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Abstract: Formononetin is a major isoflavone contained in propolis and is reported to exhibit various
pharmacological effects. However, the use of formononetin in pharmaceutical industry is limited due
to its low bioavailability and solubility. There had been several efforts on formononetin formulation
development, but further study is required to acquire optimal formulation. The aim of this study
is to conduct pharmacokinetic (PK) evaluations after the oral administration of three formononetin
formulations (20 mg/kg) in male Sprague Dawley rats. Then, a parent-metabolite PK model for
formononetin was developed and evaluated for the first time. To do this, a simultaneous analysis
method for formononetin and its active metabolites, daidzein, dihydrodaidzein and equol in rat
plasma was developed using ultra-performance liquid chromatography tandem mass spectrometry.
The separation was performed using a gradient elution of water and acetonitrile and a Kinetex
C18 column (2.1 mm × 100 mm, 1.7 µm particle size) at a temperature of 30 ± 5 ◦C. The simultane-
ous analytical method developed in this study was validated according to international guidance
and was successfully applied for the pharmacokinetic study. The time-plasma concentrations of
formononetin and daidzein were well described by a two-compartment model combined with a
metabolite compartment. Additionally, plasma protein binding assay was conducted in male rat
plasma. The findings from the study could be used as a fundamental for the future development of
formononetin as a pharmaceutical product.

Keywords: UPLC-MS/MS; formononetin; daidzein; dihydrodaidzein; equol; active metabolites;
pharmacokinetics; parent-metabolite pharamcokientic modeling; plasma protein binding

1. Introduction

Propolis, also known as bee glue, refers to a combination of beeswax and saliva pro-
duced by bees for constructing and maintaining beehives. It is known to have effects in
treating inflammation, bacterial or fungal infection, acute ulcer, and cancer. Among several
flavonoids and phenolic acid contained in propolis, an isoflavone called formononetin
(FMN) is identified as the major constituent [1]. FMN itself is known to have several phar-
macological activities including. but not limited to, anti-cancer; cellular neuroprotection;
insulin resistance and hyperglycemia reduction as well as kidney damage attenuation in
type 2 diabetes [2–6]. However, due to FMN’s low bioavailability and water solubility [7],
its pharmaceutical use has been limited so far. There were several attempts to overcome
the physico-chemical limitation by formulation development including poly (lactic-co-
glycolic acid)-nanoparticle and hydroxypropyl-β-cyclodextrin complex [8–10]. However,
further studies on FMN formulation is required to enhance its bioavailability sufficiently.
Co-crystallization and solid dispersion technology are two representative methods known
to enhance solubility and bioavailability [11,12]. Therefore, the aim of this study was to
conduct pharmacokinetic evaluation of FMN formulations: solution, co-crystallization, and
solid dispersion.
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FMN is metabolized into bioactive compounds known as daidzein (DZN) by gut
microflora and cytochrome P450 isoforms 1A2, 2C9*1, 2A6, and 2C19 [13]. Then, DZN is
further converted into two other bioactive compounds dihydrodaidzein (DHD) and equol
(EQL) [14]. Thus, all four bioactive compounds including FMN, DZN, DHD and EQL were
selected as target analytes in this study. The chemical structures of four target analytes of
this study is depicted in Figure 1.
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Figure 1. The chemical structures of FMN, DZN, EQL, and DHD.

To the best of our knowledge, several analytical methods were reported to analyze
FMN and/or other metabolites using HPLC-DAD [15], LC-MS/MS [16,17], and UPLC-
MS/MS [18,19]. Among these, only one publication reported simultaneous analytical
methods of FMN, DZN, DHD and EQL. Prasain et al. [16] have developed a rapid two-
minute LC-MS/MS method that allowed quantification of 11 phytoestrogen metabolites,
including the four isoflavone of our interest, in human plasma. However, the method
required using 200 µL of human plasma sample. This method cannot be adapted in rat
experiment since only 50–100 µL rat plasma per time point can be collected. Therefore, a
simultaneous UPLC-MS/MS method for the more sensitive and rapid determination of
FMN, DZN, DHD and EQL using minimal plasma was developed for the pharmacoki-
netic evaluation.

Several studies have been conducted on FMN pharmacokinetics in rats after oral
administration of plant extracts or decoction [18,20,21]. However, there are only few stud-
ies where FMN itself was administered for pharmacokinetic evaluations [15,22]. When
2–50 mg/kg FMN was orally administered, the peak plasma concentration reached between
0.5–1 h and the maximum plasma concentration (Cmax) ranged between 17 ng/mL and
81 ng/mL. The clearance of FMN was estimated to be 5 L/h/kg for intravenous adminis-
tration. There is no report on pharmacokinetic modeling or parent-metabolite modeling of
FMN so far.

In this study, pharmacokinetic evaluation was conducted after the oral administration
of FMN solution and FMN formulations in male Sprague Dawley rats using the novel
analysis method. Then, a pharmacokinetic model for FMN and its metabolite after oral
administration of FMN was developed and validated for the first time. Additionally,
protein binding assay for all four compounds were conducted.
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2. Materials and Methods
2.1. Chemicals and Reagents

FMN, DZN, DHD, EQL and DZN-d4 were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Methanol and acetonitrile were purchased by J.T. Baker (Phillipsburg, NJ, USA).
Formic acid and Acetic acid were purchased from Sigma-Aldrich (St Louis, MO, USA).
Evoqua Water Technologies (Pittsburgh, PA, USA) was used to purify water. All chemicals
had the highest grade or quality available. Male Sprague Dawley rat plasma was pur-
chased from BioChemed Services (Winchester, United Kingdom). The FMN formulations
were prepared by Pharmaceutical Formulation Design Laboratory in College of Pharmacy,
CHA University. FMN was mixed with polyvinylpyrrolidone K30 and D-α-Tocopherol
polyethylene glycol 1000 succinate then dried in a vacuum oven to prepare amorphous solid
dispersion. FMN cocrystal was prepared by grinding formononetin with imidazole. FMN,
FMN solid dispersion and FMN cocrystal were each suspended in 1% HPMC solution just
before the oral administration to rats.

2.2. Animal Study Design

Sprague Dawley rats were chosen as the experiment animal for the study since it was
reported that identical metabolites were converted from FMN from rat liver microsome
reaction and human liver microsomes [13]. 15 male Sprague Dawley rats (221.70 ± 4.90 g)
were purchased from Dae Han Bio Link Co., Ltd. (Chungchungbuk-do, Republic of Korea)
for the animal experiment. The experiment was conducted in accordance with the Guide-
lines for the Care and Use of Laboratory Animals and was approved by the Institutional
Animal Care and Use Committee (IACUC200084). The animals were maintained in the
temperature and humidity range of 25 ± 1 ◦C and 50 ± 5% RH, respectively, over the accli-
mation period. To minimize the effects of food on pharmacokinetic profile of isoflavones,
the animals were fasted overnight with free access to water.

Animals were allocated equally into 3 groups (5 rats per group). FMN solution
dissolved in 1% hydroxypropyl methylcellulose (HPMC), FMN co-crystal and FMN solid
dispersion were orally administered at a dose of 20 mg/kg to group 1, 2, and 3, respectively.
Approximately 200 µL of blood samples were collected in heparinized Eppendorf tubes
from the jugular vein before the administration and 0.08, 0.16, 0.33, 0.5 1, 2, 4, 8, 12, and 24 h
after the oral administration. The blood samples were immediately centrifuged (10,000× g,
10 min, 4 ◦C) to obtain plasma samples and was stored at −80 ◦C.

2.3. Analytical Methodology

Determination of the four isoflavones and DZN-d4 (internal standard, IS) in samples
were conducted using Acquity UPLC system (Waters Corp., Milford, MA, USA) coupled to
Xevo TQ-S triple quadrupole mass spectrometry (Waters Corp., USA) with electrospray
(ESI) source. The chromatographic separations of the four isoflavones was performed
in a Kinetex C18 column (2.1 × 100 mm, 1.7 µm particle size, Phenomenex, Torrance,
CA, USA) at 40 ± 0.5 ◦C. The mobile phase consisted of water (mobile phase A) and
acetonitrile (mobile phase B) with gradient elution at a flow rate of 0.2 mL/min. The
composition of the mobile phase changed as follows: 0–1.0 min (70% B), 1.0–1.5 min (30% B),
1.5–4.0 min (30% B), 4.0–4.1 min (70% B), 4.1–5.0 min (70% B). The mass spectrometer was
operated using an electrospray ionization (ESI) interface in negative ion mode with multiple
reaction monitoring (MRM) transitions, such as m/z 267.16 → 252.18, 253.14→ 132.20,
255.19→ 149.12, 241.14→ 121.17, and 257.15→ 136.21 for FMN, DZN, DHD, EQL and the
IS, respectively. The optimized collision energy of FMN, DZN, DHD, EQL and IS were −22,
−38, −22, −15 and −38, respectively. Data acquisition and analysis were achieved using
Masslynx 4.1 software (Waters Corp., USA).

Individual standard stock solutions of FMN, DZN, DHD, EQL and the IS were pre-
pared by dissolving accurately weighed standard compounds in methanol at a concen-
tration of 1 mg/mL and were stored at −20 ◦C. The standard working solutions of four
isoflavones (2, 5, 10, 50, 100, and 200 ng/mL) and the IS (10 µg/mL) were diluted with
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50% methanol in water from the standard stock solutions. The samples for the standard
calibration curves were prepared by spiking 5 µL of the standard working solutions in
45 µL of blank rat plasma. The quality control (QC) samples of four levels with 2, 6, 80, and
160 ng/mL were prepared for the evaluation of accuracy and precision. The samples for
the calibration and QC were freshly prepared on the day of analysis.

The samples were extracted by protein precipitation using methanol. 50 µL of rat
samples were added with 10 µL of the IS solution (10 µg/mL of DZN-d4 in 50% methanol)
to correct the loss of analytes during sample preparation. 100 µL of methanol was added
to the mixed sample, vortexed for 1 min and centrifuged at 15,000× g for 5 min. Then,
5 µL of aliquots were injected into the UPLC-MS/MS system. The method validation was
performed according to the FDA guideline for industry bioanalytical method validation.

2.4. Plasma Protein Binding Assay

The plasma protein binding of FMN, DZN, DHD and EQL was estimated using Ultra-
filtration method using Centrifree® micro-partition system (Amicon Inc., Lexington, MA,
USA). The experiment was conducted at concentrations of 50, 150, 500 and 1000 ng/mL
(n = 3) for all four compounds in male SD rat plasma. The spiked plasma samples were
allowed to equilibrate for at least 15 min before it was put into Centrifree® ultrafiltration
tubes. The tubes were centrifuged at 1000× g for 15 min at 37 ◦C. Then, compound
concentrations in the ultrafiltrate buffer (CUF) and plasma in the sample reservoir (Ctotal)
were quantitated by the anlytical method described in Section 2.3. The plasma protein
binding rate was calculated using the following formula:

Plasma protein binding (%) =
Ctotal − CUF

Ctotal
× 100

2.5. Pharmacokinetic Evazluation and Model Development

PK parameters such as the maximum plasma concentration (Cmax) and the time to
reach Cmax (Tmax) were determined from plasma concentration-time curve. The linear
trapezoidal rule was used to calculate area under the curve to the final measured concen-
tration (AUC0-t), then area from Clast to area expolated to infinity was added to AUC0-t to
integrate AUC0-∞. The half-life (t1/2) was calculated as 0.693/k and the volume of distribu-
tion (Vd/F) as dose/(k × AUC0-∞). The PK analysis was performed using WinNonlin®

software (version 8.2, Certara™ Company, Princeton, NJ, USA). Then, a PK model was
developed for FMN and its metabolites following oral administration of solution or for-
mulations. The model was implemented in the WinNonlin model with NLME engine and
estimated using the naïve-pooled and First Order Conditional Estimation-Extended Least
Squares (FOCE-ELS) algorithms. The random effects of PK parameters were exponentially
modeled for the description of inter-individual variability (IIV) as follows:

Pi = PTV × exp(ηi),

where Pi is the estimated PK parameter for ith individual, PTV is the typical value of
the PK parameter, and ηi is a random variable for the ith individual following a normal
distribution with the mean of zero and a variance ofω2. The intra-individual variability (ε)
was described by proportional, additive, or log-additive error model.

One- and two-compartment models with first-order kinetics with or without lag time
were tested to describe the absorption and disposition of FMN and the metabolites. Optimal
model selection was based on diagnostic values such as twice the negative log like twice
the negative log like (−2LL), Akaike information Criterion (AIC), Bayesian Information
Criteria (BIC), as well as visual inspection of various diagnostic plots (goodness of fit
plot) and precision of parameter estimates. For non-parametric evaluation of the model
bootstrap analysis was conducted.

In the modeling process, the decrease of −2LL by more than 3.84 according to an
additional parameter or the increase of −2LL by more than 6.63 according to an eliminated
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parameter was considered a significant improvement of the nested model. The goodness-
of-fit plots and bootstrap was conducted for the evaluation of the developed model. In this
study, goodness-of-fit plots such as the conditional weighted residuals versus predictions
and the dependent variable versus the individual predictions were used for both parents
and metabolite model. The bootstrap generated 1000 replicates datasets from the orginal
data sets to repeatedely fit the model for median values and 95% confidence intervals
of parameters.

2.6. Statistical Analysis

Statistical significance was evaluated through Kruskal–Wallis test using software (IBM
SPSS Statistics for Windows, Version 29.0, IBM Corp., Armonk, NY, USA) with p < 0.05
inferring significant difference.

3. Results and Discussion
3.1. Analytical Method Validation

The product ion scan spectra of FMN, DZN, EQL, DHD and IS are presented in
Figure 2. The representative chromatograms of blank sample, blank sample spiked with
target analytes and IS (LLOQ or ULOQ concentration) are presented in Figure 3.
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spiked with target analytes and IS at ULOQ concentration.

The calibration curves for the four isoflavones in rat plasma showed a linearity
over the concentration range of 2–200 ng/mL with a correlation coefficient (r2) in the
range of 0.996–0.998. The linear regression equations of the calibration curves with plot-
ting the peak area ratio (y) of analytes to the IS versus the nominal concentration (x) of
analytes with weighted (1/x2) were: y = (0.053 ± 0.007) x + (0.051 ± 0.005) for FMN,
y = (0.0023 ± 0.0001) x + (0.0003 ± 0.0007) for DZN, y = (0.056 ± 0.002) x + (0.005 ± 0.008)
for DHD, and y = (0.0022 ± 0.0004) x + (0.0001 ± 0.0019) for EQL.

Table 1 summarizes the intra- and inter-batch precision and accuracy evaluation of
the four isoflavones at four concentration levels: LLOQ (2 ng/mL) and QC samples at 6,
80, and 160 ng/mL in rat plasma. The intra-batch accuracy ranged from 90.06 to 100.90%
for FMN, 97.83 to 106.33% for DZN, 97.03 to 99.17% for DHD, and 92.29 to 103.50% for
EQL with a precision (%CV) of <13.43% for FMN, <13.03% for DZN, <6.13% for DHD, and
<14.94% for EQL, respectively. The inter-batch accuracy ranged from 98.91 to 104.17% for
FMN, 93.33 to 104.88% for DZN, 97.72 to 101.10% for DHD, and 95.61 to 106.33% for EQL
with a precision (%CV) of <8.72% for FMN, <9.34% for DZN, <5.85% for DHD, and <6.31%
for EQL, respectively.

The results were within the acceptable criteria of ±15% for QC samples and ±20% for
LLOQ demonstrating a satisfactory precision, accuracy, and reproducibility.

3.2. Plasma Protein Binding Assay Result

The plasma protein binding assay was conducted at four different concentration levels
in male rat plasma samples for all four compounds. The result is summarized in Table 2.
All compounds had relatively high plasma protein binding rate in concentration range
of 50–1000 ng/mL, and there was no statistically significant difference in plasma protein
binding ratio between the concentrations in all four compounds.
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Table 1. The precision and Accuracy of the determination of FMN, DZN, DHD and EQL in rat plasma.

FMN

Theoretical
concentration

(ng/mL)

Mean measured
concentration

(n = 5, ng/mL)

Precision
(%CV)

Accuracy
(%)

Inter-day

2 2.06 2.12 103.00
6 5.93 7.76 98.91

80 81.87 4.21 102.34
160 166.67 8.72 104.17

Intra-day

2 2.01 13.43 100.90
6 5.40 6.16 90.06

80 78.41 13.19 98.01
160 158.98 0.67 99.36

DZN

Theoretical
concentration

(ng/mL)

Mean measured
concentration

(n = 5, ng/mL)

Precision
(%CV)

Accuracy
(%)

Inter-day

2 1.93 9.34 96.61
6 5.60 6.72 93.33

80 83.91 2.61 104.88
160 164.02 1.10 102.51

Intra-day

2 2.13 9.19 106.33
6 5.87 13.03 97.83

80 84.99 5.78 106.24
160 165.27 4.17 103.29

DHD

Theoretical
concentration

(ng/mL)

Mean measured
concentration

(n = 5, ng/mL)

Precision
(%CV)

Accuracy
(%)

Inter-day

2 1.95 1.28 97.72
6 5.93 5.85 98.83

80 80.88 2.65 101.10
160 156.42 0.68 97.76

Intra-day

2 1.98 4.55 99.17
6 5.55 3.37 92.50

80 78.46 6.13 98.08
160 155.25 3.70 97.03

EQL

Theoretical
concentration

(ng/mL)

Mean measured
concentration

(n = 5, ng/mL)

Precision
(%CV)

Accuracy
(%)

Inter-day

2 2.13 6.31 106.33
6 6.09 1.41 101.54

80 76.49 3.50 95.61
160 156.33 2.25 97.71
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Table 1. Cont.

EQL

Intra-day

2 2.07 7.21 103.50
6 6.11 13.76 101.78

80 73.83 14.94 92.29
160 156.55 10.36 97.85

Table 2. Plasma protein binding assay result of FMN, DZN, EQL, and DHD.

Compound 50 ng/mL 150 ng/mL 500 ng/mL 1000 ng/mL

FMN 88.44 ± 2.29 93.36 ± 4.85 85.51 ± 1.71 91.80 ± 1.31

DZN 95.44 ± 1.60 96.58 ± 1.82 94.31 ± 0.37 94.69 ± 0.53

EQL - 98.69 ± 0.53 98.62 ± 0.41 97.80 ± 1.29

DHD 88.15 ± 0.53 87.39 ± 1.31 88.02 ± 0.90 86.83 ± 1.50

Protein binding assay were conducted to study the basic characteristics of the four
analytes, since there is no previous report on protein binding rate for FMN (in range of
500–1000 ng/mL) or DZN, EQL, and DHD in the range of 50–1000 ng/mL. The protein
binding assay results of FMN was similar to the previous reports which were 93.61 ± 0.44%
and 96.14± 0.15% at 50 ng/mL and 150 ng/mL [15] FMN in female rat plasma, respectively.
For DZN, plasma protein binding assay was reported in human serum albumin. Song
et al. [23] have determined unbound DZN at concentration levels of 3–15 µM DZN in which
the unbinding drug was 0.889–6.398 µM, respectively.

3.3. Pharmacokinetic Evaluation of FMN and Its Metabolites

The validated simultaneous UPLC-MS/MS method was applied to measure plasma
concentrations of FMN and its metabolites after oral administration of FMN solution and
formulations in 15 male SD rats. The bioanalysis results are depicted in Figure 4, and
the estimated pharmacokinetic parameters for all three groups using non-compartmental
analysis is summarized in Tables 3 and 4.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 

range of 50–1000 ng/mL, and there was no statistically significant difference in plasma 
protein binding ratio between the concentrations in all four compounds.  

Table 2. Plasma protein binding assay result of FMN, DZN, EQL, and DHD. 

Compound 50 ng/mL 150 ng/mL  500 ng/mL  1000 ng/mL 
FMN 88.44 ± 2.29 93.36 ± 4.85 85.51 ± 1.71 91.80 ± 1.31 
DZN 95.44 ± 1.60 96.58 ± 1.82 94.31 ± 0.37 94.69 ± 0.53 
EQL - 98.69 ± 0.53 98.62 ± 0.41 97.80 ± 1.29 
DHD 88.15 ± 0.53 87.39 ± 1.31 88.02 ± 0.90 86.83 ± 1.50 

Protein binding assay were conducted to study the basic characteristics of the four 
analytes, since there is no previous report on protein binding rate for FMN (in range of 
500–1000 ng/mL) or DZN, EQL, and DHD in the range of 50–1000 ng/mL. The protein 
binding assay results of FMN was similar to the previous reports which were 93.61 ± 
0.44% and 96.14 ± 0.15% at 50 ng/mL and 150 ng/mL [15] FMN in female rat plasma, re-
spectively. For DZN, plasma protein binding assay was reported in human serum albu-
min. Song et al. [23] have determined unbound DZN at concentration levels of 3–15 µM 
DZN in which the unbinding drug was 0.889–6.398 µM, respectively.  

3.3. Pharmacokinetic Evaluation of FMN and Its Metabolites 
The validated simultaneous UPLC-MS/MS method was applied to measure plasma 

concentrations of FMN and its metabolites after oral administration of FMN solution and 
formulations in 15 male SD rats. The bioanalysis results are depicted in Figure 4, and the 
estimated pharmacokinetic parameters for all three groups using non-compartmental 
analysis is summarized in Tables 3 and 4. 

 
(A) 

Figure 4. Cont.



Pharmaceutics 2023, 15, 45 9 of 16

Pharmaceutics 2023, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
(B) 

Figure 4. The plasma concentration of (A) FMN and (B) DZN after oral administration of 20 mg/kg 
FMN solution (Group 1, □), 20 mg/kg FMN co-crystal (Group 2, △), and 20 mg/kg FMN solid 
dispersion (Group 3, ○) in Sprague Dawley rats (The error bars in the graph represent standard 
deviations). 

Table 3. The estimated pharmacokinetic parameters of FMN. 

Group ID Half-Life Tmax Cmax AUClast AUCinf Vd/F CL/F 
(hr) (hr) (nmol/L) (hr × nmol/L) (hr × nmol/L) (L) (L/hr) 

1 

1 - 2.00 31.39 303.60 - - - 
2 - 2.00 390.77 613.56 - - - 
3 - 2.00 23.71 184.49 - - - 
4 - 12.00 73.96 291.14 - - - 
5 - 2.00 30.31 447.80 - - - 

Mean - 4.00 110.03 368.12 - - - 
SD - 4.47 158.20 166.13 - - - 

2 

6 3.89 0.17 48.09 225.00 294.69 325.45 57.99 
7 5.96 0.08 62.63 237.73 316.02 455.13 52.96 
8 - 4.00 46.15 253.12 - - - 
9 4.83 0.08 62.67 163.43 236.90 471.02 67.56 

10 3.93 0.50 72.17 201.05 266.28 336.36 59.30 
Mean 4.65 0.97 58.34 216.07 278.47 396.99 59.45 

SD 0.97 1.70 10.98 35.07 34.40 76.72 6.06 

3 

11 4.34 0.33 1195.61 3563.43 3648.51 28.84 4.60 
12 2.14 0.33 775.35 1741.27 1873.23 27.08 8.78 
13 1.81 0.17 2886.70 2638.59 2701.55 16.21 6.21 
14 2.01 0.33 876.75 1549.70 1644.38 28.92 9.95 
15 2.67 0.33 980.87 1404.79 1470.06 44.20 11.47 

Mean 2.60 0.30 1343.06 2179.56 2267.55 29.05 8.20 

Figure 4. The plasma concentration of (A) FMN and (B) DZN after oral administration of 20 mg/kg FMN
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Table 3. The estimated pharmacokinetic parameters of FMN.

Group ID
Half-Life Tmax Cmax AUClast AUCinf Vd/F CL/F

(hr) (hr) (nmol/L) (hr × nmol/L) (hr × nmol/L) (L) (L/hr)

1

1 - 2.00 31.39 303.60 - - -
2 - 2.00 390.77 613.56 - - -
3 - 2.00 23.71 184.49 - - -
4 - 12.00 73.96 291.14 - - -
5 - 2.00 30.31 447.80 - - -

Mean - 4.00 110.03 368.12 - - -
SD - 4.47 158.20 166.13 - - -

2

6 3.89 0.17 48.09 225.00 294.69 325.45 57.99
7 5.96 0.08 62.63 237.73 316.02 455.13 52.96
8 - 4.00 46.15 253.12 - - -
9 4.83 0.08 62.67 163.43 236.90 471.02 67.56
10 3.93 0.50 72.17 201.05 266.28 336.36 59.30

Mean 4.65 0.97 58.34 216.07 278.47 396.99 59.45
SD 0.97 1.70 10.98 35.07 34.40 76.72 6.06

3

11 4.34 0.33 1195.61 3563.43 3648.51 28.84 4.60
12 2.14 0.33 775.35 1741.27 1873.23 27.08 8.78
13 1.81 0.17 2886.70 2638.59 2701.55 16.21 6.21
14 2.01 0.33 876.75 1549.70 1644.38 28.92 9.95
15 2.67 0.33 980.87 1404.79 1470.06 44.20 11.47

Mean 2.60 0.30 1343.06 2179.56 2267.55 29.05 8.20
SD 1.03 0.08 876.85 910.34 904.88 9.98 2.79
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Table 4. The estimated pharmacokinetic parameters of DZN.

Group ID
Half Life Tmax Cmax AUClast AUCinf

(hr) (hr) (nmol/L) (hr × nmol/L) (hr × nmol/L)

1

1 - 2.00 10.11 102.75 -
2 - - - - -
3 - 12.00 9.87 194.29 -
4 - - - - -
5 - 24.00 9.52 199.56 -

Mean - 12.67 9.83 165.53 -
SD - 11.02 0.30 54.44 -

2

6 - 4.00 27.10 154.04 -
7 - 4.00 13.21 31.46 -
8 - 4.00 14.00 274.84 -
9 - - - - -
10 - 2.00 4.51 28.06 -

Mean - 3.50 14.71 122.10 -
SD - 1.00 9.31 117.48 -

3

11 - 0.33 118.89 231.05 -
12 3.40 0.33 195.43 488.82 585.86
13 - 0.50 106.11 303.33 -
14 4.60 0.33 301.39 376.39 786.20
15 1.36 0.33 286.20 358.81 415.60

Mean 3.12 0.37 201.61 351.68 595.89
SD 1.64 0.08 90.98 95.34 185.50

In all three groups, only FMN and DZN was detected after the oral administration of
FMN. Thus, pharmacokinetic evaluation and parent-metabolite modeling for FMN and
DZN was conducted. Since the time versus mean plasma FMN concentration profiles of
group 1 and group 2 failed to clearly manifest disposition or absorption pattern, respectively.
Thus, the temporal change data of FMN plasma concentration for group 3 was used for the
pharmacokinetic modeling.

3.4. Parent-Metabolite PK Model Devleopment

The obtained non-compartmental analysis data for group 3 was used as initial pa-
rameters for the compartmental modeling. One- and two-compartment models with
first-order absorption, and with or without lag time were tested to fit the FMN profile
following the oral administration. The clearance was tested as first-order and non-linear
Michaelis-Menten type. After the selection of the optimal structural model for the parent
compound, metabolite compartment was added to complete a parent-metabolite pharma-
cokinetic model. Two-compartment model with first-order absorption without lag time
was identified as the optimal model that best described the plasma profiles of FMN. The
DZN was best fitted to metabolite-compartment with first-order elimination. The final PK
model is depicted in Figure 5, and the diagnostic values obtained from the model trials are
summarized in Table 5.
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Figure 5. Parent-metabolite PK model scheme for FMN and DZN following the oral administration of
FMN solid dispersion. (CL: clearance of FMN; CLm, clearance of DZN, ka: absorption rate constant;
F, fraction of FMN absorbed; Fm, fraction of FMN metabolized).

Table 5. The parent-metabolite PK model development process for FMN and DZN after oral adminis-
tration of 20 mg/kg FMN solid dispersion.

Model Description −2LL AIC BIC No. of
Parameters

Structural model (FMN)
P1 One-compartment model without lag time 603.86 613.86 622.43 5
P2 One-compartment model with lag time 603.86 615.86 626.14 6

P3 * Two-compartment model without lag time 558.62 572.62 584.62 7
P4 Two-compartment model with lag time 612.74 628.74 642.45 8
P5 Two-compartment model without lag time with nonlinear elimination 558.62 576.62 592.04 9

Structural model (FMN + DZN)

M1 * Two-compartment model with
metabolite compartment 1394.32 1416.32 1445.93 11

M2 Two-compartment model with metabolite compartment and
nonlinear elimination 1394.32 1420.32 1455.31 13

M3 Two-compartment model with two-compartment metabolite 1388.51 1414.51 1449.50 13

M4 Two-compartment model with two-compartment metabolite and
nonlinear elimination 1388.51 1418.51 1458.88 15

IIV model
M1-1 IIV on ka, F, V1, V2, CL1, CL2, Vm, CLm, Fm 1418.79 1458.79 1512.62 20
M1-2 IIV on ka, F, V1, V2, CL1, CL2, Vm, Fm 1375.43 1413.43 1464.57 19
M1-3 IIV on ka, F, V1, CL1, CL2, Vm, Fm 1379.96 1415.96 1464.41 18

M1-4 * IIV on ka, F, V1, CL1, CL2, Vm 1358.82 1392.82 1438.57 17
M1-5 IIV on F, V1, CL1, CL2, Vm 1359.07 1391.07 1434.13 16
M1-6 IIV on F, V1, CL1, Vm 1359.24 1389.24 1429.81 15
M1-7 IIV on F, V1, Vm 1360.70 1388.70 1426.37 14
M1-8 IIV on V1, Vm 1369.55 1395.55 1430.54 13
M1-9 IIV on V1 1379.75 1403.75 1436.04 12

Error model
M1-4-1 Proportional 1358.82 1392.82 1438.57 17
M1-4-2 Additive 1992.30 2026.30 2072.05 17

M1-4-3 † Log-additive 1358.82 1392.82 1438.57 17
M1-4-4 Additive + proportional 1358.87 1396.87 1448.01 19

* Selected model. † final model.
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The final model selected was two-compartment parent model with a metabolite com-
partment. The structural models were considered based on the diagnostic values including
−2LL, AIC and BIC. As AIC and BIC are useful in comparing structural models [24], it was
used to favor model M1 over M3. Although the AIC of M3 was smaller than M1, M1 was
still favored since a drop in AIC(or BIC) of 2 is considered a threshold for selecting a better
model [24]. When selecting error model, parameter CV (%) was considered.

Evaluation of the final model was conducted using goodness-of-fit plots and visual
predictive check. As shown in Figure 6, no significant bias was captured in the model. The
model adequately explained the general trend of the data. In addition to this, bootstrapping
was conducted for the evaluation of robustness and predictive performance of the optimal
model. The 95% interval results produced by boostrapping are provided in Table 6, and all
parameter estimations were well within the 95% interval. The estimated PK parameters are
listed in Table 6. The model-predicted plasma concentration-time plots of FMN and DZN
fitted to the observed data of group 3 are shown in Figure 7.
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Table 6. The model estimated pharmacokinetic parameters for FMN and DZN.

Parameters
(Unit)

Description Estimate CV (%)
Bootstrap Results

2.5% CI 97.5% CI

Fixed effect
F Fraction of FMN dose absorbed 0.31 20.34 0.19 0.45

Fm Fraction of CL1 into metabolite compartment 0.89 10.56 0.61 0.99
ka (1/hr) First-order absorption rate constant 7.12 50.47 2.74 20.79

V1 (L) Volume of distribution of central compartment 25.04 15.01 16.62 36.41
V2 (L) Volume of distribution of peripheral compartment 48.31 40.19 27.08 88.12
Vm (L) Volume of distribution of metabolite compartment 10.46 41.77 4.29 33.04

CL1 (L/hr) Total clearance of FMN 19.85 15.35 12.62 26.14
CL2 (L/hr) Inter-compartmental clearance of FMN 38.68 53.50 9.43 80.12
CLm (L/hr) Total clearance of DZN 41.54 29.24 21.53 62.86

Random effects
ωV1 IIV of V1 0.18 42.43 0.00 0.45
ωCL1 IIV of CL1 0.05 22.36 0.00 0.17
ωka IIV of ka 0.25 50.00 0.00 0.38
ωCL2 IIV of CL2 0.11 33.17 0.00 0.33
ωF IIV of F 0.03 17.32 0.00 0.08
ωVm IIV of Vm 1.20 109.54 0.00 2.54

Residual error
ε1 Proportional error of FMN 0.75 3.53 0.63 0.89
ε2 Proportional error of DZN 0.42 21.55 0.27 0.63
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In all groups, only FMN and DZN was detected after the oral administration of
FMN. This results concurs with a previous in vitro study result [13] that reported DZN
as the major metabolite produced after incubation of FMN in human liver microsomes.
Furthermore, our result agrees with the previous report by Raju et al. [25]. Raju et al. have
administered 5 mg/kg FMN intravenously or 10 mg/kg FMN orally to SD rats, then they
conducted the bioanalysis of plasma samples for quantitation of FMN, DZN and EQL.
However, they were able to quantitate only FMN and DZN in rat plasma. In our study, the
dose has doubled (20 mg/kg FMN), but still EQL as well as DHD was not quantitated.

According to a previous study [22], the Cmax and AUCinf of 302.1 ± 35.9 nM and
757.7 ± 48.2 nM × hr was reported after the oral administration of 20 mg/kg FMN dis-
solved in 0.5% CMC-Na to male Sprague Dawley rats. In our study, the Cmax and AUCinf
was 110.03 ± 158.20 nM and 368.12 ± 166.13 ng × hr/mL after the administration of
20 mg/kg FMN dissolved in 1% HPMC. The difference between the parameters can be
explained by the solvents in which FMN was dissolved in. In our study, 1% HPMC was
used for FMN solution to keep the variable minimal between the three groups. In other
study [15], plasma concentration of FMN and DZN were quantified after oral administra-
tion of FMN to female SD rats at 50 mg/kg dose in 0.25% CMC suspension.

Although the Cmax and AUCinf of group 2 did not significantly differ from group 1,
it can be seen that Group 3 had major enhancement in the parameters since the Cmax
and AUCinf increased by approximately 12-fold and 3-fold, respectively, compared to
group 1. Thus, the solubility and bioavailability of FMN was greatly improved when orally
administered in solid dispersion formulation.

The optimal model was two-compartment model with first-order absorption and linear
elimination for parent and one-compartment model with linear elimination for metabolite.
As mentioned in Introduction, FMN and DZN is reported to go through gut microflora
metabolism. However, as gut microflora metabolism of the analyte in rat or the significance
of gut metabolism is not reported so far, it was not considered in the current modeling.

The oral bioavailability was parameterized as “F” for estimation through the developed
model. Various studies used compartmental pharmacokinetic modeling or physiologicall-
based pharmacokinetic modeling approaches on estimation of F when the drug information
or data is limited in the early drug development phases.

The oral bioavailability(F) of FMN solution dissolved in 0.5% CMC-Na in rats was
reported to be 21.8% [22]. The estimated fraction of FMN dose absorbed (F) was 0.31, so the
solid dispersion formulation could have increased the bioavailability of FMN; however, as
the solvent in which FMN was dissolved in is different, direct comparison is not possible
with the reported bioavailability of 21.8%. The fraction of CL1 into metabolite compartment
was estimated to be 0.89. The information on FMN metabolism in rat is limited, a study
reported that about 25% of FMN was excreted intact in humans [26].

4. Conclusions

PK evaluation of three FMN formulations were conducted using a rapid and sensitive
simultaneous bioanalysis method developed and validated according to bioanalysis guide-
lines of FDA. FMN solid dispersion showed the highest Cmax and AUCinf. Furthermore, a
parent-metabolite PK model for FMN and its bioactive compound was developed for the
first time. In addition to this, plasma protein binding assay was conducted for FMN, DZN,
DHD, and EQL. This study will provide fundamentals for further development of FMN as
a pharmaceutical product.
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