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Abstract: Nanotechnology takes the lead in providing new therapeutic options for cancer patients.
In the last decades, lipid-based nanoparticles—solid lipid nanoparticles (SLNs), nanostructured
lipid carriers (NLCs), liposomes, and lipid–polymer hybrid nanoparticles—have received particular
interest in anticancer drug delivery to solid tumors. To improve selectivity for target cells and,
thus, therapeutic efficacy, lipid nanoparticles have been functionalized with antibodies that bind to
receptors overexpressed in angiogenic endothelial cells or cancer cells. Most papers dealing with
the preclinical results of antibody-conjugated nanoparticles claim low systemic toxicity and effective
tumor inhibition, which have not been successfully translated into clinical use yet. This review aims
to summarize the current “state-of-the-art” in anticancer drug delivery using antibody-functionalized
lipid-based nanoparticles. It includes an update on promising candidates that entered clinical trials
and some explanations for low translation success.

Keywords: cancer; active targeting; functionalization; antibodies; lipid nanoparticles; SLN; NLC;
liposomes; antibody-conjugated nanoparticles

1. Introduction

Chemotherapy, whether alone or combined with other therapies, is the norm for cancer
treatment. However, the widespread push to develop nanotechnology-based drug delivery
systems comes from the need to overcome the limitations of systemically administered
chemotherapeutics, namely short blood circulation time, non-specific distribution in the
body, and the development of drug resistance. The size, shape, and surface of nanoparticles
can be tailored to escape immediate clearance and enable an efficient delivery to the tumor
site [1].

In contrast to normal tissues and organs, many solid tumors have leaky vasculature,
along with defective lymphatic drainage, which facilitates the passive accumulation of
nanoparticles (100–400 nm in diameter) in the tumor interstitium by the enhanced perme-
ability and retention (EPR) effect [2].

Although passive targeting still occurs initially, active targeting is envisioned as the
most promising strategy for improving binding affinity and specificity for tumor cells. For
that, the nanoparticle surface can be modified with ligands that bind to receptors overex-
pressed in angiogenic endothelial cells or cancer cells [3]. In the case of targeting tumor
vasculature or certain hematological malignancies, achieving sufficient binding affinity
for endothelial cells is critical due to the hemodynamics that nanoparticles experience.
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Typically, active targeting involves the conjugation of nanoparticles to one or more tar-
geting moieties that interact specifically with receptors that are either uniquely expressed
or overexpressed in the tumor compared to normal tissues. If internalizing receptors are
targeted, the ligand facilitates the transport of nanoparticles into the cells through a specific
pathway once they reach the tumor [4]. For intracellular drug delivery, nanoparticles should
be internalized quickly via receptor-mediated endocytosis after specific ligand–receptor
interaction. The ability of such actively targeted nanoparticles to bypass drug efflux pumps
alleviates the emergence of multidrug resistance [5]. Instead, nanoparticles targeting non-
internalizing receptors will remain attached to the target cell surface and release the drug
outside, which may also kill nearby cancer cells by the “bystander effect” [6].

In this review, we provide a brief overview of nanoparticle functionalization with
antibodies, focusing on the use of these targeting ligands and the most common coupling
strategies. Then the current “state-of-the-art” in anticancer drug delivery using antibody-
functionalized lipid-based nanoparticles is summarized, including an update on candidates
that have entered the clinical testing phase.

2. Functionalizing Nanoparticles with Antibodies

The repertoire of ligands conjugated to tumor-targeted nanoparticles is greatly ex-
panded (e.g., antibodies, aptamers, peptides, polysaccharides, and small molecules, such
as folate). Among them, antibodies, also known as immunoglobulins (Ig), have gained
considerable popularity because of their unique in vivo properties and high specificity [7].

Within the five classes of immunoglobulins (IgG, IgA, IgM, IgD, and IgE) distinguished
by the type of heavy chain, IgG is the most abundant in human serum [8]. The IgG molecule
is a heterodimeric protein composed of two light (L) chains and two heavy (H) chains.
Whereas the light chain consists of one N-terminal variable (VL) domain and one C-terminal
constant (CL) domain, each heavy chain contains one variable (VH) and three constant (CH1,
CH2, and CH3) domains. The IgG Y-shaped structure can be divided into two fragments
connected by a very flexible hinge region: the antigen-binding fragment (Fab) region,
corresponding to the two arms of the antibody molecule, and the fragment crystallizable
(Fc) region, referring to its stem region. The N-terminal ends of the light and heavy chains
collectively form the antigen-binding site, where a total of six hypervariable amino acid
sequences termed “complementary determining regions” reside [9,10]. Several functional
groups on the amino acids of antibodies can participate in conjugation, namely amino
(N-terminal or lysine side chain), sulfhydryl (cysteines in the hinge region), and carboxyl (C-
terminal or aspartic and glutamic acids side chain). Additionally, carbohydrate residues in
the CH2 domains can be reactive after the periodate oxidation of cis-diols to aldehydes [11].

Considering the hydrodynamic radius of the antibody (~20 nm), the size of the func-
tionalized nanoparticle is expected to increase up to 40 nm in proportion to the number of
ligands [12]. Since smaller particles allow for deeper penetration into the tumor, antibody
fragments (e.g., antigen-binding fragments and single-chain variable fragments) offer a
clear advantage over the whole antibody. The primary way to produce an antigen-binding
fragment (Fab) is antibody cleavage using proteases, such as papain for monovalent Fab
fragments or pepsin for F(ab)2 fragments, in which the two arms remain linked. The
F(ab)2 dimer may then be reduced to yield two Fab’ fragments with C-terminal sulfhydryl
groups [13]. Alternatively, the VH and VL domains coupled by a flexible and short peptide
linker make up the single-chain variable fragment (scFv), commonly obtained by phage
display or cloning from mouse hybridoma [14].

To improve physicochemical properties and tumor-targeting accuracy, surface conjuga-
tion of functional groups or biomolecules to nanoparticles—also called functionalization—is
being extensively studied.

The chemistry behind functionalization with antibodies includes adsorption, covalent
conjugation (carbodiimide, maleimide, and “click” chemistries), and avidin–biotin interac-
tion and was reviewed in detail by Marques et al. [15]. It is established that the coupling
method should ensure a stable bond and allow for control of the ligand density. Ideally, the
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Fc region would be attached to the nanoparticle surface, leaving the Fab region oriented
in such a way that interaction with the antigen is possible [16]. Although adsorption (i.e.,
physical adsorption and ionic binding) is the simplest and less time-consuming technique,
covalent bonds outperform hydrophobic and electrostatic interactions in terms of stabil-
ity and reproducibility. As such, carbodiimide and maleimide chemistries persist across
the literature, as they benefit from easy-to-follow protocols and acceptable conjugation
efficiency at a relatively low cost. In the case of nanoparticles containing surface carboxyl
groups, these groups are activated by using 1-ethyl-3-(-3-dimethylaminopropyl) carbodi-
imide (EDC) and N-hydroxysuccinimide (NHS) before reacting with the primary amines of
antibodies. However, other coupling strategies that result in oriented immobilization are
preferred. More precisely, site-specific free sulfhydryl groups that are generated by antibody
reduction or thiolation in the Fc region can be conjugated to the maleimide-activated amino
groups of the nanoparticle, yielding a thioether linkage. Another option is based on the
non-covalent, albeit very strong, interaction between strept(avidin)-coated nanoparticles
and Fc-specific biotinylated antibodies. Even so, compared to direct covalent coupling, the
final avidin–biotin complex requires an expensive multistep protocol with less efficient
antibody binding, as observed by Wartlick et al. [17].

3. Antibody-Functionalized Lipid Nanoparticles for Anticancer Drug Delivery

Particles within the size range of 10 to 1000 nm are defined as nanoparticles. Thera-
peutic agents (i.e., drugs, proteins, and genetic material) can also be adsorbed or chemically
conjugated to the nanoparticle surface, but those that are dissolved, entrapped, or encap-
sulated into the nanoparticle will benefit from enhanced chemical stability and protection
against degradation [18]. Another distinctive feature of nanoparticles is the large sur-
face area/volume ratio compared to bulk materials upon reduction of particle size to the
nanoscale [19]. In view of a highly customizable surface, nanoparticles can be modified to
avoid major obstacles to successful delivery. For instance, as surface coating with polyethy-
lene glycol (PEG) imparts “stealth” properties to the nanoparticles, PEGylation is a common
approach to decrease immunogenicity and safeguard against the mononuclear phagocyte
system [20]. Furthermore, to improve the delivery efficiency of nanoparticles, attention has
been paid to conjugation with targeting ligands that bind to receptors overexpressed in the
target tissues or cells.

Nanoparticles can be made of a variety of materials, namely polymers, lipids, and
metals. Moreover, nano-antioxidants have been designed to overcome the oxidative degra-
dation of organic and inorganic materials by slowing the overall rate of autoxidation [21].
Nevertheless, since the first clinical approval of Doxil® in 1995, lipid-based nanoparticles
remain the most prevalent class (33%) among nanomedicines on the market or under
clinical trials [22]. In addition to AIDS-related Kaposi’s sarcoma (1995), this doxorubicin
(DOX)-loaded PEGylated liposome (Doxil®) was FDA-approved in recurrent ovarian can-
cer (1998), metastatic breast cancer (2003), and multiple myeloma (2007) [23]; hence, it was
a real breakthrough in cancer nanomedicine and lipid-based drug delivery systems.

Lipid-based nanoparticles include liposomes, solid lipid nanoparticles (SLNs), nanos-
tructured lipid carriers (NLCs), and hybrid lipid–polymeric nanoparticles (Figure 1).

As drug delivery systems, lipid nanoparticles usually consist of hydrophilic or hy-
drophobic drug(s), lipids generally recognized as safe (GRAS), and surfactant(s) to form
and stabilize the dispersion. Low toxicity potential, ease of preparation with limited use of
organic solvents, and feasibility of scale-up production give them an edge over polymer
and inorganic nanoparticles [24,25].
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Regarding the development of actively targeted lipid nanoparticles, two general strate-
gies exist: (i) one-pot assembly of lipids and targeting ligands and (ii) post-insertion of
targeting ligands into preformed lipid nanoparticles. Still, the former is likely to cause the
targeting ligands to be encapsulated or oriented to the nanoparticle core, making them inac-
cessible for receptor interaction [26]. Therefore, it comes as no surprise that post-insertion
functionalization is preferred. In most cases, lipid nanoparticles are preformed by mixing
structural lipids with PEG–lipids (e.g., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine–
polyethylene glycol, abbreviated to DSPE–PEG) containing different terminal groups, such
as amino, carboxyl, maleimide, or NHS (e.g., DSPE–PEG–NH2, DSPE–PEG–COOH, DSPE–
PEG–maleimide, DSPE–PEG–NHS, etc.), followed by modification with antibodies. Few
examples of physical coating and streptavidin–biotin interaction can be found in antibody-
functionalized drug-loaded lipid nanoparticles. While antibody fragments have been used
occasionally, monoclonal antibodies (mAbs) are still at the forefront of antibody ligands.
In 1975, hybridoma technology enabled the large-scale production of mAbs, which are
antibodies against a single portion (epitope) of a specific antigen. To address clinical ef-
ficacy and safety issues, mAbs evolved from murine (suffix-omab) to chimeric (-ximab),
humanized (-zumab), and, later, human (-umab). Whereas chimeric mAbs combine murine
variable domains and human constant domains, in humanized mAbs, only CDRs are of
non-human origin [27].

The utilization of antibody-conjugated lipid nanoparticles in anticancer drug delivery
is discussed below, with several examples organized by nanoparticle type.

3.1. Antibody-Functionalized SLN

The lipids used to produce SLN are solid at both room temperature and human body
temperature [28].

In 2011, the development of cationic SLN functionalized with a monoclonal antibody
(mAb) directed against the epidermal growth factor receptor (EGFR) represented the first
step in antibody-mediated strategies using drug-loaded SLN in cancer therapy. By using
the microemulsion technique and EDC/NHS, Kuo and Liang fabricated anti-EGFR mAb-
grafted cationic SLN encapsulating carmustine [29] and DOX [30] to target and inhibit the
propagation of glioblastoma (GBM). When the concentration of cationic surfactants was
1 mM, the authors achieved the smallest particle size and maximal entrapment efficiency.
Moreover, a high percentage of cacao butter in the lipid phase led to enhanced viability
of human brain microvascular endothelial cells (HBMECs). Evidence from studies in
EGFR-overexpressing U-87 MG glioma cells supported the antiproliferative effects of the
targeted SLN, as well as the significance of surface anti-EGFR mAb for efficient drug
delivery. Given that melanotransferrin (MTf) is found on HBMEC and U-87 MG cells, Kuo
et al. [31] conjugated similar SLN with MTf antibody to deliver etoposide (ETP) across the
blood–brain barrier for GBM therapy. Based on cell viability and Transwell assays, it is
apparent that MTf antibody-conjugated ETP-loaded SLN had tolerable toxicity to HBMEC
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and human astrocytes, along with augmented transcytosis and growth inhibition of U-87
MG cells. As the design considerations become more complex, dual-targeted approaches
for ETP delivery to GBM make the scene. More precisely, SLN contains two targeting
ligands: MTf antibody plus tamoxifen to extend drug residence time within the brain
parenchyma [32]; and anti-EGFR mAb and 83-14 mAb that bind strongly to the human
insulin receptor on HBMEC prior to receptor-mediated endocytosis and subsequent brain
delivery [33].

In another work, Kim et al. [34] performed studies in preclinical mouse models of
lung or breast cancer, using paclitaxel (PTX)-containing low-density lipoprotein-mimicking
SLN bearing the tumor-targeting antibodies cetuximab (CTX) or trastuzumab (TZM). The
antitumor activity of these targeted SLN has exceeded that of the commercial formulations
of PTX (Taxol® and Genexol-PM), emphasizing the convenience of using nanocarriers and
further adding targeting moieties to their surface. Together with the targeting ability, the
antibody ligand may also have synergistic antitumor effects with the encapsulated drug. A
case in point is the synergistic activity of the encapsulated oxaliplatin and tumor-necrosis-
factor-related apoptosis-inducing ligand (TRAIL) mAb via SLN that elicited a 1.5-fold
increase in cytotoxicity in HT-29 (colorectal cancer) cells compared to the free drug [35].

To improve internalization in breast cancer cells, Souto et al. [36] explored the
streptavidin–biotin interaction to link cationic SLN with CAB51, a compact antibody
against the human epidermal growth factor receptor 2 (HER2). The results showing that
the targeting moiety enhanced cellular uptake in HER2-overexpressing BT-474 breast can-
cer cells inspired this author to adopt the same coupling strategy to engineer anti-HER2
CB11-modified cationic SLN for site-specific delivery of perillaldehyde 1,2-epoxide [37].

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype,
accounting for approximately 10–15% of all cases. Attempts to cure TNBC are often frus-
trated by the lack of expression of estrogen, progesterone, and HER2 receptors. Some
researchers sought to address this issue by functionalizing drug-loaded SLN with an-
tibodies against receptors overexpressed in TNBC cells: exon v6-containing cluster of
differentiation 44 isoform (CD44v6) [38], receptor for advanced glycation end-products
(RAGE) [39], and death receptor 5 (DR5) [40]. Cavaco et al. [38] decorated PTX entrapped
in SLN (SLNPTX) with polyethylene glycol-phosphatidylethanolamine and expected its
hydroxyl groups to bind to the N-terminal amino groups of anti-CD44v6 mAb. Differences
in MDA-MB-436 cell viability between the free drug and SLNPTX can be attributed to the
ability of nanoparticles to evade drug efflux transporters, thus promoting an increase in
intracellular accumulation of PTX. However, the attached antibody failed to ameliorate
the therapeutic efficacy of PTX compared to SLNPTX–PEG, thereby suggesting limitations
in receptor-mediated endocytosis. By contrast, the internalization and cytotoxic effect
of diallyl disulfide were significantly improved with an anti-RAGE antibody as the tar-
geting ligand [39]. Additionally, an increase in cell death was observed following the
treatment of MDA-MB-231 cells with anti-DR5 mAb-conjugated SLN of gamma-secretase
inhibitor, which aligns with higher tumor regression in a breast cancer mouse model
compared to non-targeted SLN or the free drug given intravenously (10 mg/kg) twice a
week for four weeks [40]. Building upon the success of these in vitro and in vivo studies,
Kumari et al. [41] hypothesized that introducing a second ligand, such as delta-like ligand 4
(DLL4) mAb, into this nanosystem would allow for the precise delivery to TNBC, reduction
of side effects, and synergistic benefits.

A summary of these research papers is given in Table 1.
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Table 1. Antibody-functionalized SLN for anticancer drug delivery.

Lipids Drug Ligands Coupling Method Cancer Cell (In Vitro) Cancer (In Vivo) Ref.

Cacao butter, SA
DSPE–PEG2000–COOH

Carmustine EGFR mAb Carbodiimide U-87 MG
(glioblastoma)

. [29]

Cacao butter, SA
DSPE–PEG2000–COOH

Doxorubicin EGFR mAb Carbodiimide U-87 MG
(glioblastoma)

- [30]

Tripalmitin, cacao butter
Cardiolipin, DSPE–PEG2000–COOH

Etoposide MTf Ab Carbodiimide U-87 MG
(glioblastoma)

- [31]

Compritol® 888 ATO, tripalmitin,
Ch, SA, DSPE–PEG2000–COOH

Etoposide MTf Ab
Tamoxifen

Carbodiimide U-87 MG
(glioblastoma)

- [32]

Compritol® 888 ATO, tripalmitin
Stearic acid, DSPE–PEG2000–COOH

Etoposide EGFR mAb
83-14 mAb

Carbodiimide U-87 MG
(glioblastoma)

- [33]

Cholesteryl oleate, triolein
Ch, DOPE, DC-cholesterol

Paclitaxel Cetuximab
Trastuzumab

Maleimide NCI-H1975, NCI-H1650
NCI-H520, PC9, SK-BR-3

Lung
Breast

[34]

SA Oxaliplatin TRAIL mAb Carbodiimide HT-29 (colorectal) - [35]

Compritol® 888 ATO - CAB51 Streptavidin-biotin MCF-7, BT-474 (breast) - [36]

Compritol® 888 ATO Perillaldehyde
1,2-epoxide

CB11 Streptavidin-biotin MCF-7 (breast) - [37]

Precirol® ATO 5, PEG–PE Paclitaxel CD44v6 mAb Hydroxyl-amino MDA-MB-436 (TNBC) - [38]

Palmitic acid Diallyl disulfide RAGE Ab Carbodiimide MDA-MB-231
(TNBC)

- [39]

SA DAPT DR5 mAb Carbodiimide MDA-MB-231 Breast [40]

CD44v6, CD44 variant 6; Ch, cholesterol; DAPT, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester; DC-cholesterol, 3β-[N-(N′,N′-dimethylaminutesoethane)-
carbamoyl] cholesterol hydrochloride; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DR5, death receptor 5; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine;
EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; MTf, melanotransferrin; PEG, polyethylene glycol; PEG–PE, polyethylene glycol–
phosphatidylethanolamine; RAGE, receptor for advanced glycation end-products; SA, stearic acid; TNBC, triple-negative breast cancer; TRAIL, tumor-necrosis-factor-related
apoptosis-inducing ligand.
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3.2. Antibody-Functionalized NLC

By including liquid lipids, NLC were endowed with great advantages over SLN,
namely improved stability and high drug loading with minimal drug leakage during
storage, arising from a less ordered crystalline structure [42].

The application of antibody-functionalized NLC in cancer chemotherapy has been
somewhat scarce. Still, the recent literature contains some examples described in this
section and listed in Table 2.

Taking advantage of vascular endothelial growth factor receptor 2 (VEGFR-2) overex-
pression in cancer cells and tumor neovasculature, Liu et al. [43] pioneered the “one-double
targeting” strategy, meaning one ligand for double (tumor and vascular) targeting, with
Flk-1(A-3) mAb. Due to the increased accumulation of docetaxel (DTX) in both tumor tissue
and tumor vasculature, Flk-1 mAb-targeted DTX-loaded NLC showed better antitumor
efficacy than non-targeted NLC and Duopafei® (free DTX) against three human (HepG2,
A549, and B16) cell lines and one malignant melanoma mouse model (dosage of 20 mg/kg).

For the targeting ligand coupled to DOX-loaded NLC by a post-insertion technique,
Abdolahpour et al. [44] prepared a mAb directed against EGFRvIII. While evaluating
the potential of the targeted NLC to increase cellular uptake, the authors observed that
the uptake percentage in HC2 20d2/c (EGFRvIII-transfected NIH-3T3) cells was higher
than that of NIH-3T3 cells, indicating that this antibody can specifically target EGFRvIII-
overexpressing cells.

After developing Herceptin® (TZM)-conjugated NLC containing DTX for HER2-
positive breast cancer [45], Varshosaz et al. [46] employed rituximab to target CD20 recep-
tors in lymphoma cells and selected the optimal NLC formulation co-loaded with curcumin
and imatinib (a tyrosine kinase inhibitor). The optimal formulation containing lecithin
and 25% of oleic acid was physically coated with a 20% rituximab solution, yielding an
antibody coupling efficiency of 89 ± 0.15%. The treatment of Ramos (CD20-positive) B cells
with the mixture of curcumin (15 µg/mL)/imatinib (5 µg/mL) (IC50 of 2.3 ± 0.1 µg/mL)
and uncoated curcumin/imatinib-loaded NLC (IC50 of 2.9 ± 0.2 µg/mL) induced lower cy-
totoxicity than rituximab-coated curcumin/imatinib-loaded NLC with an IC50 of
1.4 µg/mL.

With the aim of attenuating off-target toxicity and overcoming resistance to monother-
apy, NLC carrier systems and drug combination have garnered some interest in recent years.
For instance, Guo et al. [47] highlighted synergistic combination therapy in lung cancer by
preparing CTX-functionalized NLC co-encapsulating PTX and 5-demethylnobiletin. The
presence of CTX resulted in the highest drug accumulation in the tumor tissue and the
most remarkable tumor-growth inhibition from 1010.23 to 211.18 mm3 at the end of the
study in PTX-resistant-lung-cancer-bearing mice. Upon intravenous (i.v.) injection every
three days into mice bearing colorectal cancer xenografts, Liu et al. [48] verified a reduction
of tumor growth without systemic toxicity through the decoration of NLC co-delivering
irinotecan prodrug (2 mg/kg) and quercetin (2 mg/kg) with conatumumab/AMG 655
(anti-DR5 mAb).

Very recently, DTX-loaded NLC containing DSPE–PEG2000–maleimide was success-
fully coupled to thiolated bevacizumab (BVZ). The fabricated nanoformulation (BVZ-
NLC-DTX) selectively induced cell death by apoptosis in vascular endothelial growth
factor (VEGF)-overexpressing GBM cells (U-87 MG and A172), but not in peripheral blood
mononuclear cells. Unlike free DTX (5 mg/kg, i.v.), BVZ-NLC-DTX (5 mg/kg, i.v.) was
able to reduce up to 70% of tumor volume after a 15-day treatment in an orthotopic C6
glioma rat model [49].
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Table 2. Antibody-functionalized NLC for anticancer drug delivery.

Lipids Drug Ligands Coupling Method Cancer Cell (In Vitro) Cancer (In Vivo) Ref.

SA
Glyceryl monostearate
Middle chain triglycerides
DSPE–PEG–NH2

Docetaxel Flk-1(A-3) mAb BS3 crosslinker HepG2 (HCC)
A549 (lung)
B16 (melanoma)

Melanoma [43]

SA
Oleic acid
DSPE–PEG2000–NHS

Doxorubicin EGFRvIII mAb Amine-reactive
crosslinker

HC2 20d2/c - [44]

Cholesterol
Castor oil
SA
Fatty amines
NHS–PEG3K–maleimide

Docetaxel Trastuzumab Maleimide MDA-MB-468
BT-474 (breast)

- [45]

Glyceryl monostearate or
lecithin
Oleic acid or Labrafac®

Curcumin
Imatinib

Rituximab Ionic adsorption Jurkat and Ramos
(lymphoma)

- [46]

Oleic acid
Compritol® 888 ATO
Soybean phosphatidylcholine
DSPE–PEG–maleimide

Paclitaxel
5-Demethylnobiletin

Cetuximab Maleimide A549 Lung [47]

Glycerin monostearate
Soybean oil

Irinotecan prodrug
Quercetin

Conatumumab Carbodiimide HT-29 Colorectal [48]

DSPE–PEG2000–maleimide
Caprylic/capric triglyceride
PEG–40 hydrogenated castor oil

Docetaxel Bevacizumab Maleimide U-87 MG
A172

Glioblastoma [49]

BS3, bis(sulfosuccinimidyl)suberate; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; EGFR, epidermal growth factor receptor; HCC, hepatocellular carcinoma; mAb, monoclonal
antibody; NHS, N-hydroxysuccinimide; PEG, polyethylene glycol; SA, stearic acid.
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3.3. Antibody-Functionalized Liposomes

Liposomes are a subtype of lipid-based nanoparticles mainly composed of phospho-
lipids, which are amphiphilic molecules containing a hydrophilic head and a hydrophobic
tail [50]. Although SLN and NLC were introduced as an alternative due to stability prob-
lems, liposomes are still the carrier of choice for many researchers with the goal of treating
cancer with antibody-conjugated drug-loaded nanoparticles.

Targeted cancer therapies using antibody-functionalized liposomes are divided into
angiogenesis-associated targeting, uncontrolled cell-proliferation targeting, and tumor-cell
targeting that can be seen in subsequent sections.

3.3.1. Angiogenesis-Associated Targeting

Angiogenesis is one of the hallmarks of cancer, as it allows the tumor to receive
enough oxygen and nutrients to thrive [51]. In this strategy, liposomes encapsulating
anticancer drugs are conjugated to antibodies that bind to receptors overexpressed in
angiogenic endothelial cells, thus capitalizing on both antiangiogenic and cytotoxic effects
to improve therapeutic efficacy. The suppression of blood-vessel growth within the tu-
mor and normalization of tumor vasculature are the key mechanisms that underpin the
antiangiogenic contribution to cancer cell killing [52]. To date, the angiogenic targets of
antibody-functionalized liposomes for cancer therapy have been VEGF and its receptors,
as well as matrix metalloproteinases.

Considering the prevalence of VEGF and VEGFR-2 in tumor cells and endothelium, as
well as the low level of VEGF-induced endocytosis of VEGFR-2 in normal cells compared
to tumor cells, it is possible to achieve efficient targeted delivery of nanoparticles to VEGF-
and VEGFR-2-positive tumors. One prominent approach to angiogenesis-based targeting
via VEGF/VEGFR-2 system involves targeting VEGF to inhibit its binding to VEGFR-2.
Kuesters and Campbell [53] described the modification of PEGylated cationic liposomes
with BVZ (anti-VEGF mAb) through the addition of neutravidin and biotinylated BVZ.
From the experiments with human pancreatic cancer (Capan-1, HPAF-II, and PANC-1)
and endothelial (MS1-VEGF and HMEC-1) cell lines, it became evident that BVZ increases
or maintains the uptake of liposomes in the presence of VEGF but hinders non-specific
cellular uptake when VEGF is absent. Recently, anti-VEGF mAb-conjugated PEGylated pH-
sensitive liposomes were developed to augment the therapeutic efficacy of DTX in breast
cancer while minimizing its side effects [54]. This nanosystem was a vast improvement
over the marketed formulation Taxotere®, which showed a higher percentage of tumor
burden of ~75% (vs. ~35%) in breast-tumor-bearing rats receiving a single dose equivalent
to 2 mg/kg of free DTX. Additionally, Shein et al. [55] offered the first insight into the
active targeting of liposomes to the brain tumor, using a mAb directed against VEGF. These
targeted liposomes were then worked up into a more sophisticated liposomal formulation
of cisplatin by coupling thiolated mAbs directed against VEGF and VEGFR-2 via maleimide
chemistry [56]. Summarizing the in vitro data, the targeting moieties facilitated the uptake
of the targeted liposomes in C6 and U-87 MG glioma cells, known for high VEGF and
VEGFR-2 expression, leading to higher cytotoxicity than non-targeted and non-specific
IgG–liposomes.

Only one of the articles reviewed [57] reported the use of an antibody targeting the
membrane type 1-matrix metalloproteinase (MT1-MMP), particularly a Fab’ fragment
derived from an anti-human MT1-MMP mAb (222-1D8). Compared to unmodified lipo-
somes, modification with Fab’222-1D8 did not alter the tumor accumulation of PEGylated
liposomes but appeared to accelerate their uptake in MT1-MMP-positive HT1080 fibrosar-
coma cells after reaching the tumor via the EPR effect. The in vivo results also proved
the utility of DOX-loaded Fab’222 1D8-modified liposomes from the point of view of
antitumor activity.
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3.3.2. Uncontrolled Cell Proliferation Targeting

Here, drug-loaded liposomes are functionalized with antibodies directed against
receptors involved in cancer-cell proliferation that are overexpressed in tumor cells, such
as the human epidermal growth factor receptors and transferrin receptors. This strategy
holds a particular promise for eradicating metastatic cells or small tumors that are devoid
of new blood vessels.

To control the risk of idiosyncratic drug reactions and adverse reactions to afatinib
combined with CTX, Lu et al. [58] developed liposomes loaded with that drug and coupled
with CTX (IMC-C225 or Erbitux), a chimeric IgG1 mAb that binds to the extracellular
domain of EGFR. In a non-small cell lung cancer (NSCLC) xenograft model with EGFR
overexpression, those immunoliposomes showed a strongly enhanced ability for drug
delivery and tumor growth inhibition.

Targetability to EGFR-overexpressing tumors can also be applied to stimuli-responsive
nanocarriers. This is evidenced by sterically stabilized CTX-modified pH-responsive
liposomes encapsulating gemcitabine (GEM) that were tested in A549 lung adenocarcinoma
cells and NSCLC-bearing nude mice [59]. The apoptotic index in mice receiving the targeted
liposomal formulation of GEM (160 mg/kg) was higher than that of other treatment groups
and PBS-treated mice, and a good correlation between apoptosis and antitumor activity
was found.

The absence of estrogen, progesterone and HER2 receptors has led to a concept of
treating TNBC with EGFR-targeted liposomes carrying celecoxib [60], simvastatin [61], and
PTX and piperine [62] with promising in vitro outcomes.

Following the functionalization of 5-fluorouracil (5-FU)-loaded liposomes with CTX,
Petrilli et al. [63] investigated the influence of the administration route (topical or subcuta-
neous administration) on liposomal drug delivery in squamous cell carcinoma induced in
immunosuppressed mice. According to the histological analysis, topical administration of
5-FU-loaded immunoliposomes using iontophoresis was more effective than subcutaneous
injection in reducing cell proliferation and the remaining cells were less aggressive.

In another work [64], liposomes containing oxaliplatin were prepared and coupled
via thioether linkage to whole CTX or Fab’ fragments derived from CTX. The site-directed
conjugation to monovalent CTX-Fab’ fragments rendered liposomes with enhanced tumor
accumulation (2916.0 ± 507.84 ng/g) compared to CTX (1546.02 ± 362.41 ng/g) or in the
absence of targeting ligands (891.06 ± 155.1 ng/g), which also improved efficacy in mice
inoculated with EGFR-positive colorectal cancer cells and treated with three i.v. 2.5 mg/kg
doses at days 12, 15, and 18 post-cancer-cell implantation.

Eloy and colleagues [65] were the first to report on CTX-modified liposomes for the
selective delivery of DTX to prostate cancer after preparing TZM-functionalized liposomes
encapsulating rapamycin alone [66] or with PTX [67] to treat HER2-positive breast cancer.
While TZM (anti-HER2 mAb) and rapamycin acted synergistically in SK-BR-3 cells, partic-
ularly via liposomes, the role of the antibody in mediating synergism between rapamycin
and PTX was confirmed and attributed to improved cell uptake.

Also known as ErbB2 or CD340, HER2 regulates cell growth and proliferation and is
one of the most used surface receptors to target liposomes for breast cancer and others, such
as prostate cancer [68]. A growing number of therapeutic agents, namely bleomycin [69],
DTX [70,71], curcumin and resveratrol [72], idarubicin [73], and epirubicin [74], have
been proposed as payloads in breast cancer targeting, using TZM-conjugated liposomes.
With liposomes linked to listeriolysin O and TZM, the amount of bleomycin needed to
reduce tumor cell growth and viability is nearly 57,000-fold lower than the concentration
required if the drug is administered extracellularly [69]. Based on the pharmacokinetic
profile of TZM-coated vitamin E liposomes in male Sprague-Dawley rats, the half-life
of DTX was 1.9 and 10 times longer than PEG-coated DTX-loaded vitamin E liposomes
and a marketed formulation of DTX, respectively. Moreover, the area under the curve
(97,740 ng.h/mL) was 3.47 times higher than that of DTX upon i.v. injection at an equivalent
dose of 7 mg/kg [70]. Data from the in vivo distribution studies by Rodallec et al. [71]
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suggested that grafting TZM onto liposomes increases internalization rather than tumor
localization. When compared to reference treatments (i.e., DTX + TZM or TZM emtan-
sine), TZM-modified stealth liposomal DTX has greater efficacy in different breast cancer
models (2D, 3D spheroids, and orthotopic xenograft mice). By coating liposomes with
TZM, there was a dramatic increase in the antiproliferative effects of curcumin and resver-
atrol in HER2-overexpressing breast cancer cells [72]. The works by Amin et al. [73] and
Khaleseh et al. [74] showed that such a drug delivery system could be a good choice for
anthracyclines as well and provided a promising background for further in vivo studies.

The transferrin receptor (TfR) is another target for tumor-targeted delivery of lipo-
somes using antibodies, of which OX26 mAb is the most representative ligand. By making
use of the non-covalent (streptavidin–biotin) interaction, Schnyder et al. [75] described
a new method of coupling biotinylated PEG–liposomes with streptavidin-linked OX26
mAb. The potential of biotinylated immunoliposomes to bypass P-glycoprotein (P-gp) in
multidrug-resistant RBE4 brain capillary endothelial cells was manifested by a 2- to 3-fold
enhancement in intracellular accumulation of daunomycin compared to the free drug.
More recently, cisplatin-loaded PEGylated liposomes functionalized with OX26 mAb were
found to be internalized in C6 cells more efficiently than non-functionalized liposomes, as
well as having higher potency for enhanced therapeutic efficacy and less toxicity in brain-
tumor-bearing Wistar rats [76]. In addition, Kim et al. [77] decorated cationic liposomes
encapsulating temozolomide (TMZ) with an anti-TfR scFv to cross the blood–brain barrier
and target GBM once in the brain parenchyma. The authors demonstrated that systemic
administration of this novel formulation prolonged survival in mice bearing intracranial
GBM. Furthermore, its improved efficacy in both TMZ-sensitive and TMZ-resistant tumors
compared to standard TMZ was accompanied by a reduction in toxicity.

3.3.3. Tumor-Cell Targeting

Tumor-cell targeting involves many of the aforementioned targets, as well as others
specific to the type of cancer.

Due to the lack of oxygen, carbonic anhydrase IX (CA IX) is overexpressed in 80% of
NSCLC. Yang’s group conjugated anti-CA IX antibody to DSPE–PEG–maleimide in the
preformed DTX-loaded liposomes via sulfhydryl-reactive crosslinker chemistry [78]. A
fluorescence-based flow cytometry assay was carried out in A549 cells and revealed that
the binding affinity of targeted liposomes was 1.65-fold higher than non-targeted liposomes
in CA IX-positive NSCLC cells. Later, by restraining tumor growth and prolonging the
median survival time of up to 90 days in an orthotopic mouse model, they revalidated this
strategy to deliver triptolide to human NSCLC via the pulmonary route [79].

The consistent expression of disialoganglioside (GD2) antigen in neuroblastoma cells
and its limited expression in normal tissues outside the central nervous system opened the
possibility of using this target in the treatment of neuroblastoma. To illustrate, liposomal
formulations decorated with an anti-GD2 antibody and loaded with etoposide [80] and
sepantronium bromide (YM155) [81] have been produced.

Whilst initial efforts to eradicate melanoma lesions focused on eliminating CD20-
positive melanoma cancer-initiating cells with CD20 antibody-conjugated vincristine-
loaded liposomes [82], recent attention was directed towards the expression of melanoma
antigen A1 [83] and the programmed death-ligand 1 (PD-L1) [84] in melanoma cells. Since
PD-L1 expression has been detected in 50% of gastric cancer patients, this receptor is also
a target candidate for nanoparticle internalization in gastric cancer cells. Accordingly,
the overall goal of improving the co-delivery of PTX and tariquidar (P-gp inhibitor) to
multidrug-resistant SGC7901/ADR xenograft tumors could be achieved with anti-PD-L1
mAb-conjugated liposomes [85].

Within the scope of combination therapy, synergistic effects have been observed in pan-
creatic cancer cells when GEM was co-encapsulated with PTX in liposomes functionalized
with the antibody fragment [86].
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To refine the therapeutic efficacy of Doxil® in hepatocellular carcinoma (HCC),
Wang et al. [87] chose a post-insertion strategy to modify PEGylated liposomal DOX
with the bivalent fragment HAb18 F(ab’)2 named Metuximab, which resulted in increased
antitumor efficacy in CD147-overexpressing liver cancer cells and Huh-7 tumor xenografts.
Concurrently, Lu et al. [88] constructed anti-CD44 antibody-modified liposomes to enhance
the therapeutic index of timosaponin AIII in HCC. CD44 has also been recognized as a
marker for cancer stem cells and is frequently expressed in several malignancies, includ-
ing ovarian and colon cancers. As such, an anti-human CD44 mAb was employed to
direct glycosylated PTX-loaded liposomes to CD44-positive ovarian cancer cells with great
success [89].

Regarding colon cancer treatment, researchers proved the feasibility of coupling
Doxil® with anti-CD44 mAb [90] and anti-CD133 mAb [91] and accomplished higher
therapeutic efficacy compared to other treatments (non-targeted Doxil® and free DOX)
against CD44-positive C-26 cells (in vitro and in vivo) and CD133-positive HT-29 cells,
respectively. Based on preliminary findings [92], the progression of metastatic colorectal
cancer could be haltered by 5-FU-loaded liposomes covalently linked to an antibody against
the Frizzled 10 protein.

At the end of this subsection, Table 3 summarizes antibody-functionalized liposomes
reported in papers from 2017 to 2022.

Table 3. Antibody-functionalized liposomes for anticancer drug delivery.

Lipids Drug Ligands Coupling
Method

Cancer Cell
(In Vitro) Cancer (In Vivo) Ref.

Soya lecithin, Ch, DOPE
CHEMS,
DSPE–PEG–COOH

Docetaxel VEGF mAb Carbodiimide MCF-7 Breast [54]

HSPC, Ch, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Afatinib Cetuximab Maleimide A549
H1975 NSCLC [58]

HSPC, DSPC, Ch,
DSPE–PEG
DSPE–PEG–maleimide

Simvastatin Cetuximab Maleimide MDA-MB-231 TNBC [61]

HSPC, Ch
(TPGS and TPGS–COOH)

Paclitaxel
Piperine Cetuximab Carbodiimide MDA-MB-231

(TNBC) - [62]

DSPC, Ch
DSPE–PEG–maleimide 5-Fluorouracil Cetuximab Maleimide A431

B16F10
Squamous cell
carcinoma [63]

SPC, Ch, DSPE–PEG2000
DSPE–PEG–maleimide Docetaxel Cetuximab Maleimide DU145

PC-3 (prostate) - [65]

SPC, Ch, DSPE–PEG2000
DSPE–PEG–maleimide Rapamycin Trastuzumab Maleimide MDA-MB-231

SK-BR-3 (breast) - [66]

SPC, Ch, DSPE–PEG2000
DSPE–PEG–maleimide

Rapamycin
Paclitaxel Trastuzumab Maleimide 4T1

SK-BR-3 Breast [67]

SPC, Ch
DSPE–PEG2000–NHS

Doxorubicin
Simvastatin Trastuzumab Amine-reactive

crosslinker PC3 Prostate [68]

Phosphatidylcholine
Phosphatidylglycerol
Ch, maleimide–PEG

Docetaxel Trastuzumab Maleimide SK-BR-3 Breast [71]

SPC, Ch, DSPE–PEG
DSPE–PEG–maleimide Idarubicin Trastuzumab Maleimide MCF-7

SK-BR-3 (breast) - [73]

DOPE, Ch Epirubicin Trastuzumab Carbodiimide
MCF-7,
MDA-MB-453
BT-20 (breast)

- [74]
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Table 3. Cont.

Lipids Drug Ligands Coupling
Method

Cancer Cell
(In Vitro) Cancer (In Vivo) Ref.

Lecithin, Ch,
DSPE–PEG2000
DSPE–PEG2000–
maleimide

Cisplatin OX26 mAb Maleimide C6 Glioma [76]

SPC, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Triptolide CA IX Ab Maleimide A549 NSCLC [79]

DPPC, Ch, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Sepantronium
bromide GD2 Ab Maleimide IMR32

KCNR Neuroblastoma [81]

HSPC, Ch, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Doxorubicin scFv G8
Hyb3 Maleimide MZ2Mel43, G43

Mel2A, Mel78 Melanoma [83]

HSPC, Ch, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Doxorubicin PD-L1 mAb Maleimide B16-OVA Melanoma [84]

Egg phosphatidylcholine
DOPE, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Paclitaxel
Tariquidar PD-L1 mAb Maleimide SGC7901/ADR Gastric [85]

DPPC, Ch, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Paclitaxel Ab fragment Maleimide BxPC3
(pancreatic) - [86]

DSPE–PEG2000–
maleimide Doxil® Metuximab Maleimide Huh-7, HepG2

HCC 3736 HCC [87]

DSPC, DSPE–PEG2000
DSPE–PEG2000–
maleimide

Timosaponin AIII CD44 Ab Maleimide HepG2 HCC [88]

DPPC, Ch, mPEG–DSPE
DSPE–PEG2000–
maleimide

Glycosylated
paclitaxel CD44 mAb Maleimide

SK-OV-3,
OVCAR-3
OVK18

Ovarian [89]

mPEG2000–DSPE
DSPE–PEG3400–NHS Doxil® CD133 mAb Amine-reactive

crosslinker HT-29 (colorectal) - [91]

Ch, Phosphatidylcholine
Stearylamine,
DSPE–PEG2000
DSPE–PEG2000–COOH

5-Fluorouracil FZD10 Ab Carbodiimide
CaCo-2
CoLo-205
(colorectal)

- [92]

CA, carbonic anhydrase; CD, cluster of differentiation; Ch, cholesterol; CHEMS, cholesteryl hemisuccinate; DOPE,
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DSPC, 1,2-
distearoyl-sn-glycero-3-phosphocholine; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; FZD10, frizzled
10 protein; GD2, disialoganglioside; HCC, hepatocellular carcinoma; HSPC, hydrogenated soy phosphatidyl-
choline; NHS, N-hydroxysuccinimide; NSCLC, non-small cell lung cancer; PD-L1, programmed death-ligand 1;
PEG, polyethylene glycol; SPC, soy phosphatidylcholine; TNBC, triple-negative breast cancer; TPGS, PEGylated
vitamin E succinate; VEGF, vascular endothelial growth factor.

3.3.4. Other Antibody-Functionalized Lipid-Based Nanoparticles

Another notable subset of lipid-based nanoparticles is commonly referred to as
lipid–polymer hybrid (LPH) nanoparticles. These core–shell-type systems encompass
attributes of lipids and polymers, as they consist of an inner lipid layer surrounding the
polymer core that encapsulates the drug and an outer lipid–PEG layer, which prevents
immune recognition and extends in vivo circulation time [93]. Since the outermost layer can
be modified with different targeting ligands, such as antibodies, targeted cancer therapies
using LPH nanoparticles (Table 4) are becoming increasingly popular.

The core of LPH nanoparticles usually comprises biodegradable polymers, such
as polylactic-co-glycolic acid (PLGA). Hu et al. [94] conjugated LPH nanoparticles to a
half-antibody against the carcinoembryonic antigen, overexpressed in 90% of pancreatic
tumors. These authors confirmed the integrity of the PLGA core–lipid shell structure
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after internalization in BxPC-3 pancreatic cells, as well as the superior cytotoxicity of
targeted PTX-loaded nanoparticles compared to non-targeted counterparts. In a therapeutic
approach for HCC chemotherapy, a PLGA core containing adriamycin was covered by
soybean lecithin/DSPE–PEG in the shell and further coated with anti-EGFR Fab’ [95]. More
recently, Wei et al. [96] designed salinomycin-loaded PLGA-lipid nanoparticles linked to
anti-CD44 Fab’ to eliminate prostate-cancer-initiating cells.

To achieve the targeted co-delivery of cisplatin and 5-FU to HER2-overexpressing
esophageal adenocarcinoma, TZM was conjugated to the surface of LPH nanoparticles
formulated by the unique combination of DSPE–PEG–COOH, soy phosphatidylcholine,
and poly(ε-caprolactone) [97].

Compared to the whole antibody molecule, anti-CD33 Fab’-decorated LPH nanopar-
ticles had longer circulation times in naïve mice and enabled higher levels of 1-β-D-
arabinofuranosylcytosine in blood. Unfortunately, when it comes to prolonging the survival
of leukemic mice, the incorporation of a pH-sensitive copolymer made of dioctadecyl, N-
isopropyl acrylamide and methacrylic acid did not add any benefit to the formulation [98].

Differently, Leung et al. [99] reported the chemical conjugation of organic–inorganic
hybrid nanovesicles to anti-EGFR mAbs, which retain the ability to bind to EGFR and
inhibit A431 epidermoid carcinoma cell proliferation. It is noteworthy that the surface
polysiloxane network makes these lipid nanovesicles more morphologically stable than
conventional liposomes. Another alternative to liposomes are niosomes, that is to say, lipid
nanovesicles based on non-ionic surfactants [100]. Anti-CD123 antibodies conjugated to
maleimide–PEG2000–DSPE were incorporated into daunorubicin-loaded niosomes via a
post-insertion technique for treating acute myeloid leukemia. The obtained niosomes were
tested in NB4 and THP-1 cells and CD123-overexpressing leukemic mice, showing higher
cytotoxicity and prolonged survival time [101].

Table 4. Other antibody-functionalized lipid nanoparticles for anticancer drug delivery.

Nanocarrier Drug Ligands Coupling
Method

Cancer Cell
(In Vitro)

Cancer
(In Vivo) Ref.

Lipid–polymer hybrid NP Paclitaxel CEA half-Ab Maleimide
BxPC-3
XPA-3
(pancreatic)

- [94]

Lipid–polymer hybrid NP Adriamycin EGFR Fab’ Maleimide
SMMC-7721
HepG2
Huh7

HCC [95]

Lipid–polymer hybrid NP Salinomycin CD44 Fab’ Maleimide DU145
22RV1 Prostate [96]

Lipid–polymer hybrid NP Cisplatin
5-Fluorouracil Trastuzumab Carbodiimide BE-3 Esophageal [97]

Lipid–polymer hybrid NP Ara-C CD33 mAb or
Fab’ Maleimide HL-60 AML [98]

Lipid nanovesicles - EGFR mAb Maleimide

DU145
(prostate)
A431
(epidermoid
carcinoma)

- [99]

Niosome Daunorubicin CD123 Maleimide NB4
THP-1 AML [101]

Cubosome Paclitaxel EGFR 528 Fab’ Maleimide HEY Ovarian [102]

AML, acute myeloid leukemia; Ara-C, 1-β-D-arabinofuranosylcytosine; CD, cluster of differentiation; CEA, carci-
noembryonic antigen; EGFR, epidermal growth factor receptor; HCC, hepatocellular carcinoma; NP, nanoparticle.
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Finally, Zhai and colleagues [102] proposed liquid-crystalline lipid carriers (i.e., cu-
bosomes) as targeted delivery vehicles for PTX in aggressive ovarian cancer. By adding
DSPE–PEG–maleimide to the formulation, it was possible to functionalize cubic-phase
lipid nanoparticles with EGFR 528 Fab’. Still, this surface modification did not improve
their performance either in vitro or in vivo compared to PTX-loaded cubosomes without
the antibody.

3.4. Clinical Trials

Although the literature portrays a picture of potential therapeutic benefits and low
systemic toxicity, the number of antibody-functionalized nanoparticles available to cancer
patients is drastically below expectation, partially owing to a translational gap between
preclinical and clinical studies. None of these nanoconjugates has been approved so far,
but several candidates for the treatment of solid tumors have entered the clinical testing
phase, including (i) anti-TfR scFv-modified liposomes carrying plasmid DNA (e.g., SGT-53
and SGT-94) [103,104]; (ii) a dendritic cell-targeted liposomal vaccine called Lipovaxin-
MM [105]; (iii) bacterially derived mini- or nano-cells (EnGeneIC delivery vehicles or EDV)
coupled to bispecific antibodies (e.g., Erbitux®EDVsPAC, EGFR(V)-EDV-Dox, and EED-
VsMit) [106,107]; and (iv) antibody-directed liposomes encapsulating chemotherapeutic
drugs (e.g., MM-310, MM-302, C225-ILs-Dox, and MCC-465) [108–111].

Whereas MM-310 is an anti-ephrin A2 scFv attached to liposome encapsulating a DTX
prodrug, MM-302 and C225-ILs-dox stem from the modification of a liposomal formulation
resembling Doxil® with post-inserted anti-HER scFv and CTX Fab’, respectively.

A study [112] using multiple tumor-xenografted mice was the basis for initiating a
phase 1 clinical trial (NCT03076372) to assess the safety and efficacy of MM-310 in multiple
solid tumors. Kamoun et al. [113] determined its preclinical efficacy in four ephrin A2-
positive patient-derived xenograft models of bladder cancer, either as a monotherapy or in
combination with GEM.

A phase 1 dose-escalation study (NCT01304797) evaluated the safety, tolerability, and
pharmacokinetics of MM-302 as a monotherapy, in combination with TZM, or TZM plus cy-
clophosphamide in patients with advanced HER2-positive breast cancer. This study is now
completed, and the recommended dose for a phase 2 study was MM-302 30 mg/m2 in com-
bination with 6 mg/kg TZM every 3 weeks. In addition, Espelin et al. [114] demonstrated
the synergistic antitumor activity of MM-302 combined with TZM in human xenograft
models of breast and gastric cancer. This work provided the preclinical foundation for
the HERMIONE clinical trial (NCT02213744) in anthracycline-naïve patients with locally
advanced/metastatic HER2-positive breast cancer patients receiving MM-302 plus TZM
versus the chemotherapy of physician’s choice (GEM, capecitabine, or vinorelbine) plus
TZM. Unfortunately, in 2016, Merrimack Pharmaceuticals decided to halt further develop-
ment of MM-302 due to negative outcomes. Later, in 2019, the observation of cumulative
peripheral neuropathy in a phase 1 study precluded the possibility of continuing the
development of MM-310.

After a phase 1 dose-escalation trial (NCT01702129) in advanced solid tumors, C225-
ILs-Dox was clinically evaluated in patients with relapsed or refractory high-grade gliomas
(NCT03603379). Although the delivery of C225-ILs-dox to glioblastoma tissue was demon-
strated, no other definitive conclusions can be drawn from this trial, as there was no control
group, and only a few patients were treated [115]. The DOX-loaded PEGylated immunoli-
posome termed MCC-465 utilizes the F(ab’)2 fragment of human GAH mAb as the targeting
ligand, which positively reacts to over 90% of gastric cancer tissues but negatively to all
normal tissues. A phase 1 study of MCC-465 conducted in patients with metastatic gastric
cancer established the recommended dose of 32.5 mg/m2 for a phase 2 study with a 3-week
schedule, but recent updates are missing [111].
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4. Conclusions

As drug delivery systems, lipid-based nanoparticles offer many advantages, including
biocompatibility, self-assembly, enhancement of drug solubility and bioavailability, high
loading capacity, ease of production and modulation of drug release, cost-effectiveness,
and feasibility of scale-up. Consequently, this type of nanocarrier has gained significant
attention from researchers in both academia and industry over the past two to three
decades. With the advances in bioconjugation and antibody engineering techniques, the
development of antibody-functionalized lipid nanoparticles for anticancer drug delivery
has been widespread, generating promising results in vitro and in small animal models.
However, only a small number of these targeted nanomedicines have progressed into early
clinical evaluation, and none has reached the market yet. Therefore, understanding the
reasons for their underperformance in clinical settings is critical to guide future directions.

First, the physical characterization of nanoparticles deserves a robust strategy and
suitable protocols, as it could help accelerate the shift from lab to industrial-scale production
and anticipate their behavior in vivo [116]. In the quest for new knowledge regarding
nanoparticle interactions with biological components, the use of different tools, such as
computational analysis, mathematical modeling, and microfluidic platforms, should also
be intensified.

Still, we must be aware that only a tiny fraction (less than 14 out of 1 million) of
nanoparticles with an active targeting moiety can enter the solid tumor after intravenous
injection [117], so it is convenient to consider local administration (e.g., intratumoral
injection) whenever possible [118].

Many recent studies have simply outlined the toxic effects of nanoparticles, but only a
few have systematically addressed their potentially adverse impact on mammalian target
organs and after chronic exposure [119,120]. In addition to the assessment of bulk mate-
rial safety, researchers should perform a thorough characterization of the nanoparticles,
including analysis of batch-to-batch differences regarding consistency, stability, sterility
and endotoxin quantification, blood contact properties, and in vivo cytotoxicity and im-
munotoxicology, to prevent toxicity-related clinical failure [121]. Accordingly, standardized
guidelines to obtain nanotoxicological profiles should be implemented and followed to
evaluate the potential risk in patients [122].

The discrepancy between preclinical and clinical observations is also explained by
artificial rodent tumors that fail to mimic human tumors regarding transport and delivery.
Accordingly, the development of in vivo models that closely reflect human cancer biology
(e.g., high-fidelity patient-derived xenografts, humanized or genetically engineered mouse
models, etc.) will certainly increase their predictive power.

Besides pathophysiological differences between animal model species and humans,
heterogeneity amongst patients and tumor types or within the same patient over time, in
terms of molecular and phenotypic features and the extent of the EPR effect, can also limit
the clinical success of nanomedicines. Therefore, it is recommended to quantify the EPR
effect in patient tumors to identify those who would benefit most from the treatment with
therapeutic nanoparticles. Selecting the right patients is pivotal to the success of clinical
trials, as well as finding the most suitable payload/combination regimen and trial size.

Despite the lack of translation progress, active targeting of nanoparticles remains
an exciting research topic for cancer therapy, as antibody-conjugated lipid nanoparticles
incorporating novel classes of therapeutics (e.g., RNA-based and gene editing therapeutics)
other than cytotoxic drugs and kinase inhibitors are emerging. Looking to the future,
one can expect more interdisciplinary research collaborations to open new avenues for
the development of tumor-targeted lipid nanoparticle systems and, thus, hasten their
clinical validation.
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