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Abstract: Regulatory agencies worldwide expect that clinical pharmacokinetic drug–drug interactions
(DDIs) between an investigational new drug and other drugs should be conducted during drug
development as part of an adequate assessment of the drug’s safety and efficacy. However, it is
neither time nor cost efficient to test all possible DDI scenarios clinically. Phenytoin is classified by
the Food and Drug Administration as a strong clinical index inducer of CYP3A4, and a moderate
sensitive substrate of CYP2C9. A physiologically based pharmacokinetic (PBPK) platform model
was developed using GastroPlus® to assess DDIs with phenytoin acting as the victim (CYP2C9,
CYP2C19) or perpetrator (CYP3A4). Pharmacokinetic data were obtained from 15 different studies in
healthy subjects. The PBPK model of phenytoin explains the contribution of CYP2C9 and CYP2C19 to
the formation of 5-(4′-hydroxyphenyl)-5-phenylhydantoin. Furthermore, it accurately recapitulated
phenytoin exposure after single and multiple intravenous and oral doses/formulations ranging from
248 to 900 mg, the dose-dependent nonlinearity and the magnitude of the effect of food on phenytoin
pharmacokinetics. Once developed and verified, the model was used to characterize and predict
phenytoin DDIs with fluconazole, omeprazole and itraconazole, i.e., simulated/observed DDI AUC
ratio ranging from 0.89 to 1.25. This study supports the utility of the PBPK approach in informing
drug development.

Keywords: physiologically based pharmacokinetic modelling (PBPK); drug–drug interactions (DDIs);
phenytoin; cytochrome P450 2C9 (CYP2C9); cytochrome P450 2C19 (CYP2C19)

1. Introduction

Drug–drug interactions (DDIs) are often observed when multiple medications are
co-administered, potentially leading to drug-induced toxicity or inefficacy [1,2]. DDIs fre-
quently involve enzymatic systems, where one drug (perpetrator) can alter the metabolism
and thus the exposure of a second drug (victim). As a result, regulatory agencies expect
studies examining DDI risks between an investigational new drug and other drugs to be
conducted as part of an adequate assessment of the drug’s safety and efficacy. However, it
is neither time nor cost efficient to study all possible DDIs in head-to-head clinical trials [3].
Physiologically based pharmacokinetic (PBPK) simulation approaches have emerged as a
valuable alternative for studying various DDI scenarios and are currently broadly accepted
by industry and regulatory agencies around the globe [4]. Respective PBPK simulations are
carried out using available in silico platforms. It is consequently important to have pre-built
PBPK models for prototypical victim and perpetrator drugs, particularly for clinical index
perpetrators and clinical index substrates, readily available to predict clinical DDIs of new
drug products in order to streamline the drug development and regulatory evaluation
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process. When establishing these models, it is important to first evaluate the different
pathways, separately, using prototypical victim and perpetrator drugs to, subsequently,
better understand the relative contribution of each pathway to the overall metabolism of
a drug.

Phenytoin, formerly diphenylhydantoin, is a first-generation anti-convulsant that is
effective in the treatment of generalized tonic–clonic seizures, complex partial seizures and
status epilepticus without significantly impairing neurological function. It is a Biophar-
maceutics Classification System (BCS) class II drug [5]. Phenytoin is primarily metabo-
lized via CYP2C9 (80–90%) and to a lesser extent via CYP2C19 (10–20%) to the inactive
5-(4′-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) [6–8]. Given its extensive CYP2C9
metabolism, phenytoin can be considered an ideal probe drug for CYP2C9 [9]. CYP2C9 is a
clinically important enzyme because it catalyzes approximately 20% of all phase-I reactions
of currently prescribed small molecule drugs [10]. Additionally, phenytoin is considered as
a strong clinical index inducer of CYP3A4 by the Food Drug Administration (FDA) [11],
making it valuable for studying DDIs [12,13]. Patients undergoing chronic phenytoin
treatment are at risk of DDIs when introducing medications primarily metabolized by
CYP3A4 or medications that function as CYP2C9 inducers or inhibitors. Phenytoin can
enhance the metabolism of co-administered CYP3A4 substrates, including estrogens [13],
progestogens [13], voriconazole [14]], itraconazole [15], amiodarone [16], ritonavir [16],
lopinavir [17], ivabradine [18], atorvastatin [19], nisoldipine [20], midazolam [21], queti-
apine [22], digoxin [23] and cyclosporine [24]. Conversely, when combined with CYP2C9
and/or CYP2C19 inhibitors, such as fluconazole [25,26] and voriconazole [14], phenytoin
blood levels will increase, elevating the risk of side effects. Lopinavir [17] and ritonavir [17],
through CYP2C9 induction, can have the opposite effect, reducing phenytoin blood levels
and potentially increasing the risk of seizures. Under the above considerations, the objec-
tive of this study was to develop a PBPK model for phenytoin to be used in the evaluation
of DDIs either as an inducer of CYP3A4 or as a substrate of CYP2C9/CYP2C19.

There are several challenges to be overcome when attempting to establish and ver-
ify a PBPK model for phenytoin due to multiple sources contributing to the nonlinear
pharmacokinetics of the drug. First, phenytoin is a poorly soluble drug, which results in
dose-dependent oral bioavailability. Second, its reported unbound fraction covers a wide
range (1–61%), affecting the distribution and clearance process, and ultimately unbound
plasma concentrations [27–33]. Third, phenytoin’s clearance is subject to capacity-limited
metabolism and autoinduction, resulting in dose-dependent nonlinearity in clearance [34].
Although several multiple-dose studies have been performed to evaluate phenytoin’s
nonlinear pharmacokinetics, they (in part) suffer from study design limitations, making a
clear distinction between the different sources of variability and nonlinearity difficult. In
addition, phenytoin is a narrow therapeutic index drug. It is consequently important to
appropriately characterize and predict its PK in order to select an optimal dosing regimen
when given either alone or in combination with other drugs, particularly in light of the seri-
ous adverse event potential of the drug, such as decreased coordination, mental confusion,
slurred speech and nervousness [5,34,35].

2. Materials and Methods
2.1. Software

GastroPlus® version 9.8.2 (Simulation Plus, Lancaster, CA, USA) was used to develop
and verify the PBPK model for phenytoin. The ADMET Predictor® module was used
to obtain in silico estimates of key physicochemical parameters from structures where
experimentally determined values were not available or to provide an objective alternative
to experimental data. The PBPKPlusTM module was used to establish the systemic distri-
bution and clearance of phenytoin. The metabolism module was used to account for the
saturable metabolism of phenytoin. The advanced compartmental absorption and transit
(ACAT™) model was used to simulate phenytoin in vivo in dissolution and absorption data
for different oral formulations. The DDI Module was used to predict competitive inhibition,
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time-dependent inhibition and autoinduction drug–drug interactions with dynamic simu-
lation. The data from the scientific literature were digitized using Graph Grabber version
2.0.2. The PK parameters after multiple doses were calculated using Phoenix® WinNonlin®

version 6.4 (Certara USA Inc., Princeton, NJ, USA) and the goodness-of-fit plots were
created with R 4.1.3 (the R foundation for Statistical Computing, Vienna, Austria 2021).

2.2. Clinical PK Data

Clinical plasma concentrations vs. time data after single and multiple dose adminis-
trations of phenytoin were collected and digitized from the literature. A total of 15 clinical
datasets in healthy volunteers were used to develop and verify the phenytoin PBPK model.
The data, summarized in Table S1 of the Supplementary Materials, were divided into
a training dataset (n = 4) and a test dataset (n = 11). During model development, four
studies were utilized to parameterize distribution, metabolism and absorption [8,36,37]. In
addition, these studies allowed us to explore the nonlinear behavior and autoinduction
mechanism of phenytoin. For model verification, 11 clinical studies of phenytoin after the
administration of single and multiple doses ranging from 248 to 900 mg were used. Food
effect on phenytoin PK and different oral formulation performances were also evaluated via
simulation and comparison to counterpart clinical observations [15,25,26,38–42]. Following
model verification, a total of 4 additional clinical studies were used for building the DDI
aspects of the phenytoin PBPK model in the presence of fluconazole, omeprazole and
itraconazole (Table S4 in the Supplementary Materials).

2.3. PBPK Model Development of Phenytoin

Figure 1 shows the workflow that summarizes overall analysis strategy.
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Figure 1. Workflow of the phenytoin PBPK modeling strategy: “model development and verification”
on the top of the graph, and “model application to DDI scenarios” on the bottom of the graph. PBPK:
physiologically based pharmacokinetics; MW: molecular weight; logP: partition coefficient; pKa: acid
dissociation constant; Kp: tissue plasma partition coefficients; fup: fraction unbound in plasma; fub:
fraction unbound in blood; fuinc: the free fraction of the compound in the microsomal incubation; Rbp:
Blood: plasma concentration ratio; CYP: cytochrome P450; Km: Michaelis–Menten constant; Vmax:
maximum reaction velocity; Emax: maximum effect; EC50: half-maximal effective concentration; Peff:
effective permeability; GMFE: geometric mean fold error; GOF: goodness-of-fit plot.

The first step in developing the phenytoin PBPK model was a thorough review of
the literature to collect all physicochemical parameters and pharmacokinetic/clinical in-
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formation on phenytoin. All drug-dependent parameters were derived from in vitro or
in vivo studies, with the exception of the diffusion coefficient, which was predicted with
the ADMET Predictor® module based on the molecular structure. Table 1 summarizes all
parameter values of phenytoin.

Table 1. Key physicochemical and biopharmaceutical parameters of phenytoin PBPK model.

Parameter Value Reference

Molecular weight (g/mol)
logP

252.27
2.21

Stella VJ et al., 1998 [43]
Poulin et al., 2000 [44]

Diffusion coefficient (cm2/s) 0.86 × 10−5 ADMET Predictor v.10.0

pKa 8.249 Estimated from Solubility vs. pH profile a

Reference solubility (mg/mL) at pH 3.29 0.04 Serajuddin et al., 1993 [45] and Chiang et al., 2013 b [46]

Particle radius (µm) 2.5 (SD = 0.75,
Bins = 4) Dill et al., 1956 [39] and Yasuji et al., 2006 [47]

Drug particle density (g/mL) 1.2 GastroPlus default value

Mean precipitation time (s) 900 GastroPlus default value

CaCo2 apparent permeability (Papp), cm/s 34.3 × 10−6 Pade et al., 1998 [48]

Solubility (mg/mL, SGF at pH 4 at 0 mM)
Solubility (mg/mL, FaSSIF at pH 6.4 at 10 mM)
Solubility (mg/mL, FeSSIF at pH 6.4 at 20 mM)
Solubility (mg/mL, FeSSIF at pH 6.4 at 30 mM)
Solubility (mg/mL, FeSSIF at pH 6.4 at 40 mM)

0.04
0.0546
0.0764
0.1183
0.1392

Stella VJ et al., 1998 [43]

Distribution

Kp calculation method Lukacova (Rodgers-single)

fut calculation method fut = S + 9.5v. (default)

Tissues Perfusion limited

Blood: plasma concentration ratio (Rbp) 1.33 Kong et al., 2014 [49]

Plasma protein binding (fup), % 9.7 Fitted from Peterson et al., 1982 [30]

Renal Clearance (CLfilt), L/h 0.015 Almond et al., 2016 [50]

Metabolism (in vitro values converted to in vivo—Enzyme table)

CYP 2C19 Km, mg/L 5.474 Giancarlo et al., 2001 [7]

CYP 2C19 Vmax, ×10−4 mg/s/mg-enzyme 2.0042 Fitted to in vivo data from Caraco et al., 2001 [8]

CYP 2C9 Km, mg/L 3.316 Giancarlo et al., 2001 [7]

CYP 2C9 Vmax, ×10−5 mg/s/mg-enzyme 6.4531 Fitted to in vivo data from Caraco et al., 2001 [8]

Induction

Emax (CYP3A4) 12.6 Almond et al., 2016 [50]

EC50invitro,T (CYP3A4), µM 3.7 Fahmi et al., 2008 [51]

Emax (CYP2C9) 0.9 Almond et al., 2016 [50]

EC50invitro,T (CYP2C9), µM 15.3 Almond et al., 2016 [50]

fuinvitro, % 89.9 Calculated with Hallifax–HLM method
a: pKa is fitted to the combined pH solubility data from Chiang P et al., 2013 [46] and Serajudding et al., 1993 [45].
b: the data point was selected from the combined pH solubility data used to calculate pKa. Table S2 in the
Supplementary Materials shows the full solubility vs. pH profile from Serajuddin et al., 1993 and Chiang P et al.,
2013 [45,46]. Emax is the maximum induction effect, EC50 is the concentration for half maximal induction. logP:
octanol/water partition coefficient; pKa: acid dissociation constant; FaSSIF: fasted state simulated intestinal fluid;
FeSSIF: fed state simulated intestinal fluid; Kp: tissue plasma partition coefficient; fut: fraction unbound in tissue;
CYP: cytochrome P450; Km: Michaelis–Menten constant; Vmax: maximum reaction velocity.
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Human organ weights, volumes and blood perfusion rates specific to subjects in each
study (gender, mean age and mean body weight) were generated with the GastroPlus®

internal Population Estimates for Age-Related (PEAR) Physiology™ Module (Table S1
in the Supplementary Materials). Model development was started using the data after
the intravenous administration of phenytoin. Drug tissue/plasma partition coefficients
(Kps) were estimated using the Lukacova (Rodgers-single) method [52]. A local sensitivity
analysis was conducted in GastroPlus® to select the best fup and logP values due to the
various values reported in the literature [27,29,30,43,44]. Exposure values after 250 mg
i.v. infusion from Glazko et al., 1969 [36] were used as reference exposure to select the
optimal parameter values (Figure S1 in the Supplementary Materials). Systemic clearance
value for the sensitivity analysis was set to 1.83 L/h [36], considering the similarity in
all the CL reported after phenytoin i.v. administration in the literature [36,37,53]. These
values were also used as the starting point to derive the unbound intrinsic clearance using
a top-down approach [54]. Hepatic clearance from total systemic clearance of phenytoin
included contributions from CYP2C9-mediated (major pathway) and CYP2C19-mediated
(minor pathway) metabolism in the liver. Gut metabolism was considered negligible due
to the low expression of these enzymes in the gut. The metabolic conversion with CYP2C9
and CYP2C19 was modeled using Michaelis–Menten kinetics with built-in expressions of
CYP2C9 and CYP2C19 in the liver [55–58]. The contribution of each specific enzyme to
the hepatic clearance was initially taken from the literature [6], and was also derived from
Caraco et al., 2001 with the data from poor metabolizer subjects who carry two mutated
CYP2C9 alleles allowing the optimization of the CYP2C19 Vmax [8]. Afterwards, Vmax in
CYP2C9 was optimized based on a group of normal metabolizers from the same study [8].
Lastly, both optimized Vmax values were verified using the training IV data. The Km
values in CYP2C9 and CYP2C19 were fixed using in vitro experiments in human liver
microsomes as indicated in Table 1 [7]. The amount of phenytoin eliminated unchanged
in urine was less than 5%. The renal clearance value was fixed at 0.015 L/h based on the
literature [50].

In order to appropriately characterize the impact of formulation on phenytoin’s absorp-
tion and PK, particle size distribution values were fitted in GastroPlus®, using a parameter
sensitivity analysis approach (PSA). The resulting particle size value falls within the re-
ported range obtained from the two literature studies for phenytoin formulations [45,59].
The ACAT™ absorption model was established using the data from Gugler et al., 1976 [37]
after a single 300 mg oral dose using the default parameters for passive transcellular
absorption. The first-order model was used to describe phenytoin precipitation with a
default value of 900 s for precipitation time. Considering the low and similar solubility of
phenytoin free acid and phenytoin sodium between pHs 1–6, no significant precipitation
during gastric transit was expected and the performance of the model was confirmed
in simulations of a wide range of oral doses. The phenytoin dose-dependent nonlinear
PK was investigated using a dose range of 200 to 900 mg in single and multiple i.v. and
oral doses to elucidate the mechanism associated with nonlinearity. A power model was
used along with the bioequivalence criteria proposed by Smith et al. (2000) to formally
assess deviations from dose proportionality [60]. Finally, nonlinearity at multiple doses
due to the autoinduction mechanism via CYP2C9-mediated metabolism was explored
using values from the literature of Emax = 0.9 and EC50 = 15.3 µM [50] using the DDI
module. The multiple-dose scenario used during model development corresponded to
a dose of 300 mg of phenytoin administered once daily for 15 days [37]. The dose- and
time-dependent autoinduction were then further investigated using simulations in the dose
range of 200 to 900 mg. Above analyses supported the decision on whether the integration
of autoinduction mechanisms is clinically significant and, thus, needed in the final model
before the subsequent verification of the model with the external dataset.
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2.4. PBPK Model External Verification

The external verification was completed graphically and numerically using the test
dataset. The predicted plasma concentration–time profiles were compared to observed
profiles and goodness-of-fit (GOF) plots were generated to compare the AUC from the time
of drug administration to the time of the last concentration measurement (AUC0-t) and
to infinity (AUC0-inf) and maximum plasma concentration (Cmax) values for all predicted
versus observed values. Predictions within bioequivalent criteria and the 2-fold deviation
from the observed values were used to assess the model’s performance. For a quantita-
tive description of the model performance, the geometric mean fold error (GMFE) was
calculated according to Equation (1). GMFE values < 2 were considered successful.

GMFE = 10(∑ |log10
sim PK parameter
obs PK parameter |)/n (1)

where sim PK parameter represents simulated AUC or simulated Cmax values, obs PK
parameter represents observed AUC or observed Cmax values and n represents the number
of studies used for model verification.

2.5. Impact of Plasma Protein Binding on Phenytoin Exposure

The impact of plasma protein binding on phenytoin exposure was evaluated using
the final model by simulating the plasma concentrations after 300 mg in three different
fup scenarios, with both after single and multiple administration (15 days). Additionally,
the percentage change of clearance and volume was calculated to evaluate the impact
of differences in the unbound fraction of phenytoin PK, and then the possible need of
optimizing this parameter in future applications of the model, mainly to see whether the
unbound fraction is available in the subjects of this study.

2.6. DDI Simulations

To build the DDI aspects of the phenytoin PBPK model, phenytoin was treated as the
victim in the presence of fluconazole and omeprazole and as the perpetrator drug in the
presence of itraconazole, as outlined in Figure 2. The DDI module was used to predict
competitive inhibition, time-dependent inhibition and induction mechanisms involved
in the named DDIs using dynamic simulation. All drug-dependent parameters for the
different drugs used here are provided in Table S4 in Supplementary Materials.

DDI simulations involving fluconazole were conducted using the fluconazole model
available in GastroPlus® library. In the study by Touchette et al., 1992, a daily dose of 400 mg
fluconazole was administered for 5 days; on day 4, a single dose of 250 mg phenytoin in
a suspension formulation was co-administered [26]. In the study by Blum et al., 1991, a
daily dose of 200 mg fluconazole was administered for 15 days. During days 10 to 12, a
single dose of 200 mg phenytoin was co-administered orally; on day 13, 250 mg phenytoin
was co-administered intravenously [25]. The fluconazole–phenytoin DDI was modeled as
competitive inhibition of CYP2C9 and CYP2C19 metabolism. The unbound Ki values for
fluconazole were 1.74 µM and 19.6 µM for CYP2C19 and CYP2C9, respectively [61].

DDI simulations with omeprazole were performed using the omeprazole model from
GastroPlus® library for a 300 mg of oral phenytoin on day 7 with omeprazole 40 mg during
9 days in CYP2C19 normal and intermediate metabolizers (NM and IM). The omeprazole–
phenytoin DDI was modeled as mechanism-based inhibition and competitive inhibition
of CYP2C19 was completed with omeprazole. KI, Kinact and IC50 values were 1.1 µM,
0.048 min−1 [62] and 8.4 µM [63], respectively.
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Figure 2. Overview of the modeled DDIs for phenytoin. Black arrow means sensitive victim in the
specific metabolic pathway for phenytoin (CYP2C9 and CYP2C19) and itraconazole (CYP3A4). Red
curve line means inhibition, e.g., fluconazole is a competitive inhibitor of phenytoin’s CYP2C9- and
CYP2C19-mediated metabolism. Omeprazole inhibits the CYP2C19-mediated enzymatic conversion
of phenytoin via competitive inhibition and mechanism-based inactivation (MBI). Green curve
means the induction, e.g., phenytoin induces the CYP3A4-mediated enzymatic biotransformation
of itraconazole.

DDI simulations with itraconazole were performed using the itraconazole model from
GastroPlus® library. Itraconazole 200 mg was administered on day 14 as single oral dose
and phenytoin was given as 300 mg daily for 17 days. The induction of the CYP3A4-
mediated itraconazole metabolism with phenytoin was described using a literature value
for the Emax = 12.6 [50], whilst the EC50 = 3.7 µM was obtained from Fahmi et al., 2008 [51].
The EC50 value was confirmed with parameter sensitivity analysis.

2.7. DDIs Model Verification

The predictive performance of the DDI model was evaluated by comparing predicted
to observed “victim drug” plasma concentration–time profiles, with and without the
perpetrator drug. Additionally, predicted DDI AUC ratios (Equation (2) and DDI Cmax
ratios (Equation (3)) were calculated with the following equations (Equations (2) and (3)):

DI AUC ratio =
AUC victim drug during coadministration

AUC victim drug alone
(2)

DDI Cmax ratio =
Cmax victim drug during coadministration

Cmax victim drug alone
(3)

We calculated the success criteria for maximum concentration ratio and AUC ra-
tio predictions according to the criteria proposed by Guest et al. [64] (Equations (4)–(6))
as follows:

Upper limit: Robs × limit (4)

Lower limit: Robs/limit (5)

Limit = (δ + 2(Robs − 1))/(Robs) (6)

where Robs represents the observed DDI ratio of Cmax and AUC. If the observed ratios
were less than 1, the reciprocal of the ratio was used for Robs. In this study, when δ = 1.25



Pharmaceutics 2023, 15, 2486 8 of 19

and Robs = 1, this means that the limits on R are between 0.80 and 1.25. A coefficient of
variation of phenytoin AUC and Cmax of approximately 20% was used.

3. Results
3.1. PBPK Model of Phenytoin

The PBPK model of phenytoin showed accurate performance for both the training and
test clinical datasets. These included single- and multiple-dose administrations ranging
from 248 to 900 mg, under fasted and fed conditions, and different formulations. The
comparisons of simulated to observed plasma concentration–time profiles of the training
studies are shown in Figure 3.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

3. Results 

3.1. PBPK Model of Phenytoin 

The PBPK model of phenytoin showed accurate performance for both the training 

and test clinical datasets. These included single- and multiple-dose administrations rang-

ing from 248 to 900 mg, under fasted and fed conditions, and different formulations. The 

comparisons of simulated to observed plasma concentration–time profiles of the training 

studies are shown in Figure 3. 

  

  

  

Figure 3. Model simulations of phenytoin concentration–time profiles from four studies in the train-

ing dataset (a–c) after a single dose (250 and 300 mg), for establishing distribution, metabolism and 

absorption phases, respectively. (d) Simulated profiles of phenytoin in comparison to the observed 

data after administering 300 mg in multiple doses for exploring phenytoin autoinduction mecha-

nism [8,36,37]. Observed data are shown as red dots ± SD, and simulations are shown as blue or 

green solid lines. sd: single dose; iv: intravenous; IR: immediate release; qd: once daily. 

Dose proportionality for the i.v. single dose could not be declared in the range of 200–

900 mg because the higher bound of the confidence interval (1.1794) was outside the BE 

criteria (0.8516–1.1483). However, as the beta value (1.3264) was not so different from 1, 

dose linearity was re-evaluated in the case in the range of 200–600 mg, for which propor-

tionality was declared. The nonlinear PK of phenytoin after single and multiple i.v and 

oral doses of 200 mg, 300 mg, 400 mg, 600 mg and 900 mg is depicted in Figure 4. Drug 

CL, after both single- (Figure 4a) and multiple-dose (Figure 4b) administration of pheny-

toin remains basically unchanged with just a minimal reduction (<10%) with increasing 

dose, except for the 900 mg i.v. administration (single and multiple dose). Therefore, the 

simulations showed a minimal contribution of the autoinduction mechanism on pheny-

toin exposure at clinical doses. Dose proportionality could not be declared for single nor 

Figure 3. Model simulations of phenytoin concentration–time profiles from four studies in the
training dataset (a–c) after a single dose (250 and 300 mg), for establishing distribution, metabolism
and absorption phases, respectively. (d) Simulated profiles of phenytoin in comparison to the
observed data after administering 300 mg in multiple doses for exploring phenytoin autoinduction
mechanism [8,36,37]. Observed data are shown as red dots ± SD, and simulations are shown as blue
or green solid lines. sd: single dose; iv: intravenous; IR: immediate release; qd: once daily.

Dose proportionality for the i.v. single dose could not be declared in the range of
200–900 mg because the higher bound of the confidence interval (1.1794) was outside the BE
criteria (0.8516–1.1483). However, as the beta value (1.3264) was not so different from 1, dose
linearity was re-evaluated in the case in the range of 200–600 mg, for which proportionality
was declared. The nonlinear PK of phenytoin after single and multiple i.v and oral doses
of 200 mg, 300 mg, 400 mg, 600 mg and 900 mg is depicted in Figure 4. Drug CL, after
both single- (Figure 4a) and multiple-dose (Figure 4b) administration of phenytoin remains
basically unchanged with just a minimal reduction (<10%) with increasing dose, except
for the 900 mg i.v. administration (single and multiple dose). Therefore, the simulations
showed a minimal contribution of the autoinduction mechanism on phenytoin exposure at
clinical doses. Dose proportionality could not be declared for single nor multiple oral doses
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ranging from 200 to 900 mg when the BE limits were considered (Table S3 and Figure S3 in
the Supplementary Materials). The dose-dependent nonproportionality for oral doses was
associated with an altered fraction dissolved and absorbed with a 35% and 41% reduction
after the 900 mg dose in comparison with the 200 mg dose after single (Figure 4c) and
multiple doses (Figure 4d), respectively.
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Figure 4. Nonlinear PK exploration of phenytoin after single and multiple i.v and oral doses of
200, 300, 400, 600 and 900 mg from Gugler et al., 1975 [37]. (a) i.v single dose, (b) i.v multiple dose,
(c) oral single dose and (d) oral multiple dose. Orange line represents the area under curve/dose
(AUC/Dose) overdose, blue line represents the clearance overdose, and purple line depicts the
fraction dissolved (FD) and fraction absorbed (Fa) overdose. The percentage values describe the
reduction changes of the absorption and elimination from dose of 200 mg.

The comparisons of simulated to observed plasma concentration–time profiles of
the test studies are shown in Figures S4 and S5 in the Supplementary Materials. The
comparisons of predicted to observed AUC and Cmax values of all studies including the
GMFE are summarized in Table S1 in the Supplementary Materials. The GOF plot shown in
Figure 5 concluded that 87% of the simulated AUC values and 100% of the simulated Cmax
values were within a 1.25-fold error of the respective observed values and all of them were
within a 2-fold error of the respective observed values with the exception of the AUC from
the clinical study by Touchette et al., 1992 [26]. Furthermore, the GMFE of Cmax, AUC0-t
and AUCinf were 1.01, 0.91 and 0.91, respectively, showing an adequate prediction in 100%
of the studies for Cmax, and 93.3% for both AUCs (14 out of 15 studies), confirming good
model prediction.
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Figure 5. Phenytoin PBPK model. Comparison of predicted to observed (a) AUC0-inf values and
(b) Cmax values of all analyzed studies. The line of identity is shown as a solid line; 1.25-fold deviation
is shown as a dotted line; 2-fold deviation is shown as a dashed lines. Cmax: maximum concentration;
AUC: area under the curve; IV: intravenous; MD: multiple dose; PO: oral administration; SD:
single dose.

3.2. Impact of Plasma Protein Binding of Phenytoin Exposure

Simulated plasma phenytoin concentrations over time with different plasma unbound
fractions of 4.3%, 9.7% and 15% are shown in Figure S7a,b in the Supplementary Materials.
Exposures were slightly different when the unbound fractions were 4.3% and 15% in
comparison with the 9.7% fraction considered in the final model. These slight differences in
the plasma concentrations are in line with changes in Vd, as CL is almost constant, where
there was a reduction of 42% for an fup of 4.3% and an increase of 41% for an fup of 15% in
Vd, respectively, both after single and multiple oral doses.

3.3. DDI Simulations

Figures 6 and S6 in the Supplementary Materials illustrate the comparison of the predicted
versus observed plasma concentration–time profiles from the DDI evaluations in the linear scale
and the semilogarithmic scale, respectively. The DDI simulations recapitulated the impact of
fluconazole, 200 and 400 mg, and omeprazole, 40 mg, on phenytoin PK (Figure 6a–d), and the
impact of phenytoin as a CYP3A4 inducer on itraconazole PK (Figure 6e). The AUC and



Pharmaceutics 2023, 15, 2486 11 of 19

Cmax ratios obtained from the DDI dynamic simulations versus the respective ratios from
the observations are presented in Table S5 in the Supplementary Materials.
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Figure 6. Simulated and observed phenytoin DDIs. Concentration–time profiles of phenytoin in
comparison to observed data after a (a) multiple and (b) single dose with and without fluconazole
(200 and 400 mg), respectively, (c) phenytoin with and without omeprazole 40 mg in normal CYP2C19
metabolizers (NM) and (d) phenytoin with and without omeprazole 40 mg in intermediate CYP2C19
metabolizers (IM). (e) itraconazole concentration–times profiles before and during phenytoin co-
administration [15,25,26,28]. Observed data are shown as red and yellow dots, and simulations
are shown as blue and green solid lines. q.d.: once daily; sd: single dose; PHT: phenytoin; IR:
immediate release.

Figure 7 depicts the GOF of the AUC and Cmax ratios, where the simulated/observed
DDI AUC ratio ranged from 0.89 to 1.25. Additionally, all the simulated/observed DDI
Cmax ratios were within the 1.25-fold deviation except for the itraconazole–phenytoin DDI
model that fell outside the limits proposed by Guest et al. (Cmax ratio = 2.14).
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Figure 7. DDI PBPK model performance of phenytoin. Simulated vs. observed DDI AUC ratio
is shown in (a) and simulated vs. observed DDI Cmax ratio is shown in (b). The line of identity
is shown as a straight solid line; 1.25-fold deviation is shown as a dotted line; 2-fold deviation is
shown as a dashed line. The curve solid lines show the prediction success limits proposed by Guest
et al. allowing for 1.25-fold variability of the DDI ratios [64]. AUC: area under the curve; Cmax:
maximum concentration.

4. Discussion

In this study, we successfully developed and verified a whole body PBPK model of
phenytoin. The PBPK model accurately predicted phenytoin exposure following adminis-
tration of single and multiple doses ranging from 248 to 900 mg in fasted and fed scenarios
and after different oral formulations. Furthermore, the model was applied for DDI simula-
tions using different scenarios with fluconazole, omeprazole and itraconazole. This PBPK
model adequately describes the metabolism of phenytoin using CYP2C9 and CYP2C19 with
contributions of 73% and 27%, respectively, that are close to those reported in vitro studies
(i.e., fmCYP2C9 = 80–90% and fmCYP2C19 = 10–20%) [6–9]. This model was developed
for phenytoin to serve as a prototypical drug model to inform drug development, given
that phenytoin is classified by FDA as a clinical-index inducer of CYP3A4 in DDI studies as
well as a moderate sensitive substrate of CYP2C9 enzyme [11].

Several other mechanisms (not included in our PBPK model) have been described as
being potentially involved in phenytoin excretion, such as the effect of the efflux transporter
p-glycoprotein (P-gp), entero-hepatic recirculation, entero-enteric recirculation and intesti-
nal excretion [65]. However, their clinical impact has not been demonstrated. Regarding the
effect of P-gp, there is a controversy of its clinical relevance on phenytoin PK and the main
effect seems to be at the blood–brain barrier level [66–69]. Additionally, phenytoin seems
to only be a weak substrate of this transporter, which is in line with its high bioavailability
(>70%) [70]. To our knowledge, all studies suggesting the involvement of entero-hepatic
recycling were conducted using high doses (>1000 mg) of phenytoin, which seems to be
confounded by the dose-dependent nonlinear kinetics of the drug. For example, the study
from Mauro et al., 1987 aimed at studying the effect of multiple-dose activated charcoal on
phenytoin elimination [71]. This study used doses of 15 mg/kg, which equates a total dose
of 1200 mg for an 80 kg (mean weight of the study population) subject. The clearance in the
absence of activated charcoal reported by Mauro et al. (0.9 L/h) was approximately two-
fold lower than the clearance (~1.82 L/h) in other clinical studies at lower doses (~300 mg
one daily or 150 mg twice daily) as reported Lim M. et al., 2004 [17] and Vlase L et al.,
2012 [18]. In addition, the phenytoin dose recommended as a clinical dose in patients and
DDI studies is 300 mg/day. It can be administered q.d., b.i.d or t.i.d., with no titration
period needed [72]. Based on Haarst et al.’s clinical experience, they recommend 100 mg
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t.i.d. (total daily dose 300 mg) for at least 14 days. Considering all above information and
the main purpose of the study of the PBPK model herein, the lack of inclusion of the above
mechanism, the absorption and excretion mechanism will not impact the applicability of
the current model for its use to predict metabolic DDI with phenytoin. The application
of the current model to clinical scenarios, both with phenytoin as single agent and in
DDI scenarios, was performed using a 9.7% value of the fup. However, high variability
in plasma protein binding is reported in the literature, with values ranging from 1% to
61% [27–32]. The selection of the fup was completed based on a sensitivity analysis with
the study from Glazko et al., 1969 [36]. It is important to highlight that the differences in
the fup affect phenytoin exposure as shown in Figure S7 in the Supplementary Materials,
and the use of a fixed value could be a limitation, especially in subjects with altered plasma
protein binding. However, our model was developed and verified using the data from
healthy subjects in a dose range that includes the standard dose used in clinical DDI stud-
ies [72] with phenytoin, and a 9.7% value of the fup was appropriate for all the studies used
in the internal and external verification of phenytoin alone and also in the DDI studies.
Nevertheless, it is recommended to account for this factor and the possible need for fup
optimization when the present PBPK model is intended to be used in future investigations,
mainly in populations with altered plasma protein binding.

The PBPK model was applied for the prediction of phenytoin exposure from different
formulations, which used either the sodium salt or the free acid form. A study by Serajuddin
and Jarowski 1993 evaluating the potential differences in the pH-dependent solubility
profile of phenytoin and its sodium salt showed that both have identical solubility profiles
across the entire pH range [45]. Furthermore, the data from Dill et al., 1956 showed that
phenytoin is a weak acid, which primarily exists in the acid form at pH values of ≤8 [39].
Upon oral administration, phenytoin consequently converts into its acid from and remains
in this form throughout the GI tract. Therefore, even though the model did not explicitly
differentiate between both, the salt and acid form, it sufficiently covers the behavior of
phenytoin in the different pharmaceutical forms.

The particle size distribution parameters were determined by fitting them within
GastroPlus® using a PSA approach. The PSA results indicated that a mean particle radius
range of 0.7 to 2.5 µm maintained consistent model performance. Dill et al., 1956 [39]
provided information on the particle size range, reporting that most small particles had a
diameter range of 1 to 3 µm, while a few larger particles averaged 7 × 26 µm. GastroPlus®

calculations based on the digitized data from Yasuji T. et al., 2005 [47] yielded a mean
particle radius range of 0.748 to 1.594 µm for phenytoin mixed with polyvinylpyrrolidone
and approximately 13.897 µm for the mean particle radius of the raw material. Given this
information, a mean particle radius of 2.5 µm was chosen, with a fixed standard deviation
of 0.75 to account for 30% of variability, and employing 4 bins. This decision was supported
with the accurate predictions of phenytoin exposure for a variety of oral dosing scenarios
(Figure 5) and accurate predictions of the food effect, with predicted versus observed ratios
of PKfed/PKfasted for AUC0-inf, AUC0-tau and Cmax at 0.92, 0.89 and 0.85, respectively.

Our PBPK model accurately captured the plasma concentration–time profiles of pheny-
toin from different studies with AUC and Cmax ratios within the 1.25-fold deviation with
the exception of the study from Fraser et al., 1980 (Figure S4e in the Supplementary Ma-
terials). The PK profiles in this study were measured in six healthy male volunteers after
receiving a single 900 mg oral dose administered as nine capsules of phenytoin of 100 mg.
Phenytoin was administered after an 8 h fasting period and patients received food 3 h after
drug administration. Cmax was reached after approximately 6 h and was maintained for
about 10 h, indicating a saturable absorption, most likely due to poor aqueous solubility,
and resembling the administration of an extended-release product. Our model predicts
a decrease of the fraction absorbed by 35% and 41% after a single and multiple 900 mg
oral dose in comparison to 200 mg. Simulations in the fed state after 3 h underpredicted
phenytoin plasma concentrations; however, model predictions were still within the 2-fold
error range [40]. Additionally, it is important to highlight the increased variability that may
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come from the administration of nine different capsules which was not accounted for by
the model. It should further be noted that the AUC ratio of the study by Touchette et al.,
1992 (Figure S4f in the Supplementary Materials) was outside the 2-fold error range. This
study tested a single 250 mg dose of phenytoin suspensions in nine healthy volunteers.
Given that phenytoin is a BCS class II drug (i.e., low soluble and highly permeable drug),
the absorption might be enhanced in the suspension formulation [26]. However, the Cmax
was within the 1.25-fold error range of the observed data.

Simulations performed to evaluate the drug’s nonlinear pharmacokinetics showed a
35% and 41% decrease in the fraction absorbed after single and multiple 900 mg admin-
istration of phenytoin with respect to the lower evaluated dose of 200 mg, which may
be explained by the poor aqueous solubility of phenytoin. The decrease of the fraction
absorbed by phenytoin with increasing dose is related to a decrease in the fraction dissolved.
Phenytoin has a dissolution rate-limited absorption because of its low solubility. The solu-
bility of phenytoin is 0.04 mg/mL @ pH 3.29, which is less than the calculated phenytoin
concentration in a glass of water at the lowest dose (i.e., 200 mg/250 mL = 0.8 mg/mL). As
the contribution of gut metabolism was considered negligible, the Fa% curve overlaped
the FD% curve (Figure 4c,d). On the other hand, the CYP2C9 enzyme in the liver is most
likely to remain unsaturated when phenytoin reaches systemic circulation because the
maximum plasma phenytoin concentration of 12 µM is smaller than the Km values of this
major CYP2C9 enzyme (Km CYP2C9 is 14.6 µM). In addition, the F% curve resembles the
FD% curve. Furthermore, after both single- and multiple-dose administration, simulations
did not show a relevant change in drug CL, even when autoinduction mechanisms were
integrated in the model. Although some of the literature highlights that phenytoin induces
its own metabolism using CYP2C9 and CYP2C19 after multiple-dose administrations [34],
the clinical effect of phenytoin autoinduction has been debatable [73,74]. Our PBPK model
supports the latter, with accurate simulation of both single- and multiple-dose studies
using the model without autoinduction. Under the above considerations, we concluded
that the nonlinear PK of phenytoin at a single dose is related with a reduced dissolution of
phenytoin at higher doses and thus a reduced fraction absorbed. This conclusion is in line
with Fagiolino and Ibarra, 2021 who highlighted the mechanism involved in the dose- and
time-dependent nonlinear pharmacokinetics of phenytoin, which concluded that incom-
plete dissolution in the digestive tract was responsible for the lack of dose proportionality
between 400 to 1600 mg [75].

The PBPK model was further evaluated via the prediction of fluconazole–phenytoin
DDI studies. Fluconazole is a moderate inhibitor of CYP2C9 and a strong inhibitor of
CYP2C19 (with Ki values of 19.6 µM and 1.74 µM, respectively) in humans (Kunze et al.,
1996) [61,76] after calculating the unbound fraction (0.87) [76]. The Ki value of CYP2C19
was measured in an in vitro experiment while the Ki value of CYP2C9 was measured in an
in vivo human trial. Using these updated values, our PBPK model was able to optimally
predict the impact of fluconazole on the metabolism of phenytoin. The simulated/observed
DDI AUC0-t ratios and DDI Cmax ratios were all within the 1.25-fold range for both studies,
i.e., Blum et al., 1991 and Touchette et al., 1992 [25,26].

The contribution of CYP2C19 to phenytoin metabolism was further confirmed by the
prediction of DDIs between omeprazole and phenytoin. Omeprazole is identified as a
weak inhibitor of CYP2C19 by the FDA classification [11]. According to Shirisaka et al.,
2013 [63], omeprazole inhibits phenytoin metabolism through two mechanisms simultane-
ously, competitive inhibition (IC50-rev-invitro,total = 8.4 µM) and mechanism-based inactiva-
tion (Kiirr-invitro,unbound = 1.1 µM and Kinact = 0.048 min−1). The impact of omeprazole on
phenytoin by our model is well described by using both the omeprazole normal metabolizer
PBPK model (NM) and the intermediate metabolizer model (IM), with simulated/observed
DDI AUC ratios of 1.12 and 1.21, respectively, and simulated/observed DDI Cmax ratios of
1.02 and 1.04, respectively. The accurate predictions indicated that the contribution of the
CYP2C9-mediated metabolic pathway is well described in our PBPK model.
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The phenytoin induction effect on CYP3A4 was evaluated via the itraconazole–phenytoin
DDI study where a single dose of itraconazole was co-administered after multiple doses of
phenytoin. Phenytoin is classified as a strong inducer of the CYP3A4 enzyme [11], capable
of significantly reducing the systemic exposure of other drugs metabolized with CYP3A4.
This may cause sub-therapeutic levels, especially for drugs with a narrow therapeutic index.
Therefore, it is meaningful to establish a DDI model to evaluate the phenytoin induction
effect on the CYP3A4 enzyme. The induction parameters of phenytoin, Emax EC50 and
Emax/EC50 on CYP3A4 from the literature are largely variable (1.9–29.04, 3.7–147 and
0.1–3.41, respectively) [51,77–79]. We fixed the Emax value at 12.6, based on the litera-
ture [50], and ran a parameter sensitivity analysis to find the optimal EC50 value to capture
the itraconazole plasma concentration profile. An EC50 = 3.7 µM provided a good model
performance with a simulated/observed DDI AUC ratio of 0.89 and a simulated/observed
DDI Cmax ratio of 2.14. However, it is important to highlight that itraconazole exhibits
large inter-individual variability, with clinical observed ratios of Cmax ranging from 6.7%
to 43.8%, which covers our predicted value of 36.2%. This discrepancy is most likely caused
by the dose-dependent behavior of itraconazole [80].

The phenytoin PBPK model can be applied to investigate and predict DDI scenarios
with phenytoin as a CYP3A4 inducer and as a CYP2C9 and CYP2C19 sensitive substrate as
well as to support dose recommendation for untested DDI clinical scenarios. As phenytoin
is prescribed for the long-term treatment of epilepsy, chances are high for it to be co-
administered with other interacting drugs. In this case, the in silico evaluation of DDIs’
clinical scenarios could help to identify safety and efficacy concerns in patients undergoing
phenytoin therapy.

5. Conclusions

A PBPK model was developed in GastroPlus® for the evaluation of a DDI with
phenytoin, which included the contribution of CYP2C9 (73%) and CYP2C19 (23%) to its
metabolism. The model reliably described the phenytoin single- and multiple- dose PK
for the explored scenarios with all simulated/observed Cmax and AUC0-t ratios within
a two-fold deviation. The presented PBPK model was able to successfully reproduce the
DDIs with fluconazole, omeprazole and itraconazole. The model can be considered to
be a verified substrate of CYP2C9 and CYP2C19, and an inducer of CYP3A4 for its use
in DDI prediction. The integration of this model in the software library will allow drug
developers to understand DDI mechanisms, design clinical trials and even support drug
label information in untested clinical scenarios. This study supports the utility of the PBPK
approach in informing drug development.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics15102486/s1, Table S1: Initial PBPK Model—Simulated vs.
observed PK parameters for phenytoin 250, 300, 400, and 900 mg intravenous and oral single and
multiple doses in healthy subjects. Table S2: Solubility vs. pH profile from Serajuddin et al., 1993,
and Chiang et al., 2013 [45,46]. Table S3: Dose proportionality evaluation results in the range
200–900 mg after single and multiple i.v. and oral doses. Table S4: Drug-dependent parameters of
the drugs used in DDIs PBPK model for phenytoin. Table S5: DDI dynamic simulation- Simulated
vs. observed PK parameters ratio for phenytoin as a victim with fluconazole (200 and 400 mg),
omeprazole (NM and IM), and phenytoin as a perpetrator with itraconazole in healthy subjects.
Figure S1: Local sensitivity analysis. Figure S2: Mass balance of phenytoin by Caraco et al., 2001 [8].
Figure S3: Relationship of phenytoin AUC values versus dose using the dose proportionality power
model. Figure S4: Model prediction of phenytoin concentration-time profiles of different studies
in comparison with the observed data. After 250, 300, 400, and 900 mg single dose, in different
formulations and administration routes (i.v. infusion and oral), in comparison with the observed data.
Figure S5: Model prediction of phenytoin concentration-time profiles in fast and fed conditions, after
300 mg single dose, tablet formulation, in comparison to observed data. Figure S6: Simulated and
observed phenytoin DDIs in semilogarithmic scale. Figure S7: Phenytoin exposures and changes in
the pharmacokinetic parameters in different unbound fraction (fup) scenarios.
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