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Abstract: Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is
characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immuno-
suppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery
efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are
urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompat-
ibility, high drug load capacity, and sustainable release profiles, have been developed as effective
drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes
the distinctive features of the immunosuppressive TME of PDAC and discusses the application of
hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and
deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug
candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing
a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks
to serve as a reference for researchers and clinicians involved in developing therapeutic strategies
targeting the PDAC microenvironment.

Keywords: pancreatic ductal adenocarcinoma; hydrogel; drug-delivery system; immunosuppressive
tumor microenvironment

1. Introduction

Pancreatic cancer, originating from pancreatic duct epithelial cells, is the most com-
mon cause of death from digestive system malignancies. It has been reported that,
of 49,600 PDAC cases in 2020 worldwide, 46,600 people died (93.95% mortality rate) [1].
At the point of diagnosis, about 90% of patients are shown to have already progressed
into the advanced stage and are not eligible for radical surgery to remove the tumor [2].
For these patients, oxaliplatin-based or gemcitabine-based chemotherapy are suggested
as the first-line therapy regimen [3]. However, the survival of patients with advanced
PDAC is less than 1 year [4]. Meanwhile, the severe side effects of systematic chemother-
apy, including myelosuppression, organ dysfunction, etc., hinder patients from benefiting
from the treatment [5]. Therefore, effective and safe therapeutics for PDAC treatment are
urgently required.

The extracellular matrix (ECM) of PDAC is a typical desmoplastic environment which
is rich in collagen with high stiffness, which acts as a natural barrier to the infiltration
of therapeutics and immune cells [6,7]. Most stroma cells in the TME are cancer-related
fibroblasts (CAFs), which can introduce a large amount of fiber and collagen into the TME.
In some conditions, the number of these fibroblasts can exceed that of cancer cells [8,9].
CAFs in the PDAC TME can be generated by pancreatic stellate cells (PSCs) which are
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activated by transforming growth factor beta 1 (TGFβ1) or other mediators [10–12]. In the
TME of PDAC, immunosuppressive stromal cells increase, such as regulatory T cells (Tregs),
tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs),
while the antitumor lymphoid populations decrease, thus impairing the immune-mediated
cytotoxic effects targeting at tumor cells [13–15]. Even the cytotoxic T cells infiltrating into
the TME are lacking in the activation markers, such as granzyme B (GRZB) and Interferon-
γ (IFNG) [16]. Hypoxia is another characteristic of the PDAC TME due to the extensive
desmoplastic stoma and endows the tumor cells with more aggressiveness, increasing
their survival and growth under hostile conditions [17]. Therefore, the PDAC TME is
characterized as immunosuppressed, resembling a cold desert, and it poses challenges for
immune cell infiltration due to its stiffness.

Compared to traditional chemotherapy, an effective drug-delivery system that delivers
drugs directly to the tumor to achieve controlled and sustained drug release, avoiding
the systemic circulation of chemotherapy drugs and greatly reducing systemic adverse
reactions, is necessary for the treatment of PDAC [18]. As a versatile biomaterial, hydrogels
have attracted considerable research attention for this purpose, showing great potential as
scaffolds or substrates for drug delivery, cell incubation, and as implants [19]. Hydrogels
are hydrophilic polymer networks formed by the physical and/or chemical crosslinking
of polymer substances and have been widely used to deliver cargoes, like drugs, nucleic
acid, protein, and cells [20,21]. The release of these cargoes from hydrogels is mainly
affected by factors such as porosity, network expansion/degradation, size of molecules to
be released, drug–polymer interactions, and environmental stimuli like pH, temperature,
enzymes, etc. [22]. The ideal hydrogel would be able to deliver cargoes specifically into
the targeted lesion and could release them in a slow and sustained manner. Recently,
researchers have been working diligently to develop multiple hydrogel-based therapeutics
for PDAC treatment.

In this review, we will present a picture of the immunosuppressive PDAC TME,
summarize the hydrogel-based therapeutics used in PDAC, categorizing them based on
the type of cargo they deliver, and describe the remodeling of the TME resulting from these
therapeutics (Figure 1). Furthermore, we will discuss the potential candidate drugs for use
in hydrogel-based therapeutics for PDAC.
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2. The Immunosuppressive TME of PDAC

The immunosuppressive microenvironment in PDAC is intricately associated with
the presence of specific oncogenes which undergo mutations in the context of PDAC. The
activation of downstream pathways by these oncogenes assumes a pivotal role in shaping
the immunosuppressive characteristics of the TME [23,24]. Notably, KRAS mutations are
highly prevalent in approximately 93% of PDAC individuals, with frequent occurrences
of mutations such as G12D and G12C [25]. The presence of KRAS mutations amplifies
the secretion of chemokines, specifically CCL2, CCL5, and CXCL8, which subsequently
recruit immunosuppressive cells (including TAMs, MDSCs, and Tregs) to the TME. These
immune cells are capable to impair the activation and functionality of effector immune cells
like cytotoxic T lymphocytes (CTLs) and natural killer cells [24,26,27]. Consequently, these
physiological processes collectively contribute to the emergence of an immunosuppressive
microenvironment in PDAC.

Additionally, PDAC cells actively impede the immune response against tumor cells
through various evasion tactics. A key mechanism involved in this evasion is the downreg-
ulation of major histocompatibility complex class I molecules (MHC I) on the tumor cell
surface, which are essential for the CTL recognition [28]. Moreover, PDAC cells exhibit a
significant upregulation of CD47, a cell surface protein which functions as a potent “do
not eat me” signal. CD47 interacts with macrophage SIRPα receptors and natural killer
cell SIRPγ receptors, effectively inhibiting phagocytosis of tumor cells through immune
cells [29]. Meanwhile, PDAC cells generate indolamine 2,3-dioxygenase (IDO) to degrade
tryptophan—the vital amino acid required for CTL survival and activation. Consequently,
this mechanism ultimately leads to the initiation of apoptosis and the subsequent impair-
ment of T-cell function [30]. Furthermore, PDAC cells downregulate the expression of
human leukocyte antigen DR isotype (HLA-DR) and CD40. This downregulation directly
inhibits effector CD8+ T cells through immature dendritic cells (DCs) [31,32]. Collectively,
PDAC cells driven by oncogenes possess inherent immunosuppressive properties which
disrupt normal host immune responses through multiple mechanisms. We will further
explain the immunosuppressive cells in PDAC TME in the following section (Figure 2).
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2.1. MDSCs

MDSCs represent a heterogeneous population of immune cells which serve a
crucial role in the suppression of antitumor immune responses, especially in cases of
PDAC. These cells are known to accumulate within both the TME and the peripheral
blood, actively promoting immune suppression and significantly contributing to tumor
progression [33–35]. MDSCs can be divided into two main categories: monocytic
MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). These are also
referred to as granulocytic MDSCs (G-MDSCs). PMN-MDSCs originate from imma-
ture neutrophils in the bone marrow, while M-MDSCs share phenotypic similarities
with monocytes and exhibit a monocytic morphology. Notably, M-MDSCs possess the
ability to differentiate into TAMs and DCs [36]. MDSCs originate from hematopoietic
precursor cells (HSCs) and are recruited to the TME under the regulation of inflamma-
tory mediators, such as IL-6, IL-10, IL-8, CCLs, CXCLs, GM-CSF, VEGF, and TNF-α,
during the development and progression of PDAC [37,38]. The differentiation of HSCs
into common myeloid progenitors (CMPs) occurs, which subsequently differentiate
into immature myeloid cells (IMCs). Conversely, in the presence of tumor-derived
cytokines, such as CXCLs and GM-CSF, the customary differentiation process of IMCs
is perturbed, compelling their transition into MDSCs and subsequent expansion and
activation within peripheral blood, bone marrow, or tumor lesions [39,40]. Studies
conducted on the spontaneous PDAC model of the genetically engineered and mutant
mice (GEMMs) have demonstrated a gradual increase in MDSCs in the TME as the
tumor advances, a pattern also observed in the spleen and peripheral blood [34,35].

The mechanisms underlying immune suppression in PDAC involve distinct contribu-
tions from M-MDSCs and PMN-MDSCs [41,42]. The generation of ROS by PMN-MDSCs
can result in the impairment of T-cell receptor signaling, consequently leading to reduced
T-cell activation and compromised functionality. Furthermore, PMN-MDSCs possess the
ability to induce T-cell apoptosis and restrict the availability of crucial nutrients such as
cysteine, tryptophan, and arginine, required for T-cell survival and proliferation. Moreover,
PMN-MDSCs can also enhance the immunosuppressive responses by promoting the expan-
sion and activation of Tregs [43–45]. On the other hand, M-MDSCs promote Treg expansion
by releasing cytokines such as IL-10 and TGF-β, creating an immunosuppressive envi-
ronment which dampens antitumor immune responses [46,47]. Additionally, M-MDSCs
inhibit T-cell function by secreting immunosuppressive factors such as arginase-1 and
inducible nitric oxide synthase (iNOS). These enzymes deplete essential amino acids, such
as arginine and produce nitric oxide, impairing T-cell proliferation and functionality [48].
MDSCs also contribute to the cancer progression by promoting tumor angiogenesis, tumor
cell invasion, and metastasis to distant organs [34,49,50]. In PDAC, gemcitabine (GEM)-
resistant pancreatic cancer cells induce the recruitment of MDSCs into the TME through
GM-CSF secretion, leading to the inhibition of CD8+ T-cell proliferation and resistance
to GEM. Additionally, increased MDSCs in the tumor tissue of patients with PDAC after
radiotherapy are associated with reduced treatment efficacy [51].

2.2. TAMs

TAMs are derived either from monocytes infiltrated within the TME or preexisting
tissue-resident macrophages [52]. In the initial stage of tumor invasion, tissue-resident
macrophages primarily constitute TAMs; meanwhile, later, a substantial proportion of
TAMs are derived from infiltrating monocytes. However, in established mouse PDAC
models, TAMs primarily consist of monocyte-derived macrophages [53]. Functionally,
TAMs can be classified into two distinct phenotypes: M1 TAMs, which exhibit antitu-
mor activity; M2 TAMs, which exert protumor and immunosuppressive properties. M1
TAMs function as antigen-presenting cells (APCs), expressing Interleukin 12 (IL12) and
tumor necrosis factor (TNF) to combat tumor cells. In contrast, M2 TAMs produce cy-
tokines such as Interleukin 10 (IL-10), TGF-β, and arginase, which inhibit T-cell cytotoxicity
and proliferation. Additionally, M2 TAMs demonstrate reduced major histocompatibility
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complex class II (MHC-II) expression, thereby weakening their antigen presentation abil-
ity [54,55]. The recruitment of monocytes to the TME and their subsequent differentiation
into macrophages are orchestrated by the overproduction of colony-stimulating factor 1
(CSF1) and chemokine ligand 2 (CCL2) within the TME [56,57].

2.3. Tregs

The high infiltration of Tregs within the PDAC TME is strongly associated with an
unfavorable prognosis for patients [58]. Cytokines secreted by PDAC cells, such as CCL5,
TGF-β, and IL-10, play a crucial role in the recruitment and accumulation of Tregs into the
TME. The presence of Tregs in the TME exerts inhibitory effects on the antitumor immune
response, thereby contributing to tumor progression across various cancer types [57,59].
Tregs are capable of producing inhibitory cytokines, including IL-10, TGF-β, and IL-35,
which imped the function of effector cells. Additionally, Tregs promote the generation
of adenosine (AMP) within the TME through the expression of extracellular enzymes
CD39 and CD73, resulting in the suppressive and anti-proliferative effects of effector
cells. Nevertheless, the precise role of Tregs in the context of PDAC remains a subject
of controversy. In the transplantation model of PDAC, depletion of Foxp3+ Treg cells
significantly increased the infiltration of CD8+ T cells within the TME [60]. Conversely, an
opposing outcome was reported by Zhang, Y.Q. et al., in which the depletion of Foxp3+ Treg
cells accelerated tumor progression in the GEMM model of PDAC, potentially due to the
subsequent increase in MDSC resulting from chemokine release following Treg reduction.
The investigators hypothesized that these conflicting observations may be attributed to
the two different stages of tumor progression, as represented by the two distinct tumor
models, with the transplantation model corresponding to a more advanced stage of the
PDAC compared to the GEMM model [15].

2.4. CAFs

CAFs are key cellular components of the TME in PDAC and have a profound impact
on tumor progression and therapy resistance. One significant mechanism by which CAFs
contribute to therapy resistance is through remodeling the ECM and creating a physical
barrier which restricts the penetration of therapeutic agents and immune cells into the
TME [9,61]. The transformation of CAFs is primarily initiated by the stimulation of intrinsic
fibroblasts or stellate cells within the tissues, often mediated by growth factors such as TGF-
β [62,63]. Following activation, CAFs secrete a wide range of cytokines which play critical
roles in tumor development and immune modulation. For instance, vascular endothelial
growth factor (VEGF) is involved in the regulation of tumor angiogenesis and the formation
of an aberrant vascular network which sustains tumor growth [64]. Interleukin 6 (IL-6),
another cytokine secreted by CAFs, promotes MDSC differentiation while concurrently in-
hibiting cytotoxic T cells [65,66]. Furthermore, CAFs can induce an epithelial–mesenchymal
transition in the neighboring epithelial cells, a process associated with enhanced invasive
and metastatic potential [67]. To classify CAFs and better understand their heterogeneity,
researchers have identified specific markers such as fibroblast activating protein (FAP),
α-smooth actin (α-SMA), fibroblast-specific protein 1 (FSP1), and platelet-derived growth
factor receptor (PDGFR) [68]. FAP, in particular, is specifically expressed in CAFs and
has been explored as a target for therapeutic interventions and imaging diagnosis in the
context of CAFs. Recent advancements in single-cell sequencing technology have allowed
researchers to gain deeper insights into the functional heterogeneity of CAFs [69]. This
approach has revealed that CAFs can adopt a pro-inflammatory phenotype, thus promoting
cancer cell growth, enabling immune evasion and facilitating metastatic dissemination.
This is achieved through the secretion of cytokines and chemokines which modulate the
immune environment in the TME. These factors recruit inhibitory myeloid and Treg cells,
impair the function of cytotoxic lymphocytes and dendritic cells, and promote the polariza-
tion of M2 and type 2 helper T (Th2) cells, all of which contribute to immunosuppression
and tumor progression.
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3. Hydrogel-Based Therapeutics for PDAC

Hydrogels are three-dimensional networks of hydrophilic polymers and are promising
candidates for drug delivery due to their unique properties. In recent years, the involvement
of hydrogels in PDAC treatment has gained attention due to their potential therapeutic
benefits [70,71]. Based on the type of monomers, hydrogels applied for PDAC treatment
can be classified into three categories, including synthetic hydrogels, natural hydrogels, and
semi-synthetic hydrogels. Synthetic hydrogels are composed of synthetic polymers such as
polyethylene glycol (PEG) [72], polyacrylic acid (PAA) [73], polyvinyl alcohol (PVA) [74],
and polylactic acid (PLA) (Figure 3a) [75], which are tunable, reproducible, and stable;
however, they might be limited by their poor biocompatibility and biodegradability [76].
Meanwhile, natural hydrogels comprise biomaterials derived from animal or plant tissues,
such as proteins [77], polypeptides [78–81], polysaccharides [82], and nucleic acids [83].
The most commonly employed proteins in hydrogel include gelatin [84], collagen [85], and
fibrin [86], while widely used polysaccharide polymers include alginate [87], chitosan [88],
hyaluronic acid [89], and cellulose [90] (Figure 3b). Natural hydrogels are biocompatible
and allow for minimal adverse reactions or immunogenic responses upon implantation
or injection [91]. Moreover, natural hydrogels are also biodegradable and can be cleared
from the body over time, reducing the risk of long-term complications [91]. Gelatin
hydrogels have been widely used as drug-delivery systems for PDAC treatment. They
undergo enzymatic degradation by proteolytic enzymes present in the body, allowing for
their controlled biodegradation over time [92]. Currently, several natural polymers have
been approved by the FDA for in vivo applications [93,94]. In addition, semi-synthetic
hydrogels are composed of both natural and synthetic polymers, providing a combination
of biocompatibility and controllability [95].
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Generally, hydrogels are often porous networks formed through the chemical and/or
physical crosslinking of polymers with a large amount of water [71]. The high water content
of hydrogel is similar to that of native tissues, which could be beneficial for the adhesion
and retention of hydrogel at the target site [70]. Meanwhile, the formulation, concentration,
crosslinking type, and crosslinking degree of polymers can be modulated to generate vari-
ous hydrogels with different physical and chemical properties [96]. Additionally, polymers
can be crosslinked to form hydrogels of varying sizes, including macroscopic gels, micro-
gels (0.5–500 µm), and nanogels (<200 nm). The diverse range of sizes endows hydrogels
with distinct features and functionalities, consequently determining the optimal delivery
route for cancer treatment [97]. Macroscopic gels with sizes in the scope of millimeters are
often administrated locally for PADC through intratumoral injection, surgical implanta-
tion, peritumoral injection, and subcutaneous injection. For injection administration, most
macroscopic gels were gelated in situ after injection. Meanwhile, microgels with a large
surface area can be intraperitoneally or intratumorally injected to treat PDAC. In addition,
nanogels can be intravenously injected to circulate in the body and permeate into tumor
tissues [98] (Table 1).

Due to their distinct physical and chemical properties, hydrogels can deliver various
therapeutics to treat diseases, including small-molecule drugs, proteins, nucleic acids, and
cell preparations [97,99]. The high-water content and the porous networks of hydrogels
endow them excellent capacities for efficiently encapsulating small- and high-molecular
drugs. Drugs can be loaded into hydrogels through physical and chemical interactions. On
the one hand, hydrophilic drugs could be physically entrapped in hydrogels by directly
blending with the hydrogel polymers. While hydrophobic drugs are often loaded in hy-
drophilic micro/nanoparticles to improve their water solubility, and are therefore further
entrapped within the hydrogels [100]. Moreover, hydrogels containing hydrophobic compo-
nents (such as aliphatic chains and cyclodextrin) might also serve as physical binding sites
for hydrophobic drugs [97]. Additionally, drugs could also be encapsulated through the
electrostatic interactions between drugs and the polymers. Gaowa et al. reported that the
EGFR2R-lytic peptide could form a complex hydrogel with gelatin through charge-based
interactions [101]. On the other hand, drugs can also be immobilized within hydrogels
through covalent interactions between drugs and polymers, such as amide bonds, thiol-ene
bonds, ester bonds, and disulfide bonds [102]. As a particular drug-delivery system, hy-
drogel network can protect drugs from hydrolysis, inactivation, and enzymatic hydrolysis
by impeding the rapid penetration of various enzymes, thus providing prolonged drug
release [103,104]. In hydrogels, drug release typically occurs through multiple mechanisms,
encompassing diffusion from the porous network [105], degradation of the network [106],
hydrogel swelling [107], and deformation of the network [108]. For diffusion, the drug
release rate of hydrogels is primarily influenced by the drug size/hydrogel mesh size ratio.
Specifically, the hydrogel mesh size represents the dimension of the open space within
the porous network. Correspondingly, drug size pertains to the physical dimensions of
encapsulated drugs. A smaller drug size/mesh size ratio might result in rapid diffusion and
release of drug from the porous network [97,109]. When the size of the drug approaches
that of the mesh, the rate of drug release is considerably reduced [110]. When the drug
size is larger than the pore size, the drug release would mainly depend on the degradation,
deformation, and swelling of hydrogel [111]. During these processes, the hydrogel mesh
size will be greatly increased, which controls the release rate of macromolecular drugs.
Notably, except for the inherent properties of hydrogels, the degradation, deformation, and
swelling of hydrogel can also be sensitive to various external stimuli, including pH [18],
temperature [112], light [113], ultrasound [114], electric field [115], and the enzymes [116]
and biomolecules [117] in body. Bilalis et al. developed pH- and enzyme-responsive
polypeptide hydrogels which could release drugs at tumor sites through a solid-to-liquid
transition [18]. Yan et al. reported a miRNA 21-responsitive hydrogel which would switch
into a liquid state to release drugs when encountered with the overexpressed miRNA21
in TME [117]. Huang et al. demonstrated that the thermosensitive poly(N-isopropyl
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acrylamide) (PNIPAM) hydrogel could contracted to release GEM and H2S under the
ultrasound stimuli [114]. Thus, introducing environment-responsive components into
hydrogels could realize a controlled and sustained drug release to the target tumor sites
(Table 1).

3.1. Hydrogel-Based Small-Molecule Drug Therapy for PDAC

Hydrogels can encapsulate small-molecular drugs through physical blending, non-
specific hydrophilic properties, or specific interactions with the drug. The design of
hydrogel-based small-molecular drug therapy mainly focuses on drug combination strate-
gies and the parameters which govern the release of the cargo [118,119]. Chemotherapeu-
tics remain the most used small-molecule drugs in hydrogel-based delivery systems for
PDAC treatment. The systemic administration of chemotherapeutics in clinical practice
often leads to severe side effects [120]. Hence, employing hydrogels as a localized deliv-
ery system for chemotherapeutics might have the potential to reduce the adverse effects
while maintaining therapeutic efficacy [121]. In the following section, we will discuss
the strategies for small-molecule drug combination and drug release in hydrogel-based
therapeutics for PDAC.

3.1.1. Hydrogel as the Platform for Synergistic Therapy

The poor outcome of traditional therapy including chemotherapy and radiotherapy in
advanced PDAC has provided opportunities for combined therapy, and hydrogels can exist
as an appropriate platform to deliver drugs of different types to the tumor tissue [121]. In
recent years, acoustic dynamic therapy (SDT) has been rapidly developed as an emerging
noninvasive treatment for cancer. SDT eradicates tumor cells by generating ROS through
the involvement of sonosensitizers and oxygen under ultrasonic radiation. This approach
has garnered significant attention due to its ability to penetrate deeply into tissues [122].
However, the hypoxia TME of PDAC poses a challenge to the efficacy of SDT due to the
rapid and substantial consumption of oxygen during therapy [123]. To address this issue,
Huang et al. utilized microfluidic technology to fabricate a microcomposite hydrogel com-
prising an alginate shell and a perfluorocarbon (PFC) core. The resulting microgel featured
a PFC-based core carrying oxygen and an alginate shell encapsulating GEM and indocya-
nine green (ICG). Following injecting into cancer-organoid-derived xenograft models, the
PFC underwent a phase transition from liquid to gas upon low-density ultrasound stimula-
tion in vitro, leading to the release of oxygen. Simultaneously, the acoustic-sensitive ICG
generated a substantial amount of ROS under ultrasound stimulation, which penetrated
the tumor tissue along with the GEM release from the alginate hydrogels. Consequently,
this strategy for PDAC treatment could reverse the hypoxic microenvironment and induce
apoptosis of tumor cells, and resulting in synergistic therapeutic effects compared to the
GEM group (Figure 4) [124].



Pharmaceutics 2023, 15, 2421 9 of 29

Table 1. Hydrogel-based therapeutics for PDAC.

Hydrogel Drug Hydrogel Size Delivery Route Characteristics Antitumor Effect Ref.

DNA

Anti-miRNA21
antisense

nucleic acid,
GEM

Nanogel Unreported A miRNA 21-responsive hydrogel which could
simultaneously release drug and anti-miRNA.

Inducing the apoptosis of tumor cells by
targeting miRNA21. [117]

OCMS, CMCS GEM Macroscopic
hydrogel

Intratumoral
injection

An injectable and thermosensitive hydrogel to
sustainably release GEM. Inducing the apoptosis of tumor cells. [125]

Alginate Tumor cell
lysate, GM-CSF

Macroscopic
hydrogel

Surgical
implantation

A personalized hydrogel vaccine which sustainably
released drug through the porous stereo structure.

Recruiting DCs and enhancing the targeted
antitumor immune response of CD8+ T cells. [126]

Alginate GEM, ICG Microgel Intratumoral
injection

A core–shell microcapsule which can release oxygen
and drug in presence of low intensity ultrasound.

Hypoxic microenvironment reverse and
apoptosis of PDAC cells activated by ROS. [124]

Chitosan IRF5 mRNA,
CCL5 siRNA

Macroscopic
hydrogel

Intratumoral
injection

An in situ-injectable thermosensitive hydrogel with
sustained RNA release.

Inducing macrophage polarization and
increasing the infiltration of CD8+ T cells into

the TME, thus reshaping the
immunosuppressive TME.

[127]

GelMA GEM Macroscopic
hydrogel

Surgical
implantation

An adhesive microneedle patch that could efficiently
penetrate the tumor tissue to release GEM. PDAC cell apoptosis. [128]

Alginate,
PLA GEM Macroscopic

hydrogel
Surgical

implantation
A hydrogel patch with reduced swelling ratio

exhibiting prolonged drug release. PDAC cell apoptosis [75]

PDLLA-PEG-
PDLLA GEM, DPP-BTz Macroscopic

hydrogel
Intratumoral

injection
Thermosensitive liposomal hydrogels with NIR-II

light-triggered drug release. PDAC cell apoptosis [129]

PNIPAM,
Alginate, PVA GEM, H2S Microgel Intratumoral

injection

Ultrasound responsive microbubble hydrogel, which
contracted under the increasing temperature resulted

from ultrasound, thus releasing GEM and H2S.

Contributing to PDAC cell apoptosis and
inhibiting PDAC cell proliferation. [114]

HA Neoantigen
peptide

Macroscopic
hydrogel

Surgical
implantation A hydrogel vaccine with sustained adjuvant release.

Enhanced T-cell activation in the draining
lymph node and expansion of

neoantigen-specific T cells in the spleen.
[130]
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Table 1. Cont.

Hydrogel Drug Hydrogel Size Delivery Route Characteristics Antitumor Effect Ref.

Alginate GEM or DOX Macroscopic
hydrogel

Surgical
implantation

Coaxial hydrogel fibers exhibiting a slower release
profile due to the core–shell structure for controlled

release and diffusion barrier.
Inhibiting the growth of PDAC cells. [131]

PNIPAM, CS,
PEG, GNR Unreported Macroscopic

hydrogel
Intratumoral

injection
A thermal-sensitive hydrogel which shrunk with the
increased temperature induced by an 808 nm laser.

Inducing tumor internal stresses, hypoxia,
and apoptosis. [19]

PDLLAPEG-
PDLLA GEM, cisplatin Macroscopic

hydrogel
Intratumoral

injection

A thermal-sensitive hydrogel gelated in situ at
physiological temperature, exhibiting delayed drug

release from the micelle networks.

Inducing PDAC cell apoptosis and
inhibiting proliferation. [132]

Terpolypeptide GEM Macroscopic
hydrogel

Peritumoral
injection

A self-healing hydrogel that can deliver drugs
sustainably due to its pH- and

enzyme-responsive nature.
PDAC cell apoptosis. [18]

PCLA-PEG-
PCLA) GEM Macroscopic

hydrogel
Subcutaneous

injection
A thermal-sensitive nano-biohybrid hydrogel with

sustained drug release. PDAC cell apoptosis. [133]

Poloxamer PTX Macroscopic
hydrogel

Intratumoral
injection

A thermosensitive hydrogel with paclitaxel liposome
showed a slower release than liposome. Unreported [134]

PLGA-bPEG-b-
PLGA DOX Macroscopic

hydrogel
Intratumoral

injection A thermosensitive hydrogel with micelle networks. Unreported [135]

PEG, HSA TRIAL Macroscopic
hydrogel

Intratumoral
injection A PEG-modified albumin hydrogel, gelated in situ. PDAC cell apoptosis. [136]

Gelatin EGFR-lyric Nanogel Intravenous
injection

Hydrogel nanoparticles formed by electrostatic
interaction exhibiting a longer circulation time in vivo. Unreported [101]

HA TRIAL Macroscopic
hydrogel

Intratumoral
injection

PEG-TRAIL HA hydrogels with stability and
controlled drug release. PDAC cell apoptosis. [137]

PVA
DOX,

mitoxantrone,
irinotecan

Microgel Intraperitoneal
injection Drug eluting hydrogel beads. PDAC cell apoptosis. [138]

PEG-PCL-PEG LPS, FGF Macroscopic
hydrogel

Subcutaneous
injections A hydrogel vaccine with adjuvant release. Enhancing both cellular and humoral immune

response against PDAC. [139]
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Figure 4. A schematic illustration is presented to demonstrate the application of PFC-alginate hydro-
gel delivering GEM and ICG on a xenograft model derived from patient-derived organoids of PDAC.
The hydrogel composite was utilized to deliver and release chemotherapeutics and sonosensitizers at
the tumor site via in situ injection. Upon exposure to low-intensity ultrasound, the liquid-phase PFC
underwent a phase transition into a gas, leading to the release of dissolved O2, thereby enhancing the
efficacy of sonodynamic therapy. Copyright from ELSEVIER 2023.

In addition to SDT, another novel approach with antitumor potential is photodynamic
therapy (PTT), which utilized the photothermal effect induced by near-infrared light [140].
To enhance the effectiveness of PTT, thermosensitive hydrogels can be used to achieve
thermally responsive drug release. Yingjie, Kong et al. developed an injectable thermosen-
sitive hydrogel designed to deliver nanoparticles of GEM and PTT sensor DPP-BTz to the
TME. In this study, dipalmitoyl phosphatidylcholine (DPPC) was employed to synthesize
thermosensitive liposomes loaded with GEM and a photosensitizer DPP-BTz. Additionally,
poly(D,L-lactide)-polyethylene glycol-poly(D,L-lactide) (PLEL) was utilized to prepare
thermosensitive hydrogels encapsulating the aforementioned liposomes. Upon injection
into the tumor tissue of a murine PDAC model, the hydrogel solution underwent a gelation
process triggered by the body temperature of the mouse. Subsequently, near-infrared light
(1064 nm) was applied in vitro, initiating the photothermal effect mediated by the photo-
sensitizer. This effect led to a local temperature increase, which disrupted the structure of
the thermosensitive liposomes and released GEM into the hydrogel. Consequently, GEM
diffused into the TME, effectively inducing apoptosis of PDAC cells [129].

The delivery of different drugs in combination therapy can be realized by the hydrogel
systems. Huang, D. et al. developed an ultrasound-responsive microbubble hydrogel for
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the simultaneous delivery of hydrogen sulfide (H2S) gas and GEM into PDAC TME. Using
microfluidic electrospray technology, they fabricated a hydrogel precursor composed of an
inner core containing H2S gas and an outer shell of alginate and PNIPAM loaded with GEM.
The hydrogel precursor was crosslinked using calcium ions and ultraviolet radiation. Upon
injection of the hydrogels into the PDAC tissue of mice, in vitro ultrasonic stimulation
caused expansion and oscillation of the H2S gas within the inner layer of the hydrogel,
resulting in an increase in the surrounding temperature. Simultaneously, the outer layer
of the hydrogel contracted, leading to the release of H2S and water-soluble GEM into the
neighboring tumor tissue, exerting their antitumor effect [114]. Moreover, Shi, Kun et al.
developed an injectable hydrogel to enhance the potential of chemotherapy combination
therapy for PDAC. They utilized an amphiphilic triblock copolymer PLEL as the hydrogel
prepolymer, which is capable of self-assembling into core–shell-like micelles in water at
room temperature. When exposed to body temperature, the micelles formed a micellar
network through spontaneous crosslinking. This hydrogel exhibited delayed GEM and
cisplatin release from the micelle networks, thereby inducing apoptosis and inhibiting the
proliferation of PDAC cells more significantly compared to the GEM alone [132].

3.1.2. Encapsulating Drugs in Microneedles (MNs) to Achieve Sustained Release

MNs possess the remarkable ability to seamlessly penetrate tissues, offering the po-
tential for targeted, long-lasting, and widespread drug release. Fu, X et al. utilized gelatin
methacryloyl (GelMA) to fabricate a hydrogel MN adhesive patch, which could enhance
the release of GEM into the PDAC TME. Inspired by the tentacles of an octopus, the study
incorporated grooves on the base of the MNs to mimic the suction cups found in biological
organisms, thus improving the tissue adhesiveness of the MN patches. The MN hydrogels
were created through mold-based ultraviolet irradiation. Following implantation into the
PDAC tissue, the MNs seamlessly penetrated deep within the tumor. Over a period of
7 days, the MNs gradually degraded. This allowed for the gradual release of the encapsu-
lated GEM into the tumor tissue, resulting in a more extensive and effective eradication of
neighboring PDAC cells compared to GEM administered alone. Furthermore, the drug-
release kinetics could be modulated by adjusting the concentration of GelMA [128].

3.1.3. Design of TME-Responsive Hydrogel Degradation to Achieve Sustained Release

Peptide hydrogels, serving as drug-delivery systems, possess the ability to encapsulate
drugs and release them by the modulating their structure and composition. Additionally,
they exhibit excellent biocompatibility and can be easily synthesized [141]. Moreover,
peptide hydrogels display various responsiveness, allowing for precise regulation of drug
release in response to external environmental factors [142]. Bilalis et al. developed a
hydrogel for PDAC treatment by combining a unique pentablock terpolypeptide (PLys-b-
(PHIS-co-PBLG)-PLys-b-(PHIS-co-PBLG)-b-PLys) with GEM in a syringe. The hydrogel
was designed to specifically deliver the drug to cancerous tissue while minimizing the
harm inflicted upon healthy tissue. The distinctive macromolecular architecture of the
polypeptide facilitated spontaneous gelation of the solution upon injection into the tumor
tissue without the need for external stimulation. Simultaneously, the polypeptide hydrogel
underwent degradation in response to the acidic pH and protease levels within the TME of
PDAC, thereby resulting in the gradual release of GEM and effectively inducing apoptosis
of PDAC cells (Figure 5) [18].
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3.1.4. Incorporating the Drugs into the Polymer Network of Hydrogel to
Release Sustainably

Drugs can also be integrated into the polymer network by means of dopamine func-
tionalization to achieve controlled release. Xu, L et al. designed a hydrogel by incorporat-
ing derivatives of oxidized-carboxymethylcellulose (OCMC) and carboxymethyl chitosan
(CMCS), which are both polysaccharides functionalized with dopamine. In vivo experi-
ments showed that this hydrogel was capable of retaining GEM for 7 days, facilitated by
the interaction mediated by the catechol groups of dopamine. Additionally, the presence of
GEM also increased the swelling ratio of the drug-loaded hydrogel, potentially due to its
disruption to the hydrogen bonds between the polymers [125,143,144]. Sepehr, Talebian
et al. capitalized on the affinity between dopamine and drugs to develop an alginate
hydrogel which effectively released chemotherapy drugs, GEM or doxorubicin (DOX),
for PDAC treatment. To prevent burst release and enhance controlled diffusion, an outer
layer of double-crosslinked alginate hydrogel was applied as a barrier to the hydrogel core.
Methacrylic anhydride was used to modify the alginate, allowing for secondary crosslink-
ing under ultraviolet irradiation after calcium-mediated crosslinking. The resulting bilayer
hydrogel exhibited superior mechanical properties compared to the monolayer hydrogel,
and displayed a slower drug release rate and improved therapy outcome compared to GEM
alone [131]. Subsequent studies by the same team optimized the mechanical properties
and swelling rate of the bilayer alginate hydrogel. Utilizing 3D-printing technology, they
prepared a four-layer hydrogel patch by incorporating calcium carbonate (CaCO3) and
polylactic acid (PLA) as wrapping layers. This four-layer hydrogel patch demonstrated
continuous drug release for 7 days in vitro, surpassing the performance of the double-layer
hydrogel [75].

3.1.5. Encapsulating the Drugs into Hydrophobic Nanoparticles to Achieve Sustained Release

The delivery of hydrophilic small molecule drugs by hydrogels can result in rapid and
uncontrolled release. To address this issue, the drugs can be enclosed within hydrophobic
nanoparticles to entrap them within the hydrophilic hydrogel network, thereby slowing
down the release rate. To achieve controlled release of GEM, Phan et al. developed an
injectable, thermosensitive nano-biohybrid hydrogel. GEM was incorporated into the inter-
layer gallery and surface of montmorillonite (MMT) nanoparticles, forming MMT-GEM
complexes. These complexes were then dispersed into biodegradable and thermosensitive
solutions composed of poly (ε-caprolactone-co-lactide)-b-poly (ε-caprolactone-co-lactide)
(PCLA-PEG-PCLA), which could undergo gelation at the physiological temperature. Com-
pared to the original hydrogel, the adsorption of GEM in MMT nanoparticles significantly
slowed down the release rate of GEM, leading to a significant reduction in initial release.
Furthermore, the nano-biohybrid hydrogel network exhibited a reduced mesh size com-
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pared to the original hydrogel, leading to a sustained release of GEM and long-term
inhibition of PDAC growth [133]. Mao et al. also utilized a thermosensitive Poloxamer
hydrogel to encapsulate paclitaxel liposomes (PTX-lip) for the treatment of PDAC in mice.
Following injection into the PDAC tissue, the PTX-lip loading hydrogel group demon-
strated enhanced drug retention and longer survival of mice with PDAC, compared to the
PTX liposome group [134].

3.2. Hydrogel-Based Nucleic Acid Therapy for PDAC

DNA, with its two- or three-dimensional structures, is capable of constituting a highly
organized network through the crosslinking of complementary DNA molecules. When in
contact with water, these DNA-based hydrogels exhibit impressive swelling and expansion
properties. These hydrogels can encapsulate various nucleic acid molecules, including
siRNA, miRNA, and drugs that can bind to DNA [145]. The hydrogels possess excellent
solubility, biocompatibility, functionality, and responsiveness. Yan, J et al. devised a DNA
hydrogel to encapsule GEM nanoparticles and an antisense oligonucleotide which specifi-
cally binds to microRNA 21. They grafted two acrylic-stone-modified DNA sequences onto
linear polyacrylic acid (PAA) through radical reactions to generate the precursors for the
hydrogel. GEM was loaded into mesoporous silica nanoparticles (MSN), and the afore-
mentioned hydrogel precursors were attached to the surface of 3-(trimethoxysilyl)propyl
methacrylate (TMSPMA)-modified MSN via free radical reaction. Then, an antisense nu-
cleic acid, anti-miR-21, which is partially complementary to the two DNA sequences, was
introduced as a crosslinking agent to promote the formation of nanoscale hydrogels. These
hydrogels demonstrated responsiveness to the overexpressed miRNA-21 in the TME and
could return to liquid state upon encountering miRNA-21, thereby facilitating targeted
releasing GEM. Meanwhile, the anti-miRNA 21 could also silence miRNA 21, resulting in a
synergistic therapeutic effect when combined with GEM [117].

Immunomodulatory factor 5 (IRF5) has been reported to promote the polarization
of M2 TAMs into M1 phenotype in the TME. Conversely, CCL5 has been implicated in
tumor progression through its involvement in TAM recruitment. Gao, C et al. exploited
an injectable thermosensitive chitosan hydrogel to deliver IRF5 mRNA and CCL5 siRNA
directly into PDAC TME. They employed protamine, a natural cationic protein, to form
complexes with negatively charged RNA molecules, protecting mRNA from degradation
by serum RNases. To enhance delivery efficiency, the protamine/RNA complex was further
encapsulated with liposomes composed of 1,2-Dioleoyl-3-trimethylammonium-propane
(DOTAP) and cholesterol. This RNA-loaded liposome system was then combined with
chitosan to create the hydrogel precursor. Upon injection into mice, the hydrogel precursor
was crosslinked at physiological temperature, forming a gel-like substance. Over time, the
hydrogel gradually degraded within the body, leading to the release of the nanoparticles
into the TME, thus facilitating RNA delivery to tumor cells and exerting a therapeutic role.
Remarkably, within 16 days of implantation, more than 90% of liposomes were released
from the hydrogel. This innovative hydrogel system effectively induced the polarization of
M2 macrophages to the M1 phenotype and increased the infiltration of CD8+ T cells into
the TME. Consequently, this approach holds great promise for preventing the recurrence
and metastasis of PDAC following surgical intervention (Figure 6) [127].
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3.3. Hydrogel-Based Protein Therapy for PDAC

When using hydrogels to deliver protein drugs, it should be noted that the functional
groups of protein might interact with the polymer of hydrogel network and the crosslinking
condition needs to be moderate so that the encapsulated proteins would not denature. Yi,
Lu et al. fabricated a personalized hydrogel vaccine to prevent the recurrence of PDAC
tumors after surgery. The authors mixed the lysate of PDAC cells obtained from the surgical
resection of mouse PDAC samples with alginate and GM-CSF. The amino group in the
lysate were crosslinked with the carboxyl group of alginates through amide bonds under
the catalysis of 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and
N-heterocyclic carbene (NHC) to obtain an immunogenic hydrogel. Transplantation of
the hydrogel into the surgical area of mice could increase the local DC infiltration, thereby
effectively preventing tumor recurrence in mice [126].

Delitto, D et al. synthesized a hyaluronic acid (HA) hydrogel to deliver the neoantigen
peptide derived from the murine PDAC cell line Panc02. In the previous study, the
authors performed whole exome sequencing of Panc02 cells and found 12 mutant epitopes
which might bind to MHC I. Subsequently, they synthesized the peptide containing these
12 epitopes in vitro and utilized HA hydrogel to encapsule this neoantigen. After the
surgery, this hydrogel was implanted into the tumor region. Consequently, a transient
influx of MDSCs, a prolonged neutrophil influx, and a near-complete loss of cytotoxic
T cells were demonstrated. Application of this gel was associated with enhanced T cell
activation in the draining lymph node and expansion of neoantigen-specific T cells in the
spleen. Finally, this hydrogel could effectively prevent the recurrence of the PDAC after
incomplete surgery [130].
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Tumor-necrosis-factor-associated apoptosis-inducing ligand (TRAIL) mediates cell
apoptosis in a variety of tumor cells by specifically binding to death receptors that are
highly expressed on the surface of tumor cells. TRAIL is promising for PDAC treatment, but
the proteins are easily denatured and inactive by physical or chemical stimuli. Therefore,
Hyeong, Byeon et al. used PEG to modify the TRAIL protein (PEG-TRAIL) and found
that its antitumor effects and pharmacokinetics were better than TRAIL protein alone.
The later research of this group used HA and PEG to develop hydrogels for delivering
PEG-TRAIL protein to the mouse PDAC TME, which could significantly induce apoptosis
of PDAC cells and inhibit tumor growth [137]. In the follow-up study, the team also used
the combination of human albumin and PEG to obtain an injectable hydrogel precursor;
the precursor solution spontaneously formed gel within 60 s after injection into the murine
PDAC tissue [102].

Arong, Gaowa et al. synthesized an EGFR-lytic peptide for PDAC treatment based on
the chemical coupling of lysing peptides and peptides targeting epidermal growth factor
receptors (EGFRs) overexpressed on the surface of tumor cells. This peptide exhibited good
efficacy in a variety of solid tumors. However, in vivo experiments showed that the peptide
had a short blood residence time and multiple administrations were required to achieve an
effective plasma concentration for exerting the curative effect. To address this issue, the
authors prepared gelatin nanoparticles with a high permeability and a resident effect (EPR)
to deliver EGFR-lytic peptides. Through electrostatic action, negatively charged gelatin
formed nanoparticles with positively charged EGFR lysis peptide, which significantly
inhibited the growth of PDAC in mice compared with EGFR lysis peptide after intravenous
injection [101].

Lipopolysaccharides (LPS) derived from the cell wall of Gram-negative bacteria can
be recognized by APCs, such as macrophages, DCs, and murine B lymphocytes, thus
activating innate immunity, which are a commonly used immune adjuvant. Basic fibroblast
growth factor (bFGF) is one of the most important antitumor angiogenic factors. Huashan
et al. intercepted a segment (tbFGF) from the functional domain of bFGF, which could
prevent the proliferation of endothelial cells in vitro, but not tumor cells. They further
devised an injectable and thermosensitive poly (ethylene glycol)poly(N-caprolactone)-
poly(ethylene glycol) (PEG-PCL-PEG, PECE) hydrogel to deliver LPS and tbFGF to enhance
the immunogenicity of tumor-associated antigens, thereby enhancing the immune response
and improving the therapeutic effect of cancer. The results showed that the delivery system
could promote antibody-mediated and CTL-mediated immune response, increase the
secretion of γ-interferon and IL-4, and inhibit tumor growth and metastasis in vivo [139].

4. The Potential Drug Candidates for Hydrogel-Based Immunotherapeutic Options for
PDAC Treatment

Several clinical trials are currently underway to investigate potential therapeutic
approaches for PDAC through targeting the immunosuppressive TME. Notably, a combi-
nation of immunotherapy and chemotherapy has yielded promising results. An emerging
approach involves the utilization of hydrogels as delivery systems, offering an efficient and
safe means for administrating therapeutic agents. In the subsequent section, we will dis-
cuss potential drug candidates for hydrogel-based therapy targeting immunosuppressive
stroma cells in the TME of PDAC (Table 2).
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Table 2. Potential drugs targeting the immunosuppressive TME for PDAC.

Drug Therapeutic
Target Preclinical Model/Clinical Trial Publish Year Ref.

anti-GM-CSF monoclonal antibody PMN-MDSCs Subcutaneous transplantation tumor in mice 2023 [14]
CXCR2 inhibitors PMN-MDSCs GEMM 2016 [146]

STAT3 antisense nucleotides PMN-MDSCs Subcutaneous transplantation tumor in mice 2021 [51]
TRAIL-R agonist DS-8273a PMN-MDSCs Phase I trial 2017 [147]
CCL2 inhibitor CCX872-B TAMs Phase Ib trial 2017 [148]

CCR2 inhibitors TAMs Orthotopic transplantation tumor in mice 2018 [149]
CSF1R blockade TAMs GEMM 2014 [150]

anti-CD47 monoclonal antibody TAMs Hepatic micro-metastatic tumor model in mice 2018 [151]
CpG oligodeoxynucleotides TAMs Orthotopic transplantation tumor in mice 2019 [152]

IPI926 CAFs Orthotopic transplantation tumor in mice 2009 [153]
Halofuginone CAFs GEMM 2019 [154]

LIF mAb CAFs GEMM 2019 [155]
SOM230 CAFs Orthotopic transplantation tumor in mice 2016 [156]

Calcipotriene CAFs GEMM 2014 [157]
Nintedanib CAFs GEMM 2022 [158]
PEGPH20 CAFs Phase III trial 2020 [159]

4.1. MDSCs Directed Therapy

The process involving the recruitment of MDSCs from the bone marrow to the TME
shares similarities with TAMs. As such, this section will primarily focus on targeting
strategies which are specific to MDSCs and discuss the therapeutic approaches which
are available to inhibit their recruitment. For instance, among mice with GEM-resistant
PDAC, it was identified that tumor cells secreted GM-CSF, leading to the production of
MDSCs within the TME. This, in turn, hampered the function of CD8+ T cells. However,
by administrating an anti-GM-CSF monoclonal antibody alongside GEM, it is possible
to counteract the upregulation of MDSCs and restore the sensitivity of PDAC cells to
GEM [14]. Hence, neutralizing the GM-CSF effect can effectively circumvent therapy
resistance. Chemokines known as CXCLs, secreted by tumor cells during tumorigenesis,
facilitate the attraction of neutrophils and PMN-MDSCs into the TME via the CXCLs-
CXCR signaling axis. In murine models of PDAC, genetic knockout or pharmacological
inhibition of CXCR2 effectively reduced tumor-associated neutrophilia (TANs) and PMN-
MDSCs within the TME. This reduction in myeloid cell infiltration fostered increased
T-cell infiltration and concurrently impeded tumor metastasis. Notably, the combination of
CXCR2 inhibitors with immune checkpoint inhibitors has shown significant prolongation
of the survival of PDAC-bearing mice [146]. Timothy also reported that, in the orthotopic
murine PDAC model, the CXCR2 blockade inhibited the infiltration of PMN-MDSCs and
enhanced the efficacy of chemotherapy [149]. Radiotherapy has been associated with an
increased number of MDSCs in tumor tissues of PDAC patients, which corresponds to
resistance to radiotherapy efficacy. Researchers have identified the key role of STAT3
in this phenomenon and successfully improved radiotherapy efficacy in murine PDAC
models by inhibiting STAT3 using antisense nucleotides [51]. In a murine PDAC model,
Dmitry et al. first discovered that the TRAIL receptor (TRAIL-R) specifically mediates
MDSC apoptosis within the TME, making it an ideal target for MDSC-centered therapies.
Subsequently, they developed the TRAIL-R agonist DS-8273a for the treatment of PDAC
patients. They observed a reduction in MDSC level in the patients’ peripheral blood, while
the number of neutrophils, monocytes, and lymphocytes remained unaffected. In addition,
DS-8273a treatment significantly reduced MDSC infiltration in the tumor tissues of PDAC
patients [147].

4.2. TAMs-Directed Therapy

Therapeutic strategies targeting TAMs in PDAC have shown potential. These strate-
gies primarily involve inhibiting TAM infiltration in the TME and reprogramming TAMs
towards antitumor phenotypes. A critical factor in PDAC development is the release of
chemokines like CCL2 and CSF1, which recruit monocytes from the peripheral blood
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and differentiate them into TAMs within the TME. Therefore, they block the CCL2/CSF1-
CSF1R axis, which theoretically reduces TAM infiltration. An investigational single-arm
clinical study assessed the efficacy of the CCL2 inhibitor CCX872-B in combination with
FOLFIRINOX chemotherapy for treating locally advanced and metastatic PDAC. The re-
sults demonstrated an 18-month overall survival (OS) rate of 29% in the combination group,
surpassing the 18-month OS rate (18.6%) reported in the literature for the FOLFIRINOX
treatment group [148]. However, further clinical trials are necessary to validate the effective-
ness of CCX872-B in PDAC. Furthermore, studies have highlighted the immunosuppressive
nature of TAMs in PDAC. Inhibition of CSF1R signaling has been found to decrease TAM
numbers and enhance their antigen-presentation ability, ultimately promoting antitumor
T-cell immunity [150]. Notably, CD47, expressed on the surface of PDAC cells, mediates
a “do not eat me” signal between tumor cells and macrophages [160]. Blocking this sig-
nal with a CD47 monoclonal antibody has been shown to significantly enhance TAMs’
phagocytosis, leading to increased CD8+ T-cell populations and activated subsets in the
PDAC TME [151,161–163]. A deeper investigation into the mechanisms of CD47-mediated
macrophage avoidance among tumor cells unveiled that the use of CpG oligodeoxynu-
cleotides, a Toll-like receptor 9 agonist, induced metabolic changes in TAMs. These changes
reversed the CD47-mediated “do not eat me” signal and facilitated the phagocytosis of
tumor cells [152].

4.3. CAFs-Directed Therapy

The exploration of PDAC biology in recent years has intensified the investigation
into the role of CAFs in the pathogenesis and progress of PDAC, paving the way for the
development of targeted therapies against CAFs. Given the protumor functions attributed
to CAFs, strategies aimed at the elimination of these cells have emerged as potential
therapeutic interventions. In the context of PDAC, α-SMA and FAP have been identified as
key markers for CAFs within the TME. Subsequently, the targeting of small-molecule agents,
such as IPI926 and Halofuginone, has been developed. This strategy has demonstrated
a significant reduction in the infiltration of CAFs in murine PDAC models, resulting in
the improved survival of tumor-bearing mice. Despite these promising preclinical results,
the translation of these therapies into clinical practice has faced challenges due to evident
side effects, leading to discontinuation of the treatment in clinical trials [153,154,164].
Moreover, it is important to recognize that α-SMA and FAP are also highly expressed in
normal tissues, including skeletal muscle and bone marrow, casting concerns over potential
off-target effects when employing CAF-depletion strategies which target both markers
simultaneously, as it may lead to severe adverse consequences, such as cachexia and
anemia [165]. To address this limitation, hydrogel-based delivery systems can emerge as an
innovative approach to minimize damage to normal tissues. Through localized and precise
administration of therapeutic agents, hydrogels offer a potential means to compensate
for the drawbacks of CAF elimination strategies, enhancing the therapeutic efficacy while
minimizing the systemic toxicity associated with the treatment.

Targeting CAFs by inhibiting the transformation of PSCs into CAFs represents an
additional therapeutic approach for PDAC. PSCs are considered a source of CAFs within
the TME of PDAC, and several signaling pathways, including JAK/STAT3 and mTOR, play
significant roles in phenotypic transitions. Consequently, targeted drugs that modulate
these pathways have been subject to investigation. For instance, Yu Shi et al. demonstrated
that the paracrine regulator leukocyte inhibitor (LIF), produced by CAFs, plays a critical
role in activating the STAT3 signaling pathway in PDAC. Genetically knocking out the
LIF receptor in pancreatic epithelial cells resulted in a significant extension of survival in
pancreatic-oncogene-bearing mice. Complementary studies revealed that the use of a LIF
mAb in combination with chemotherapy considerably reduced the pancreatic oncogene-
induced tumor growth in mice compared to chemotherapy alone [155]. In a similar vein,
Siham et al. identified the somatostatin analog SOM230 as an inhibitor of protein syn-
thesis and secretion in CAFs, acting through the mTOR/4E-BP1 signaling pathway. This
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inhibition led to the effective suppression of PDAC metastasis in murine models [156].
Furthermore, vitamin D has shown promise in reversing PSC activation, maintaining them
in a quiescent state and delaying PDAC progression in murine models. Mara H et al.
discovered a high expression of vitamin D receptor (VDR) expression in the matrix of
human PDAC. Treatment with the vitamin D analogue calcipotriene induced a remodeling
of the PDAC matrix. Combined administration of calcipotriene and the antitumor drug
GEM resulted in significantly increased gemcitabine concentration, reduced tumor volume,
and enhanced survival rate by 57% compared to gemcitabine alone [157]. Nintedanib, a
common antifibrotic drug, exerts its effects by blocking the platelet-derived growth factor
receptor β (PDGFRβ) signaling pathway, leading to reduced CAF activation and growth. In
combination with other targeted therapies such as MEK inhibitors or CAR-NK, nintedanib
demonstrated effectiveness in inhibiting PDAC growth in murine models [158,166].

Researchers are also working to approach the treatment of PDAC by focusing on the
manipulation of the extracellular matrix structure generated by CAFs. To this end, pegy-
lated recombinant human hyaluronidase PH20 (PEGPH20) has been employed to degrade
HA within a GEMM model of PDAC. Subsequently, the impact on tumor blood vessels,
including perfusion, permeability, and drug delivery capacity, was evaluated. The study
revealed that PEGPH20 effectively and persistently degraded HA in tumors, resulting
in the dilation of PDAC blood vessels and subsequently increasing the concentration of
chemotherapeutic agents within the tumor tissue [167]. Moreover, PEGPH20 was shown to
increase the intracellular gap on the PDAC vascular endothelial cells, specifically enhancing
the macromolecular permeability of tumor blood vessels. Combined with GEM, PEGPH20
exhibited superior inhibitory effects on PDAC growth and prolonged the survival of
tumor-bearing mice, thus highlighting the clinical potential of PEGPH20 [168]. Inspired by
promising results from a phase I study, the phase III HALO-109-301 study aimed to investi-
gate the efficacy of PEGPH20 in combination with chemotherapy for previously untreated
stage IV PDAC patients. Unfortunately, the trial was prematurely terminated because the
experimental group did not meet the primary endpoint. Nevertheless, the experimental
group did demonstrate higher response rates, although no significant improvements were
observed in terms of response duration and OS [159]. These findings suggest that exploring
the combination of PEGPH20 with immunotherapeutic agents targeting immune cells may
yield fruitful avenues for further investigation.

5. Discussion and Prospectives

Although the progress in PDAC treatment has been limited, preclinical models have
demonstrated promising outcomes with novel therapies that target various components
within the immunosuppressive TME of PDAC. However, clinical trials have generally failed
to meet expectations, potentially due to the side effects of systemic administration [169].
This predicament has created an opportunity for the utilization of delivery systems in
PDAC treatment. Hydrogels have emerged as a specific drug-delivery system capable of
encapsulating both small-molecule and large-molecule drugs in a straightforward manner.
The advent of responsive hydrogels has enabled the development of injectable hydrogels
and hydrogels sustainably releasing pharmaceutics [97,99,103,104]. Moreover, hydrogels
offer improved safety and biocompatibility, with reduced toxic side effects [91,92]. These
advantages position hydrogels as potential delivery systems for PDAC treatment.

In the realm of PDAC, hydrogel-based therapies have emerged with promising po-
tential across multiple domains. This article provides a comprehensive introduction of
hydrogel-based treatments for PDAC and observes that the majority of these interventions
are centered on chemotherapeutic drugs. By incorporating chemotherapeutic drugs within
the network of hydrogels, drug retention within the tumor can be enhanced, leading to the
improvement of local drug concentration while simultaneously mitigating systemic adverse
effects. In addition to their role in chemotherapy, hydrogels can also be customized to
incorporate biological molecules or immune modulators, furnishing an avenue to stimulate
immune cell infiltration and reprogram the immunosuppressive TME of PDAC.
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Hydrogel-based therapies offer promising strategies for the treatment of PDAC, yet
several challenges remain for future advancements in this field. Firstly, it is crucial to
develop more effective strategies to remodel the immunosuppressive TME of PDAC. Recent
research has highlighted the close relationship between stroma cells and the resistance of
PDAC to chemotherapy, radiotherapy, and other drugs, consequently sparking growing
interest in therapeutic approaches targeting the immunosuppressive TME of PDAC. Small
molecule inhibitors and monoclonal antibodies have emerged as potential options for
PDAC treatment, and their combination with hydrogels holds promise for immunotherapy
strategies which can effectively reshape the TME. Additionally, hydrogel-based tumor
vaccines and cell therapies, such as CAR-T, may provide valuable strategies to specifically
target and reverse the immunosuppressive TME. Furthermore, while hydrogel-based
chemotherapies have predominantly focused on GEM, the potential application of other
drugs, such as DOX, in hydrogel-based PDAC treatment should be explored. Secondly, the
effectiveness of a single hydrogel-based therapy may not meet requirements. Despite the
emergence of various therapies which have demonstrated efficacy in preclinical models or
clinical trials, their utilization in hydrogel-based PDAC treatment remains relatively limited.
Future progress should involve more combined hydrogel-based therapies, such as the
integration of chemotherapy and immunotherapy targeting the immunosuppressive TME.
Thirdly, the development of “smart” hydrogel-based delivery system capable of targeted
and controlled release of drug is imperative for effective PDAC treatment. Presently, most
hydrogels release drugs through physical diffusion. To enhance the therapeutic outcome,
hydrogels should be designed to be more responsive to the PDAC TME or controlled
external stimulus. For example, Wei, Hai et al. fabricated a DOX-loaded nanosystem based
on nucleic acid which formed a hydrogel through the cross-linking of polyacrylamide chains
employing nucleic acid hairpins. This hydrogel selectively released the drug in the presence
of ATP [170]. In addition, the development of biomaterials suitable for personalized PDAC
therapy, such as autologous biomaterials, is essential. Notably, implanted autologous
blood clot scaffold have demonstrated the ability to induce robust anticancer immune
response as an enhanced cancer vaccination [171]. Consequently, the potential utilization
of autologous plasma hydrogels could be explored as a novel strategy for personized
immunotherapy in PDAC. Finally, to pave the way for the clinical application of hydrogel-
based PDAC therapies, multidisciplinary collaborations are imperative to ensure their
safety and effectiveness as viable alternatives to the traditional treatments.

Overall, the application of hydrogels in the context of PDAC presents intriguing
prospects for targeted and personalized therapeutic interventions. Leveraging their dis-
tinctive characteristics, hydrogels can potentially overcome the issues related to drug
delivery and resistance, thereby enhancing treatment outcomes for individuals diagnosed
with PDAC.
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Abbreviations

AMP adenosine
APC antigen-presenting cell
CaCO3 calcium carbonate
CAF cancer-related fibroblast
CCL2 chemokine ligand 2
CMCS carboxymethyl chitosan
CMP common myeloid progenitor
CSF1 colony-stimulating factor 1
CTL cytotoxic T lymphocyte
CXCL chemokine
CXCR chemokine receptor
DC dendritic cell
DDS drug-delivery system
DOTAP 1,2-Dioleoyl-3-trimethylammonium-propane
DOX doxorubicin
DPPC dipalmitoyl phosphatidylcholine
ECM extracellular matrix
EDC 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
EGFR epidermal growth factor receptors
EPR permeability and resident effect
FAP fibroblast-activating protein
FGF fibroblast growth factor
FSP1 fibroblast-specific protein 1
GelMA gelatin methacryloyl
GEM gemcitabine
GEMM genetically engineered and mutant mice
GRZB granzyme B
H2S hydrogen sulfide
HA hyaluronic acid
HLA-DR human leukocyte antigen DR isotype
HSC hematopoietic stem cell
ICG indocyanine green
IDO indolamine 2,3-dioxygenase
IFNG Interferon-γ
IL-10 Interleukin 10
IL12 Interleukin 12
IL-2 Interleukin 2
IL-6 Interleukin 6
IMC immature myeloid cell
iNOS inducible nitric oxide synthase
LPS lipopolysaccharides
MDSCs myeloid-derived suppressor cell
MHC-I major histocompatibility complex class I
MHC-II major histocompatibility complex class II
M-MDSC monocytes-like MDSC
MMT montmorillonite
MNs microneedles
MSN mesoporous silica nanoparticle
NHC N-heterocyclic carbene
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OCMC oxidized-carboxymethylcellulose
PCLA-PEG-PCLA Poly(ε-caprolactone-co-lactide)-b-poly(ε-caprolactone-co-lactide)
PDAC pancreatic ductal adenocarcinoma
PDGFR platelet-derived growth factor receptor
PDGFRβ platelet-derived growth factor receptor β
PD-L1 programmed cell death-Ligand 1
PECE Poly(ethylene glycol)poly(N-caprolactone)-poly(ethylene glycol)
PEG polyethylene glycol
PFS perfluorocarbon
PLA polylactic acid
PLEL Poly(D,L-lactide)-polyethylene glycol-poly(D,L-lactide)
PMN-MDSC polymorphonuclear MDSC
PNIPAM Poly(N-isopropyl acrylamide)
PSC pancreatic stellate cell
PTT photodynamic therapy
PTX paclitaxel
ROS reactive oxygen species
SDT acoustic dynamic therapy
TAM tumor-associated macrophage
TGFβ1 transforming growth factor beta 1
TME tumor microenvironment
TMSPMA 3-(trimethoxysilyl)propyl methacrylate
TNF tumor necrosis factor
TRAIL tumor-necrosis-factor-associated apoptosis-inducing ligand
Treg regulatory T cells
VEGF vascular endothelial growth factor
α-SMA α-smooth actin
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