR-2 levels [107]. As the sole biomarker
unrelated to other risk factors for renal function decrease and whose change has been
strongly linked to a decline in eGFR, the effect on TNFR-1 appears to be significant [109].

Biomarkers of tubular injury are proteins released in the circulation by the tubular
epithelial cells as a response to injury. Among them, kidney injury molecule-1 (KIM-1)
is located on the apical membrane of the proximal tubule. It is released into the tubular
lumen and absorbed by the peritubular capillaries and is considered a predictor of kidney
failure [110]. Compared to placebo, dapagliflozin decreased urinary KIM-1 excretion
by 22.6% [111]. Regardless of baseline renal function, ertugliflozin also demonstrated a
sustained reduction in KIM-1 in patients with T2DM and stage 3 CKD [112]. Neutrophil
gelatinase-associated lipocalin (NGAL) is another biomarker of both proximal and distal
tubule injury. Dapagliflozin treatment did not result in NGAL changes [111], however,
elevated NGAL levels in patients hospitalized with an acute illness and acute kidney injury
treated with SGLT2i indicated that SGLT2i may enhance medullary damage [113]. Lastly,
liver-type fatty acid-binding protein (L-FABP), a marker of proximal tubular function, did
not change in response to dapagliflozin treatment [111].

In T2DM patients [113], SGLT2i were found to be more effective than placebo at
reducing the IgG-to-IgG4 fractional clearance ratio, a measurement of glomerular charge
selectivity. However, dapagliflozin therapy had little to no effect on the IgG-to-albumin
clearance ratio, a glomerular size selectivity indicator [111].

Glomerular filtration rate (GFR) remains an ideal marker of kidney function. Due to
the time-consuming nature of measuring GFR, it is typically estimated using equations that
account for endogenous filtration markers such as serum creatinine (5Cr) and cystatin C
(CysC) [114].

In a cross-sectional study, patients with T2DM who were treated with SGLT2i for at
least 24 weeks were compared to those who had not in terms of their estimated glomerular
filtration rate (eGFR), which was calculated using both CysC and the estimated glomerular
filtration rate (eGFRcys) based on the former. The group receiving SGLT2i had significantly
increased eGFRcr while eGFRcys remained the same. The SGLT2i group had a considerably
greater difference between eGFRcr and eGFRcys (eGFRcr-cys) [115,116]. Independent of
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whether or not they had T2DM, the DAPA CKD trial revealed that individuals with CKD
who received dapagliflozin had a significantly lower risk of a sustained decline in estimated
GFR of at least 50%, end-stage kidney disease or death from renal or cardiovascular
causes [117]. The evaluation of ertugliflozin efficacy and safety cardiovascular outcomes
(VERTIS CV) trial in T2DM patients with atherosclerotic CVD showed that ertugliflozin
was associated with the preservation of eGFR and reduced urine albumin-creatinine ratio
(UACR) [21].

At the start of the dapagliflozin treatment, fractional urea excretion was dramati-
cally decreased, and free water clearance was also significantly decreased after four and
14 days [118]. Dapagliflozin also elevated plasma levels of renin, angiotensin II, urine
aldosterone, angiotensinogen and copeptin in an immediate and sustained manner [118].

A minor but substantial decrease in HbAlc has been associated with SGLT2i therapy
in CKD patients, but not with a decrease in urine fractional glucose excretion [112,119].

3.3. Renal Urinary Biomarkers in Treatment with SGLT2i

The urine albumin/creatinine ratio was dramatically decreased after SGLT2i treatment.
Urine 8-hydroxy-2C-deoxyguanosine (8-OHdG), a marker of oxidative stress linked to
kidney injury, decreased but urinary N-acetyl-b-d-glucosaminidase (NAG), urinary b2-
microglobulin and urinary KIM-1 remained unaltered [119,120]. According to Dekkers
et al., decreased intra-glomerular pressure or lessened tubular cell damage may be the
causes of the albuminuria-lowering effects of SGLT2i treatment [111]. The albumin-to-
creatinine ratio changed noticeably more in patients whose mean arterial pressure was
under 92 mmHg [121,122].

Proteomics and metabolomics investigations have recently revealed new information
about the discovery of novel biomarkers for the progression of diabetic nephropathy.
Proteomics comprises methods for studying the urine proteome, whereas metabolomics
identifies and quantifies urinary metabolites. The proteomic classifier CDK273 urine test
was employed in the PRIORITY trial, and it was found that patients with T2DM had a
2.5-fold higher incidence of microalbuminuria [123].

A summary of biomarkers related to renal function affected by SGLT2i treatment is
presented in Figure 2.

[ SGLT2 inhibitors ]

J |

| Clinical biomarkers ‘ | Circulating biomarkers | ‘ Urinary biomarkers ‘

f NF-B \
IL-6 Albumin/creatinine
MCP-1 ratio
Body weight/BMI MMP-7 Urine proteome
TNF-a
KIM-1
NGAL
Creatinine
GFR
Renin
Aldosterone
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Figure 2. Renal biomarkers affected by SGLT2i treatment. Abbreviations: NF-B: nuclear factor-B;

Blood pressure

IL-6: interleukin 6; MCP-1: monocyte chemoattractant protein 1, MMP-7: matrix metalloproteinase-7;
TNF-a: tumor necrosis factor-a; KIM-1: kidney injury molecule-1; NGAL: neutrophil gelatinase-
associated lipocalin; GFR: glomerular filtration rate.
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4. Vascular Biomarkers and SGLT2i Treatment
4.1. Arterial Stiffness and SGLT2i Treatment

Arterial stiffness is one of the first indicators of morphological and functional changes
in the arterial wall and it is caused by arteriosclerosis rather than atherosclerosis [30]. It has
been identified as a significant predictor of CVD events and all-cause mortality and is used by
international guidelines regarding arterial hypertension [124]. Arterial stiffness is primarily
measured by pulse wave velocity (PWV) and the cardio-ankle vascular index (CAVI).

4.1.1. Pulse Wave Velocity (PWV)

The gold-standard method for the measurement of arterial stiffness is PWV, primar-
ily carotid-femoral (cfPWYV) or brachial-ankle (baPWV). In T2DM patients, PWV signif-
icantly decreased after treatment with either dapagliflozin [125,126], canagliflozin [127],
tofogliflozin [128] or empagliflozin [129,130].

However, other studies that examined short-term or long-term treatment with SGLT2i
as monotherapy or in combination with different non-SGLT2i agents did not find a signifi-
cant change in PWV [131,132]. In a study by Ramirez et al., canagliflozin or perindopril was
added in patients with T2DM and hypertension who were already treated with metformin
and amlodipine. Carotid-femoral PWV was found to be similarly affected with either
canagliflozin or perindopril [133].

4.1.2. Cardio-Ankle Vascular Index (CAVI)

Cardio-ankle vascular index (CAVI) is another biomarker that reflects arterial stiffness
and, unlike PWYV, is independent of BP. CAVI is now being used as a predictor of CVD [134].

Sakai et al. found a significant reduction in CAVI in T2DM and HFpEF patients treated
with SGLT2i (empagliflozin, tofogliflozin, luseogliflozin), with no difference between the
SGLT2i groups [135]. In T2DM patients treated with DPP4i for at least one year, a switch to
tofogliflozin for six months resulted in a significant improvement in CAVI [136]. On the
other hand, in patients with T2DM with inadequate glycemic control, luseogliflozin failed
to alter CAVI significantly after 12 weeks of treatment, despite improvement in glycemic
control and several metabolic parameters [132].

It should be pointed out that these studies are heterogeneous, with different method-
ologies and populations. SGLT2i treatment was initiated in T2DM patients with or without
CVD risk and/or hypertension, as monotherapy compared to placebo or in different com-
binations with other antidiabetic medications leading to different findings and somewhat
conflicting results.

4.2. Endothelial Function and SGLT2i Treatment

The vascular endothelium controls all aspects of vascular balance in reaction to physi-
cal and chemical stimuli, through the production of various vasoactive mediators. Endothe-
lial dysfunction plays a role in the formation and progression of atherosclerosis, as well as
the rupture of atherosclerotic plaques [137].

Independent of the existence of diabetes, SGLT2 inhibition has been proven beneficial
for enhancing endothelial function, which emphasizes the cardioprotective properties of
this class of medication even more [138].

4.2.1. Flow-Mediated Dilation (FMD)

FMD is currently the most widely applied method of assessing endothelial function
through ultrasound in the brachial artery, in response to changes in blood flow. Although
primarily utilized as a research tool, it is considered a predictive factor for patients with
both low and high CVD risk [30].

FMD has been extensively studied as a treatment target of SGLT2i. Most studies note a sig-
nificant improvement in FMD after treatment with different types of SGLT2i [127,135,139-142],
as well as after shifting to SGLT2i from other oral antidiabetic medications [143]. Most of
the studies mentioned above were conducted in patients with T2DM and some form of
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CVD, either HE, CAD or subclinical atherosclerosis. Shigiyama et al. reported significant
improvement after 16 weeks of treatment with dapagliflozin as an add-on therapy on
metformin in patients with T2DM and no history of CVD who had inadequate glycemic
control (HbAlc > 7) [144]. Solini et al. reported that after only 48 h of treatment in T2DM
patients, dapagliflozin significantly increased FMD compared to hydrochlorothiazide [126].
Zainordin et al. reported that treatment with dapagliflozin for 12 weeks did not improve
FMD, however, the dapagliflozin group appeared to be stable, whereas the placebo group
tended to worsen [145]. In diabetic hypertensive patients, dapagliflozin also failed to show
a notable difference in brachial FMD [131].

4.2.2. Endothelial Peripheral Arterial Tonometry (EndoPAT)

Peripheral microvascular endothelial function in the fingertip can be measured using
an EndoPAT device. This approach involves pulsatile volume fluctuations at the fingertip
and is non-invasive [30]. The reactive hyperemia peripheral arterial tonometry index (RHI)
can then be calculated. RHI has been used for research purposes.

Treatment with dapagliflozin for six months managed to significantly improve en-
dothelial function, as assessed by RHI in patients with uncontrolled T2DM, compared
to non-SGLT?2i treatment [146]. However, in a study of 117 patients with T2DM and es-
tablished CVD, empagliflozin did not significantly affect RHI, despite improvement in
glycemic control [147].

4.3. Carotid Ultrasonography—Carotid Intima-Media Thickness (cIMT) and SGLT2i Treatment

Carotid ultrasonography is one of the most prevalent ways to detect atherosclerotic
changes, and it is effective in both primary and secondary CVD prevention. Carotid
intima-media thickness (cIMT) is calculated via carotid ultrasound using a specific reading
software and is linked to a high risk of atherosclerosis [30].

Treatment with SGLT2i has thus far been unable to reduce cIMT. In a randomized
clinical trial of T2DM patients without CAD, tofogliflozin did not appear superior to
conventional (non-SGLT2i) treatment, although antidiabetic medications in general (both
SGLT2i and non-SGLT2i) reduced cIMT in a significant way [148]. Ipragliflozin admin-
istration also had no effect on the advancement of cIMT, in comparison to conventional
treatment for T2DM without the use of SGLT2i [149].

4.4. Ankle-Brachial Index (ABI) and SGLT2i Treatment

In comparison to the arms, the lower extremities have greater systolic blood pressure.
This connection is represented by the ankle-brachial index (ABI). A reduction in this ratio
is used to detect peripheral artery disease and is related to greater CV risk [30].

Both canagliflozin and luseogliflozin failed to affect ABI in a significant way when used in
T2DM patients with stable chronic HF or suboptimal glycemic control, respectively [127,132].

4.5. Central Hemodynamics/Wave Reflections and SGLT2i Treatment

Central hemodynamic indices are either measurements that estimate central BP param-
eters and derivatives (central systolic BP, pulse pressure, enhanced pressure and amplifica-
tion), or parameters that evaluate wave reflections (augmentation index (Alx), forward and
backward wave, wave intensity analysis). Wave reflection measurements have regularly
been found to be reliable indicators of CVD events and death in high-risk individuals [30].

Studies that examined the effect of treatment with SGLT2i on central BP and the Alx
give contradictory results. Both empagliflozin and dapagliflozin reduced central BP and
the AIx when compared to placebo for six and 12 weeks, respectively [125,129]. In T2DM
patients with high CVD risk, the combination of liraglutide with empagliflozin resulted
in a significant decrease in Aix, as well as central BP [130]. Treatment with dapagliflozin
for 48 h did not affect either central BP or the augmentation index when compared to
hydrochlorothiazide in T2DM patients [126]. When used in hypertensive T2DM patients,
dapagliflozin showed a tendency to lower central BP [131]. Concerning pulse pressure,
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treatment with both empagliflozin and canagliflozin has been found to have a positive
effect in T2DM patients with or without hypertension [150,151].

4.6. Plasma Biomarkers Related to Vascular Inflammation and SGLT2i Treatment

Inflammation is a major factor in the development of vascular dysfunction in T2DM,
which is a key contributor to the high cardiovascular risk associated with the disease.
Chronic low-grade inflammation plays an essential part in the malfunctioning of vascular
cells that underlies the onset and development of atherosclerosis in diabetes [152]. SGLT2i
have demonstrated significant anti-inflammatory properties in addition to their well-
known glucose-lowering actions. These medications exhibit a capacity to reduce levels
of inflammatory markers and cytokines, contributing to a less inflammatory vascular
environment [153].

Widely known as a biomarker of systemic inflammation, high-sensitivity C-reactive
protein (hsCRP) has also been associated with the progression of atherosclerotic plaques,
especially the more fragile ones [154,155]. Concerning the effect of treatment with SGLT2i
on hsCRP, both empagliflozin and canagliflozin showed favorable results in patients with
T2DM and CVD [127,140]. Zainordin et al. noted that dapagliflozin, when compared
to placebo, actually increased hsCRP, possibly due to the fast decrease in glucose levels
observed in that group [145]. However, Sposito et al. showed no difference in hsCRP after
treatment with dapagliflozin [141].

Soluble intercellular adhesion molecule-1 (ICAM-1) is a component that has low
expression in the endothelium under normal circumstances but is increased during inflam-
matory processes and may serve as an indicator of early atherosclerosis. Treatment with
dapagliflozin gives conflicting results, as Zainordin et al. observed a significant improve-
ment in ICAM-1 in diabetic patients, whereas Sposito et al. note no difference [141,145].

A summary of biomarkers related to vascular function affected by SGLT2i treatment is
presented in Figure 3.

Central
hemodynamics/Wave
reflections

Central BP
Augmentation index
Arterial stiffness A Carotid
PWV ultrasonography
cIMT
CAVI
SGLT2 inhibitors
Endothelial Vascular
function inflammation
FMD | hsCRP
EndoPAT-RHI ICAM-1
Ankle-brachial
index

Figure 3. Vascular biomarkers affected by SGLT2i treatment. Abbreviations: PWV: pulse wave velocity;
CAVI: cardio-ankle vascular index; FMD: flow-mediated dilation; EndoPAT-RHI: endothelial peripheral
arterial tonometry-reactive hyperemia index; BP: blood pressure; cIMT: carotid intima-media thickness;
hsCRP: high-sensitivity C-reactive protein; ICAM-1: intercellular adhesion molecule-1.
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5. Conclusions

SGLT2i constitute an important class of antidiabetic medications that also exhibit
significant cardioprotective and renoprotective effects. Various biomarkers of renal, heart
and vascular function, either conventional or novel, which are used to identify subclinical
illness before clinical manifestation, are affected by SGLT2i treatment. Thus, it appears that
a new area of research has been opened, aiming to use these drugs in subclinical disease to
prevent the disease’s evolution or in an attempt to reverse any pathological changes that
have already occurred before the disease onset.
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