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Abstract: The field of targeted protein degradation is growing exponentially. Yet, there is an unmet
need for pharmacokinetic/pharmacodynamic models that provide mechanistic insights, while also
being practically useful in a drug discovery setting. Therefore, we have developed a comprehensive
modeling framework which can be applied to experimental data from routine projects to: (1) assess
PROTACs based on accurate degradation metrics, (2) guide compound optimization of the most
critical parameters, and (3) link degradation to downstream pharmacodynamic effects. The presented
framework contains a number of first-time features: (1) a mechanistic model to fit the hook effect
in the PROTAC concentration-degradation profile, (2) quantification of the role of target occupancy
in the PROTAC mechanism of action and (3) deconvolution of the effects of target degradation and
target inhibition by PROTACs on the overall pharmacodynamic response. To illustrate applicability
and to build confidence, we have employed these three models to analyze exemplary data on various
compounds from different projects and targets. The presented framework allows researchers to tailor
their experimental work and to arrive at a better understanding of their results, ultimately leading to
more successful PROTAC discovery. While the focus here lies on in vitro pharmacology experiments,
key implications for in vivo studies are also discussed.

Keywords: PK/PD; targeted protein degradation; proteolysis targeting chimera; PROTAC; event-
driven pharmacology; hook effect; model-informed drug discovery; translational pharmacology;
experimental design

1. Introduction

Targeted protein degradation (TPD) is a rapidly growing novel therapeutic approach.
It utilizes the cell’s ubiquitin proteasome system (UPS) to specifically degrade and thus
completely remove target proteins instead of inhibiting their function as most drugs do [1].
The TPD approach employs heterobifunctional drug molecules, so-called proteolysis tar-
geting chimeras (PROTACs), that simultaneously bind to a target protein and an E3 ligase
to form a ternary complex. The target protein, also referred to as protein of interest (POI),
is then polyubiquitinated by the selected E3 ligase which in turn triggers its degradation by
the proteasome [2].

In recent years, the field has been growing exponentially [3,4] with several PROTACs
having entered clinical trial status [5]. Yet, there are only few publications on PK/PD
models that quantitatively link pharmacokinetics (PK) with their unique mechanism of
action (MOA) and downstream pharmacodynamic (PD) effects. Of those, the ones that are
best established focus on describing ternary complex formation mathematically [6,7]. In
contrast, quantitative modeling of the so-called event-driven MOA of PROTACs, as opposed
to the occupancy-driven MOA of classical inhibitors, is only in its infancy. Recently, Bartlett
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and Gilbert generated a theoretical PK/PD model [8] which however was only sparsely
applied to experimental data. We have therefore set out to develop a mechanistic PK/PD
modeling framework which is directly applicable to data as generated in early PROTAC
drug discovery projects.

This framework provides practical guidance for project teams engaged in the quanti-
tative assessment and rational optimization of PROTACs. We have used published and
in-house experimental data to validate our models and to demonstrate their practical
utility. Moreover, we only use parameters that are readily accessible to project teams. To
ensure its translational value, our framework is built on the three pillars of clinical success
concept which has become a hallmark of model-informed drug discovery and development
(MID3) [9–11]. The concept was recently applied to PROTACs [12] and expanded to four
pillars of translational pharmacology where successful drug action requires the drug to (I) be
sufficiently exposed to its target(s), (II) engage its target(s), and (III) modulate the activity of
its target(s), which in turn (IV) elicits the desired downstream pharmacodynamic effect(s)
(see Figure 1). In the present article, we focus exclusively on pillars II–IV (PD) since, in the
early phases of a project, assessment and optimization of compounds is based mainly on
in vitro studies. For considerations on pillar I, i.e., the pharmacokinetics (PK) of PROTACs,
please refer to recent publications by Pike et al. [13] and Cantrill et al. [14].

Pharmaceutics 2023, 15, x FOR PEER REVIEW 2 of 27 
 

 

to the occupancy-driven MOA of classical inhibitors, is only in its infancy. Recently, Bartlett 

and Gilbert generated a theoretical PK/PD model [8] which however was only sparsely 

applied to experimental data. We have therefore set out to develop a mechanistic PK/PD 

modeling framework which is directly applicable to data as generated in early PROTAC 

drug discovery projects. 

This framework provides practical guidance for project teams engaged in the quan-

titative assessment and rational optimization of PROTACs. We have used published and 

in-house experimental data to validate our models and to demonstrate their practical util-

ity. Moreover, we only use parameters that are readily accessible to project teams. To en-

sure its translational value, our framework is built on the three pillars of clinical success con-

cept which has become a hallmark of model-informed drug discovery and development 

(MID3) [9–11]. The concept was recently applied to PROTACs [12] and expanded to four 

pillars of translational pharmacology where successful drug action requires the drug to (I) be 

sufficiently exposed to its target(s), (II) engage its target(s), and (III) modulate the activity 

of its target(s), which in turn (IV) elicits the desired downstream pharmacodynamic ef-

fect(s) (see Figure 1). In the present article, we focus exclusively on pillars II–IV (PD) since, 

in the early phases of a project, assessment and optimization of compounds is based 

mainly on in vitro studies. For considerations on pillar I, i.e., the pharmacokinetics (PK) 

of PROTACs, please refer to recent publications by Pike et al. [13] and Cantrill et al. [14]. 

 

Figure 1. The concept of the four pillars of translational pharmacology is applied to PROTACs. First, 

the PROTAC has to get access to its site of action. Next, it must bind to both the target protein as 

well as the targeted E3 ligase to form a ternary complex. That ternary complex must then mark the 

target protein for degradation by the proteasome. Finally, degradation of the target protein together 

with inhibition of what activity remains must translate to the relevant downstream effect. 

The presented modeling framework has three principal areas of application which 

have not been addressed in a satisfactory manner before. First, it allows to estimate key 

degradation parameters such as 𝐷max (the maximal extent of degradation) and 𝐷𝐶50 (the 

PROTAC concentration that produces half-maximal degradation) even if the experi-

mental system is not at steady state. These accurate estimates can then be used to establish 

more solid structure-activity relationships by avoiding mis-ranking of compounds. Fur-

thermore, they will also inform the selection of the most promising compounds for the 

next experimental testing steps. Our model thus is a powerful tool for optimizing the de-

sign of in vitro experiments, and to maximize their value while minimizing experimental 

efforts. 

The second application area of the modeling framework is geared towards the ra-

tional optimization of PROTACs with regard to target protein degradation. There, the 

model allows to simulate the impact of the PROTAC’s binding affinities for POI and E3 

ligase on degradation. Thus, it provides target values for the optimization of these param-

eters and informs the design of follow-up compounds. In addition, the model gives key 

            
            

          
        

      
       

        
       

      
       

         
       

      

        

       

          

      

          

  

       

        

Figure 1. The concept of the four pillars of translational pharmacology is applied to PROTACs. First,
the PROTAC has to get access to its site of action. Next, it must bind to both the target protein as well
as the targeted E3 ligase to form a ternary complex. That ternary complex must then mark the target
protein for degradation by the proteasome. Finally, degradation of the target protein together with
inhibition of what activity remains must translate to the relevant downstream effect.

The presented modeling framework has three principal areas of application which
have not been addressed in a satisfactory manner before. First, it allows to estimate key
degradation parameters such as Dmax (the maximal extent of degradation) and DC50 (the
PROTAC concentration that produces half-maximal degradation) even if the experimental
system is not at steady state. These accurate estimates can then be used to establish more
solid structure-activity relationships by avoiding mis-ranking of compounds. Furthermore,
they will also inform the selection of the most promising compounds for the next experi-
mental testing steps. Our model thus is a powerful tool for optimizing the design of in vitro
experiments, and to maximize their value while minimizing experimental efforts.

The second application area of the modeling framework is geared towards the rational
optimization of PROTACs with regard to target protein degradation. There, the model
allows to simulate the impact of the PROTAC’s binding affinities for POI and E3 ligase on
degradation. Thus, it provides target values for the optimization of these parameters and
informs the design of follow-up compounds. In addition, the model gives key insight into
what levels of target occupancy and catalytic efficiency of the PROTAC have been achieved
in the selected cellular system.
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The third application area of the modeling framework lies in quantitatively linking
target protein degradation to downstream pharmacodynamic effects. This part of the
model furthermore allows to delineate the relative contributions to the overall PD effect of
target degradation and target inhibition. Target inhibition by the PROTAC occurs if the POI
binding moiety derives from an inhibitor as very often is the case. This composite MOA
has important implications for the downstream translation of the hook effect.

The presented modeling framework is not only a very practical toolbox for project
teams, but it also provides important mechanistic insights that were not accessible before.
For example, it highlights how important target occupancy is despite PROTAC action
often being classified as event-driven. Moreover, it allows to quantitatively delineate
multiple MOAs. Our modeling framework is novel as it contains several features for
the first-time and readily enables model-informed assessment and optimization in early
PROTAC drug discovery. While the present article focuses on in vitro degradation and
PD data, an extension of the modeling framework towards in vivo will be subject of a
separate publication.

2. Materials and Methods
2.1. Modeling Approach

We aimed to generate a PK/PD modeling framework that is directly applicable for
the typical questions in early PROTAC drug discovery. Moreover, we wanted it to also
reflect the PROTAC MOA and thus we combined the fit-for-purpose approach with experi-
mentally driven learn-and-confirm cycles. Ultimately, we set out to derive a clear rational
guidance for project teams with translational value spanning from target degradation to
the desired pharmacological effects. The model was built and validated using in-house and
literature data, which were extracted from the respective publications using version 4.5 of
the WebPlotDigitizer tool [15]. Data analysis was conducted in R version 4.1.2 [16] using
the integrated development environment R-Studio version 2022.07.2+576 [17]. Statistical
significance was assessed based on t-tests conducted on a 95% confidence level.

2.2. Pillar II—Target Engagement

In contrast to conventional small molecule drugs, PROTACs are bispecific that is they
have two different targets: the target protein (POI), which is to be degraded, and the E3
ligase (E3) that marks the target protein for UPS-mediated degradation. The PROTAC binds
to both of its targets one by one, which initially yields a binary complex (POI_PROTAC or
PROTAC_E3) and ultimately affords the ternary complex (POI_PROTAC_E3). As degrada-
tion completely relies on ternary complex formation, target engagement (TE) is defined as
the fraction of total target protein (P) that is in a ternary complex (TC):

TE :=
TC
P

. (1)

We describe complex formation with the respective thermodynamic equilibrium
constants according to a rapid equilibrium model [18]. The propensity to form binary
complexes is given by the complex dissociation constants (KD,P and KD,E), while the coop-
erativity factor (α) links binary complex affinities to ternary complex affinity. With regard
to concentrations, the total (i.e., the sum of unbound and bound to PROTAC) levels of
targeted E3 ligase are assumed to be constant over time (E0). In vitro, the same should
hold true for the unbound PROTAC concentrations (C). Utilizing an expression for the
relationship between drug exposure and ternary complex formation derived by Han [6]
(Equation (2-1) in Ref. [6]), target engagement can be written as:

TE =
1
2
×

1 +
E0

P
+

(KD,P + C)× (KD,E + C)
P× α× C

−

√(
1 +

E0

P
+

(KD,P + C)× (KD,E + C)
P× α× C

)2

− 4× E0

P

 . (2)
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If we assume that the cell’s degradation machinery, including the targeted E3 ligase,
does not get saturated by the target protein, this becomes (see Appendix A for derivation):

TE =
α× E0

α× E0 + KD,P + KD,E + KD,P × KD,E × 1
C + C

. (3)

The rationale behind the above assumption is to write TE as an expression that does not
depend on target protein levels. Thus, P0 does not show up in Equation (3) and, therefore,
also does not have to be determined experimentally (see Section 4 for implications).

2.3. Pillar III—Target Modulation

Target modulation (TM) quantifies how much baseline target activity has been altered.
For PROTACs, we define it as the relative difference between baseline levels of target
protein (P0) and levels of active protein (Pa) remaining after drug application:

TM :=
P0 − Pa

P0
= 1− Pa

P0
. (4)

The target binding moieties of PROTACs are commonly based on small molecule
inhibitors. Therefore, besides degrading the target protein, PROTACs also inhibit what
activity remains. Thus, it makes sense to think of target modulation in terms of the fraction
of the target that is degraded (D) and the fraction of the (remaining) target that is inhibited
(I). The levels of active protein remaining after drug application are then given by the
fraction of target protein that is neither degraded nor inhibited:

Pa

P0
= (1− D)× (1− I) . (5)

Inserting this expression into Equation (4) allows to link target modulation to degra-
dation and inhibition:

TM = 1− (1− D)× (1− I) = D + I − D× I . (6)

2.4. Pillar III.a—Target Degradation

The extent of target degradation (D) is defined in terms of the amount of target protein
remaining relative to baseline:

D := 1− P
P0

. (7)

The kinetics of PROTAC-mediated degradation are commonly described by an indirect
response model as was pointed out in a review by Bartlett and Gilbert [19] (Equation (3) in
Ref. [19]). The change in relative target levels over time (t) can then be written as:

d
dt

(
P
P0

)
= kdeg,P − kdeg,P ×

P
P0
− kcat × TE× P

P0
. (8)

There are two competing processes at play here. On the one hand, there is the cell’s
intrinsic protein turnover, which is governed by a first-order rate constant (kdeg,P). On
the other hand, there is the degradation that is catalyzed by the PROTAC, which has its
own rate constant associated with it (kcat). Inspecting Equation (3) reveals that, in vitro,
target engagement does not change over time, which allows to readily solve the above
differential equation:

P
P0

= 1− kcat × TE
kdeg,P + kcat × TE

×
(

1− exp
(
−
(

kdeg,P + kcat × TE
)
× t
))

. (9)
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Applying the definition for target degradation (Equation (7)) and expressing target
protein turnover in terms of its half-life (t1/2,P) gives:

D =
kcat × t1/2,P × TE

ln(2) + kcat × t1/2,P × TE
×
(

1− exp
(
−
(

ln(2)
t1/2,P

+ kcat × TE
)
× t
))

. (10)

Finally, inserting the expression for target engagement (Equation (3)) yields what we
will call the kcat model:

D(C, t) = Dss(C)×
(

1− exp
(
− ln(2)×t

t1/2,P×(1−Dss(C))

))
,

where : Dss(C) =
α×E0×kcat×t1/2,P× 1

ln(2)

α×E0×kcat×t1/2,P× 1
ln(2)+α×E0+

KD,P×KD,E
C +KD,P+KD,E+C

.
(11)

The term Dss in the above equation refers to the degradation at steady state that is the
extent of degradation if incubation went on indefinitely.

Lumping together the parameters in the expression for Dss above, gives what we will
call the hook model:

D(C) = Dmax×
DC50

2 + DCmax
2 − 2× DC50 × DCmax

DC502 + DCmax2 − 4× DC50 × DCmax + DC50 × C + DC50×DCmax2

C

, (12)

where Dmax is the maximal extent of degradation, DC50 the drug concentration that pro-
duces half-maximal degradation and DCmax the concentration that gives maximal degrada-
tion (see Appendix B for how the parameters are related). Both, the kcat model and the hook
model deal with target degradation. While the kcat model can be used to predict target
degradation from biochemical parameters (a priori), the hook model is used to fit experimen-
tal concentration-degradation profiles (a posteriori). For PROTAC concentrations that are
much smaller than the concentration of maximal degradation (C � DCmax), Equation (12)
can be approximated by the hyperbolic Emax model (see Appendix B for derivation):

E(C) = Emax ×
C

C + EC50
, (13)

with the effect being target degradation (E = D, Emax = Dmax and EC50 = DC50).
Since the extent of degradation depends on incubation time (see Equation (11)), the

descriptive parameters (Dmax and DC50, but not DCmax) do so as well. The hook model
can be extended to account for this time dependence:

D(C, t) = Dss(C)×
(

1− exp
(
− ln(2)× t

t1/2,P × (1− Dss(C))

))
,

where : Dss(C) = Dmax × DC50
2+DCmax

2−2×DC50×DCmax

DC50
2+DCmax2−4×DC50×DCmax+DC50×C+ DC50×DCmax2

C

.
(14)

The parameters (Dmax, DC50 and DCmax) in the above equation refer to the respective
values at steady state.

Finally, degradation can also be linked directly to target engagement. Using Equation (3),
the expression for degradation at steady state from Equation (11) can be rewritten in terms
of TE:

Dss(TE) =
TE

TE50 + TE
,

where : TE50 := ln(2)
kcat×t1/2,P

=
kdeg,P

kcat
.

(15)

Thus, the ratio between baseline protein turnover and the PROTAC-mediated degra-
dation rate constant gives the target engagement required for 50% protein degradation at
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steady state (TE50). We will refer to this parameter as the PROTAC’s catalytic efficiency in
a given cell type.

2.5. Pillar III.b—Target Inhibition

Inhibition (I) can be defined in terms of the fraction of the remaining (i.e., non-
degraded) target protein (P) that is still active (Pa).

I := 1− Pa

P
. (16)

If we assume that binding to the PROTAC completely shuts down target protein
activity, this fraction is equivalent to the target protein’s unbound fraction, given by
(Equation (1–7) in Ref. [6]):

Pa

P
=

Pu

P
=

KD,P × (1− TE)
KD,P + C

. (17)

Furthermore, we will assume that only a small fraction of the target protein is part
of a ternary complex at any point in time. This appears reasonable when considering that
PROTACs act as catalysts that is in a substoichiometric manner. Thus, target engagement is
low (i.e., TE � 1) and inhibition is mainly driven by the formation of binary complexes
between the target protein and the PROTAC:

Pa

P
=

KD,P

KD,P + C
. (18)

Inserting this expression into Equation (16) allows to write inhibition as:

I =
C

KD,P + C
. (19)

2.6. Pillar IV—Pharmacodynamic Effects

Protein degradation usually aims at interfering with a biological pathway to produce
a certain downstream pharmacodynamic response. The target protein might, for example,
lead to the release of a certain signaling molecule and the PROTAC then shuts that signal
down. Assuming this process is rapid compared to degradation, we propose a direct Emax
model to link target modulation to the pharmacodynamic response (PD):

PD = PDmin + (1− PDmin)×
(1− TM)n × (1− P50

n)

P50n + (1− TM)n × (1− 2× P50n)
,

where : P50 < n
√

1
2 .

(20)

Note that PD in the above equation refers to the relative pharmacodynamic response,
normalized to its baseline value.

According to this PD model (see Appendix C for derivation), the pharmacodynamic
response decreases with increasing target modulation. However, there might also be a
certain extent of response that is independent of the target protein and thus not affected by
PROTAC treatment (PDmin). Furthermore, there might be saturation of the pharmacody-
namic response with regard to the target protein. This saturation effect is expressed by the
target protein levels, where the target protein dependent pharmacodynamic response is
reduced to half of its baseline value (P50). Finally, there might be the need to include an
empirical Hill-coefficient (n), especially when dealing with more downstream effects.

As the pharmacodynamic response depends on target modulation, it is affected by
both target degradation as well as target inhibition. While target degradation can be
measured experimentally, target inhibition by the PROTAC cannot be quantified that
easily. Note that target inhibition in this context refers strictly to the fractional occupancy
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of the target protein rather than a surrogate marker. However, what can be measured
instead is the effect of the corresponding non-degrading inhibitor on the pharmacodynamic
response. Therefore, we rewrite (see Appendix C for derivation) Equation (19) in terms of
the PROTAC concentration, where the pharmacodynamic response is reduced to half of its
baseline value by inhibition alone (IC50):

I =
C× (1− P50)

C× (1− P50) + IC50 × P50
. (21)

2.7. Practical Application

Together, the three models derived above constitute a framework which links target
engagement to target modulation and pharmacodynamic response. This then allows to
integrate experimental results from different assays to arrive at a wholistic understanding
of how these input parameters control the steps along the pillars of translational phar-
macology (see Figure 2). Thereby, the following key questions can be addressed in a
systematic manner:

1. How much degradation is there? → hook model
2. How to increase the extent of degradation? → kcat model
3. How much degradation is necessary? → PD model
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Figure 2. The pharmacodynamic modeling framework for PROTAC assessment and characteriza-
tion consists of three models. (1) The kcat model links the biochemical parameters which govern
target engagement to target degradation. (2) The hook model relates target degradation to PRO-
TAC concentrations and incubation time. (3) The PD model integrates two mechanisms of target
modulation, i.e., target degradation and target inhibition, and translates them to a downstream
pharmacodynamic readout.

How these questions can be answered with the presented framework is demonstrated
in the following sections using data from various sources as illustrative examples (see
Section 3 for the details and Section 5 for an overview).

3. Results
3.1. Assessing PROTACs as Degraders
3.1.1. Capturing the Hook Effect

Already during the lead generation phase, it becomes necessary to analyze experi-
mental data on PROTAC-mediated protein degradation with the help of mathematical
models. Such models then allow to compare and rank different compounds with regard to
their degradation parameters (e.g., Dmax and DC50). Currently, the PROTAC concentration-
degradation relationship is most commonly described using the Emax model [20]. However,
that model has often failed to capture the loss of degradation observed at higher PROTAC
concentrations, as in the case of the compounds from Zorba et al. [21]. The hook model, in
contrast, fitted that data well (see Figures 3a, S1 and S2). Notably, the two models agreed
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almost perfectly at the lower concentrations, illustrating that the hook model represents a
valid extension of the Emax model.
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Figure 3. (a) Relative levels of target protein are plotted against PROTAC concentration in media
(i.e., concentration-degradation profile). For comparison, both the hook model presented here as well
as the conventional Emax model are fitted to the data (see Figures S1 and S2 for further examples).
When fitting the Emax model, only concentrations below the concentration of maximal degradation
were considered. (b) A total of 17 concentration-degradation profiles were described using both the
hook model and the Emax model. The resulting estimates for the maximal extent of degradation (Dmax)
are plotted against the respective experimentally observed values. Experimental data (a,b) taken from
Zorba et al. [21]. (c) The hook model is applied to reversible covalent (Cpd. α) and irreversible covalent
PROTACs (Cpd. β). Data taken from Gabizon et al. [22]. (d) Protein levels after 6 h of incubation as
well as levels after 24 h are plotted against the concentration of the non-covalent PROTAC Cpd. Y.
The extended hook model (Equation (14)) is fitted to the concentration-degradation data from the 6 h
time point, which then allows to predict degradation after 24 h. The experimental observations for
the 24 h time point confirm that prediction. Data taken from Mares et al. [23].

Moreover, the hook model accurately estimated Dmax, whereas the values suggested
by the Emax model were significantly larger than the experimentally observed data (see
Figure 3b). Judging from Kendall’s correlation coefficient (τ), the Emax model (τ = 0.79)
also performed worse than the hook model (τ = 0.97) when used for ranking compounds
according to their Dmax. We therefore conclude that the hook model is better suited for
describing data on PROTAC·mediated protein degradation than the standard Emax model.

In order to further elucidate the applicability domain of the hook model, we also
fitted it to data on covalent PROTACs published by Gabizon et al. [22]. Again, the hook
model was able to capture the entire concentration-degradation profile, both for reversible
covalent and irreversible covalent compounds (see Figure 3c). In conclusion, the hook
model is not limited to classical non-covalent PROTACs, but also provides added value
when dealing with different kinds of covalent protein degraders.
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3.1.2. Impact of Incubation Time

When designing in vitro experiments, it is critical to consider that incubation time in-
fluences the PROTAC concentration-degradation relationship, with degradation increasing
over time. This phenomenon can be illustrated with data published by Mares et al. [23],
who determined the extent of RIPK2 degradation at two different time points (6 h and
24 h). We used the 6 h data together with a literature value for the protein’s half-life
(t1/2,P = 45 h) [24] to inform the extended hook model (Equation (14)). Subsequently, we
applied that model to predict degradation after 24 h (see Figure 3d). This prediction was in
good agreement with the measured values, demonstrating that the extended hook model
allows to extrapolate with regard to incubation time.

Next, we compared the two observed concentration-degradation profiles to the one
that was predicted for the steady state (see Table 1). As suggested by the model, the
PROTAC concentration of maximal degradation (DCmax) appeared to stay constant. The
maximal extent of degradation (Dmax) and the concentration of half-maximal degradation
(DC50), on the other hand, were subject to change. As expected, Dmax increased over time
whereas DC50 decreased. Notably, Dmax was already reasonably close to its steady-state
value after incubation for 24 h, while DC50 was still off by a factor of 2. We thus conclude
that of all parameters DC50 is the most sensitive to incubation time.

Table 1. The descriptive parameters corresponding to the two incubation times are stated together
with their steady-state counterparts. Parameter values for 6 h and 24 h incubation were obtained
by fitting two individual hook models (Equation (12)) to the data. Fitting the extended hook model
(Equation (14)) to both time points simultaneously allows to estimate the steady-state values. Least
squares estimates are reported with the upper and lower bounds of the bootstrap 95% confidence
intervals given in brackets. An asterisk (*) indicates that a parameter is significantly different from its
steady-state counterpart, according to Welch’s t-test. Experimental data taken from Mares et al. [23].

t (h) Dmax (%) DC50 (nM) DCmax (nM)

6 79.8 [73.5, 84.2] * 2.19 [1.41, 5.15] * 79.8 [59.5, 288]
24 95.5 [91.5, 97.2] 0.65 [0.32, 1.46] * 73.7 [48.1, 142]

Steady State 94.9 [93.5, 95.9] 0.29 [0.15, 0.66] 68.9 [47.1, 104]

3.2. Model-Informed Optimization of PROTACs
3.2.1. Binding Affinities

Once an initial lead compound has been identified, its degrader properties might yet
require further improvement. This was the case for Cpd. A, for example, which is part
of a series of nine BTK PROTACs developed by Zorba et al. [21]. In such a scenario, our
kcat model can guide medicinal chemistry by predicting how much each of the binding
affinities should be increased to get the desired degradation. First, to inform the model,
the pivotal parameter kcat was obtained by fitting the protein degradation data from the
initial lead compound (Cpd. A). The resulting fit based on kcat = 4.6 h−1 was in good
agreement with the experimental data (see black graph in Figure 4a). Notably, only this
one parameter (kcat) was obtained by fitting, while all other parameters had already been
informed by orthogonal assays (see Tables S1 and S2). This kcat value was then also applied
for all further predictions.

The model was used to predict the binding affinities that would give an improved
concentration-degradation profile (see orange graph in Figure 4a). When tested in the
degradation assay, the optimized compound (Cpd. I), featuring the exact binding affinities
proposed by the model (see Table S1), also exhibited the desired concentration-degradation
profile (see orange points in Figure 4a). Furthermore, the maximal extent of degradation
(Dmax) was predicted also for the other degraders from that series based on their respective
binding affinities. The predictions matched the experimental data across a wide range of
values (see black points in Figure 4b).
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Figure 4. (a) The rate constant of PROTAC-catalyzed protein degradation is fitted to the concentration-
degradation profile observed for the lead compound (Cpd. A) in Ramos cells (kcat = 4.6 h−1). This is
the only parameter in this figure that was derived by model fitting. Subsequently, the model is used
to predict, what binding affinities would give the orange profile. The optimized compound (Cpd.
I), which features the binding affinities suggested by the model (see Table S1), exhibits the desired
concentration-degradation profile. (b) Based on the kcat value from Cpd. A and the biochemical
input data (Tables S1 and S2), the maximal extent of degradation (Dmax) is predicted for different
compounds in different cell types. These predictions are plotted against the estimates for Dmax

obtained by characterizing the respective experimental concentration-degradation profiles with the
hook model (see Figure 3b). There is good agreement between the predicted and the observed
values, as indicated by Pearson’s correlation coefficient (ρ = 0.97). (c) The time-course of degradation
in Ramos cells following incubation with Cpd. G (C = 100 nM) is predicted using the kcat value
from Cpd. A. (d) The maximal extent of degradation (Dmax) observed for the nine compounds from
before is plotted against the respective target engagement (TE) values calculated using Equation (3).
Equation (15) predicts a hyperbolic relationship (TE50 ≈ 1%). Experimental data (a–d) taken from
Zorba et al. [21].

These results demonstrate that most of the differences in degradation that were ob-
served between compounds could be predicted from their binding affinities (KD,P, KD,E
and α). Importantly, all three of these parameters need to be considered, indicating that
there is not just one key binding parameter.

3.2.2. Physiological Parameters

Just as some PROTACs are more efficacious than others, there are also certain cell
types that are particularly susceptible to protein degradation. To account for this kind
of variability, the nine compounds from Zorba et al. [21] had not only been assessed in
Ramos cells but also in THP-1 cells. We used the above model to anticipate the maximal
extent of degradation (Dmax) in this second cell line, where E3 ligase expression levels (E0)
were 50% lower (see Table S2). For all nine compounds, the predicted values matched the
experimental data well (see red points in Figure 4b). Again, binding affinities determine
which compounds perform best. The expression levels of E3 ligase, on the other hand,
control how susceptible the individual cell lines are to target degradation in general. Since
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there was less E3 ligase in THP-1 cells than in Ramos cells, there was also less degradation
in THP-1 cells.

As cell lines, like Ramos cells or THP-1 cells, might not be perfectly representative
of the situation in vivo, Zorba et al. [21] also studied primary rat splenocytes. There, BTK
half-life (t1/2,P) was about four times greater than in Ramos cells (see Table S2). Our model
accurately predicted the maximal extent of degradation (Dmax) for the one compound that
had been tested in the splenocytes (see blue point in Figure 4b). There was more degradation
in the primary cells than in the cell lines because protein half-life is longer, i.e., target protein
resynthesis is slower there. In conclusion, the kcat model accurately predicts the maximal
extent of degradation (Dmax) in different cellular systems based on target protein half-life
and E3 ligase expression levels (see Figure 4b). The basal expression levels of the target
protein (P0), on the other hand, have only negligible effects on degradation (see Appendix A
for derivation).

When optimizing PROTACs, care must be taken to ensure a fast enough onset of
degradation. We therefore also predicted the time-course of degradation in Ramos cells
using the kcat model (see Figure 4c). Target protein levels followed the expected exponential
decay towards a steady-state value, at the rate suggested by the kcat model. Notably, even
if that steady-state value is known, it still requires the half-life of the target protein (t1/2,P)
to also predict the rate of degradation. We thus concluded that target protein half-life is
the most pivotal of the physiological parameters when it comes to modeling the action of
PROTAC drugs.

While predicting degradation represents the primary PK/PD modeling objective
during lead optimization, target engagement (TE) might be of mechanistic interest. Thus,
we next calculated the maximum extent of TE achieved for the nine compounds in both cell
lines (using Equation (3)) and related that value to Dmax (see points in Figure 4d). There
was a clear quantitative relationship between target engagement and protein degradation
(see Figure 4d), although the extent of target engagement remained low for all PROTACs
achieving a maximum of just under 6% (TE < 6%). These results demonstrate that target
occupancy is critical to the mechanism of action of PROTACs. The low TE, which may well
be typical for PROTACs in general, might not be further increased by increasing PROTAC
concentrations due to the hook effect. Since the extent of target engagement is low, it
takes several sequential rounds of ternary complex formation and ubiquitination to get
significant degradation. As a result, PROTAC-mediated degradation is a slow process (see
Figure 4c) compared to target inhibition which operates at much higher target occupancies.

3.3. Deriving a Target Value for Degradation
3.3.1. Linking Degradation to the Pharmacodynamic Response

While target degradation represents the primary readout for PROTACs, the down-
stream pharmacodynamic response is usually therapeutically more relevant. Mares et al.,
for example, not only measured degradation of RIPK2, but they also investigated what
effects their compounds had on TNF-alpha response [23]. Besides the PROTACs, they also
tested the corresponding non-degrading (nd) control compounds, which have the same
inhibitory activity as the respective PROTACs.

Our PD model now allows to translate a target value for that therapeutically relevant
effect back to the level of protein degradation. First, we used the TNF-alpha data from
the lead compound (see black points in Figure 5a) to inform the model, considering both,
degradation (see black points in Figure 5b) and the inhibitory potency of the control
compound (see black points in Figure 5c). The fitted model suggested that independent
of the PROTAC used, 13% of RIPK2 degradation (i.e., 87% remaining undegraded) would
reduce TNF-alpha response to 50% (P50 = 87%).
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model. 

3.3.2. Interplay of Degradation and Inhibition 

In the previous example, the contribution of inhibition to the overall pharmacody-
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in-house data on PROTACs, which were first assessed with regard to target degradation 

(see solid graphs in Figures 6a and S3). Next, the 𝑃𝐷  model was fitted to their 

Figure 5. (a) The PD model is fitted to data on the downstream pharmacodynamic response (TNF-
alpha levels) in the presence of various concentrations of the lead compound (Cpd. X). This analysis
yields the target protein levels of half-maximal pharmacodynamic response (P50 = 87%) and an
empirical hill coefficient (n = 7). Subsequently, a target profile is defined for a potential follow-up
compound (Cpd. Y). (b) Target protein levels (RIPK2) are plotted against drug concentration. The PD
model is used to predict the target concentration-degradation profile for the follow-up compound
from before (Cpd. Y). (c) The downstream pharmacodynamic response (TNF-alpha levels) is plotted
against the concentration of the corresponding non-degrading (nd) control compounds. (d) The
observed TNF-alpha response is plotted against the corresponding RIPK2 levels for both compounds.
The dashed line shows the fitted PD model from before, but this time explicitly neglecting inhibition
(I = 0). Experimental data (a–d) taken from Mares et al. [23].

Subsequently, a target profile was proposed on the level of the TNF-alpha response
(see red graph in Figure 5a). The model was then used to predict, which degradation profile
would be required to meet that target (see red graph in Figure 5b). When the optimized
compound (Cpd. Y), carrying the Dmax and DC50 suggested by the model (see red points
in Figure 5b) was tested in the TNF-alpha assay, it also had the desired potency (see red
points in Figure 5a). This agreement between predictions and experimental observations
validates the model.

Our model furthermore demonstrates that RIPK2 degradation is indeed the primary
mechanism for reducing TNF-alpha response in the case of these compounds (see Figure 5d).
Inhibition, on the other hand, plays only a minor role, as was predicted by the PD model.

3.3.2. Interplay of Degradation and Inhibition

In the previous example, the contribution of inhibition to the overall pharmacody-
namic effect was negligible. However, this need not be the case, as we demonstrate using
in-house data on PROTACs, which were first assessed with regard to target degradation
(see solid graphs in Figures 6a and S3). Next, the PD model was fitted to their downstream
pharmacodynamic response (see dashed graph in Figures 6a and S3a,b). While there was
a clear hook effect visible on the level of protein degradation, no such phenomenon was
observed for the downstream response. This was likely due to inhibition taking over
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from degradation as the main driver of target modulation at higher concentrations (see
Figure 6b). Notably, our model suggests that the inhibitory activity of PROTACs should
always compensate for the hook effect in protein levels (see Appendix D for derivation).
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Figure 6. (a) Target protein levels and the downstream pharmacodynamic response are plotted
against drug concentration for an in-house PROTAC (see Figure S3 for two more examples). The
hook model is used to assess degradation, which is then used to fit the PD model (fitted to all three
compounds simultaneously). As predicted by the model (see Appendix D for derivation), there is
no hook effect present on the level of the downstream pharmacodynamic response. (b) The relative
contributions of target degradation and target inhibition to the overall pharmacodynamic effect
are plotted against PROTAC concentration. At higher drug concentrations, inhibition becomes the
dominant driver of pharmacodynamic effects, thus compensating for the hook effect in protein levels.
(c) Target protein levels and the downstream pharmacodynamic response are plotted against incuba-
tion time for an in-house PROTAC which was applied at a constant concentration of C = 100 nM.
The time-course of degradation is predicted using the extended hook model (Equation (14)). Based
on this prediction and considering the compound’s inhibitory potency, the PD model is used to also
predict the time-course of the pharmacodynamic response. Both predictions are in good agreement
with the observed data. (d) The relative contributions of target degradation and target inhibition
to the overall pharmacodynamic effect are plotted against incubation time. Initially, the down-
stream pharmacodynamic effect is dominated by inhibition, but over time, degradation becomes
more important.

Furthermore, the contributions of degradation and inhibition to the overall pharma-
codynamic response may also change over time. To showcase this effect, the time-course
of degradation was predicted for an in-house PROTAC based on a literature value for
protein half-life (t1/2,P ≈ 24 h) [24] (see blue graph in Figure 6c). The PROTAC’s inhibitory
potency, in turn, was informed using data on the corresponding non-degrading control
compound (IC50 = 120 nM). Moreover, previous experiments had shown that there was
no target-independent pharmacodynamic response (BMmin = 0), no saturation of the
pharmacodynamic response (P50 = 0.5) and no empirical Hill coefficient (n = 1). From
these inputs, the time-course of the pharmacodynamic response was predicted using the
PD model (see green graph in Figure 6c). At the earlier time points, target inhibition was
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the dominant driver behind the downstream effect, while degradation only kicked in later
(see Figure 6d). Note, that the contribution of inhibition to the overall effect was relatively
strong because a high PROTAC concentration (C = 100 nM) was used.

4. Discussion
4.1. The Hook Model
4.1.1. Advancing Current Best Practices

It has been widely accepted that the hook effect constitutes a characteristic feature of
the PROTAC mechanism of action [25,26]. Yet, when it comes to modeling concentration-
degradation profiles, researchers still default to the Emax model which, as it does not
account for it [27–30], carries several disadvantages.

First, concentrations that are greater than the concentration of maximal degradation
(DCmax) must often be excluded from the analysis to make the Emax model converge [31].
This fitting of experimental data to a default model that however lacks a sound mechanistic
justification, is already questionable in its own right. It introduces an element of subjectivity
into data analysis, as it might not always be obvious which data points to exclude [31].

What is more, the information contained in the excluded data is lost. Bartlett and
Gilbert argue this were of little relevance since the concentrations observed in vivo are
much smaller than the concentration of maximal degradation [19]. While that might
often be the case, it is not necessarily true for all PROTACs, especially for high-dose i.v.
bolus administration. Under repeat dose regimens, drug accumulation may also lead to
concentrations where the hook effect becomes relevant.

As we have demonstrated, the Emax model is also prone to overestimate the maximal
extent of degradation (Dmax) for PROTACs that exhibit a pronounced hook effect (see
Figure 3b). Therefore, rankings based on the Emax model tend to be biased in favor of such
compounds which makes it harder to build reliable structure-activity relationships.

Crucially, the Emax model also cannot be used to assess whether observed data line up
with expectations derived from PROTAC theory. In particular, no statement can be made
about whether a drug’s behavior at concentrations above the DCmax is plausible. This
makes it more difficult to identify assay artefacts and validate new experimental assays.

Finally, the best fit of the hook model can never perform worse than the best fit of the
Emax model, as the two are nested (cf. Equations (12) and (13)). This even applies if there
is no hook effect present in the data. Yet, to avoid overparameterization, the Emax model
might still be preferred under such circumstances.

In summary, the hook model represents an improvement on the Emax model. It leads
to better curve fits, provides more accurate parameter estimates and makes more sense
mechanistically. An R-script for automated data analysis using the hook model is provided
in the Supplementary Material.

4.1.2. Guidance for Experimental Design

Empirical models describing in vitro target degradation as an exponential decay
process have already been suggested elsewhere [32]. Here, we provide a mechanistic
derivation that shows under which assumptions this kind of model would apply. We
further investigated how the concentration-degradation profile depends on incubation time.

While the concentration of maximal degradation (DCmax) stays constant, the maximal
extent of degradation (Dmax) and especially the concentration of half-maximal degrada-
tion (DC50) change significantly over time. This is an issue, since the indirect response
models used for translating in vitro data to in vivo require the steady-state parameters as
inputs [33–37]. If the Dmax and DC50 values for a standard incubation time (e.g., 24 h), are
meaningfully different from their steady-state counterparts, those models will make biased
inferences. In principle, two different strategies can be proposed to mitigate this risk:

(I) Use of an incubation time that is long enough to directly yield the steady-state pro-
file. However, the required incubation time will be different for different PROTAC
concentrations [19]. Therefore, one cannot conclude that the steady state has been
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reached just because degradation at a particular concentration is the same over time.
Instead, we propose a different approach that requires only rough estimates for pro-
tein half-life (t1/2,P) and for the maximal extent of degradation (Dmax) as inputs. A
threshold value for the minimal extent of degradation that is still acceptable is defined
first (e.g., Dmax ≥ 80%). Next, the protein’s half-life or at least a rough estimate that
should rather be too high than too low must be approximated. From these parame-
ters, minimum required incubation times for in vitro degradation experiments can be
calculated (see Table 2).

(II) If target protein half-life is longer than 24 h, the theoretically required incubation
times exceed what is practically feasible. For such cases, the extended hook model
(Equation (14)) allows to estimate steady-state parameters from a pre-steady-state
concentration-degradation profile obtained with standard incubation times. Yet, this
second approach using the extended hook model (Equation (14)) is also more sensitive
to measurement errors and requires precise estimates for protein half-life. These may
be obtained by fitting concentration-degradation profiles at different incubation times
in parallel.

(III) Finally, the question remains, which drug concentrations to study in vitro. To get
the most reliable parameter estimates, one should cover the entire profile, including
concentrations of no degradation up to concentrations displaying the hook effect.
Demonstrating that there is a hook effect in protein degradation also is strong evidence
in favor of the PROTAC mechanism of action. If no prior information about the
relevant concentration range is available upfront, one could estimate DCmax from
the binary binding affinities (see Appendix B) to get an initial idea. However, assay
artefacts might occur more frequently at the highest concentrations, if for instance
compounds become cytotoxic or poorly dissolved.

Table 2. The minimum incubation time (h) necessary to get accurate estimates for Dmax and DC50

(i.e., estimates that are less than a factor of 1.5 (DC50) or less than 5% (Dmax) different from the steady-
state values) is given for different threshold values (Dmax ≥ x) and different proteins (t1⁄2,P ≤ x). A
green box indicates that 24 h should be sufficient, while orange means that it takes longer than that.
The required incubation time decreases with increasing Dmax and decreasing t1⁄2,P.

Dmax (%)

t1/2, P (h) 30 50 60 70 75 80 85 90 95 99
2 5 4 4 3 3 3 3 3 3 3
4 9 8 7 6 6 6 6 5 5 5
6 13 11 10 9 9 9 8 8 7 7
12 26 22 20 18 18 17 16 15 14 13
24 51 44 40 36 35 33 31 29 27 26
36 77 66 60 54 52 49 46 43 41 38
48 102 87 80 72 69 65 61 58 54 51
72 153 131 120 108 103 97 92 86 81 76
96 204 174 159 144 137 130 122 115 107 101

192 407 348 318 288 273 259 244 229 214 202

4.2. The kcat Model
4.2.1. Lessons Learnt about the PROTAC Mechanism of Action

Two processes have previously been implied to be rate-limiting for PROTAC-mediated
protein degradation. Those are ternary complex formation and monoubiquitination [18].
Here, we pursued a rapid equilibrium approach, assuming that monoubiquitination is the
rate-limiting step. Since the resulting model predictions were accurate, this assumption
seems justified. It is furthermore supported by previous reports in which monoubiquitina-
tion has been identified as the rate-limiting step for polyubiquitination [38].

Interestingly, the kinetics of complex formation appeared to be irrelevant here as they
could be left out of the model altogether. This finding challenges the kinetic proofreading
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hypothesis, which proposes that ternary complexes with slower kinetics should be more
efficient at mediating target degradation [8]. The idea being that only if a complex per-
sists for long enough will the E3 ligase have enough time to catalyze polyubiquitination.
However, this effect is only relevant if the subsequent ubiquitination reactions occur on
the same time scale as monoubiquitination. At least for physiological polyubiquitination
processes this does not seem to be the case [39].

It was an important finding that the rate constant of ubiquitination (kcat) was the same
for different PROTACs, also across the different cells tested. Thus, target engagement (TE)
and hence the three binding equilibrium constants (KD,P, KD,E and α) determined which of
the PROTACs led to the deepest target protein degradation. It remains to be seen, whether
that also applies to compounds that are structurally more diverse than the ones from
Zorba et al. [21]. Previous studies had already revealed that data on target engagement is
not sufficient to accurately predict degradation across different target proteins [40]. This
might either be due to the proteins having different baseline half-lives (kdeg) or because
they get ubiquitinated at different rates (kcat). In conclusion, kcat may only depend on the
target and the E3 ligase that ubiquitinates it, but not on the PROTAC that links the two.

If, following polyubiquitination, the ternary complex has to dissociate before degra-
dation can occur [18], degradation can never be more rapid than dissociation itself. Thus,
protein degradation is not expected to shift the thermodynamic binding equilibria, further
justifying the rapid equilibrium assumption we made. This line of thinking also gives rise
to the idea that ternary complexes that dissociate more slowly would give less degradation.
However, our results do not support this notion of over stabilization [41], suggesting that
ubiquitination alone is the rate-limiting step in protein degradation.

Finally, we noticed that already very little target engagement led to substantial protein
degradation. This is due to the catalytic mechanism of action of PROTACs. The efficiency
of catalysis is defined by the parameter TE50 which gives the extent of target engagement
required for 50% degradation. TE50 also quantifies how much the PROTAC speeds up
target degradation, as TE50 is given by the ratio of kdeg and kcat (Equation (15)). In the
present example, PROTAC-mediated degradation was ~100 times faster than baseline
turnover (TE50 = kdeg/kcat = 0.043 h−1/4.6 h−1 ≈ 1%). This metric can be very useful to
assess and compare PROTACs in early drug discovery.

4.2.2. Model-Informed Drug Discovery

In the presented example, the extent of degradation was not only determined by the
PROTAC’s affinity for the target protein (KD,P) as the affinity for the E3 ligase (KD,E) and
the cooperativity factor (α) played an important role too. This is in line with previous
studies that failed to find a correlation between KD,P and degradation [40]. Therefore,
medicinal chemistry efforts should not be limited to only improving the drug’s affinity
for the target protein. Instead, a more holistic approach, considering all three binding
interactions is needed.

The kcat model in turn allows to quantify how much the individual binding affinities
would need to be increased to achieve the desired extent of degradation. Medicinal
chemistry can then assess whether such improvements are feasible or whether a new
compound series should be identified instead. In general, if target engagement is already
much greater than TE50, increasing binding affinities likely will not improve degradation.
Instead, researchers should increase the rate of ubiquitination (kcat). This might be achieved
by switching to another lead with different target and E3 ligase binding moieties or by
recruiting a different E3 ligase.

When it comes to modeling ternary complex formation in biochemical assays, the
concentrations of target protein (P0) and targeted E3 ligase (E0) are key parameters [6,7].
However, only few attempts have been made at applying this insight to target degradation
and even those were limited to qualitative considerations [42]. Here, we used our kcat
model to quantitatively translate target degradation from one cellular system to another
based on the expression levels of E3 ligase. This approach can be useful when the cell type
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of interest cannot be studied in vitro. Degradation could then be assessed in related cells
and the results can then be translated back to the cell type of interest.

Target protein expression levels, in contrast, seemed to play only a minor role here. In
theory, they should only affect degradation if they are high enough to saturate the E3 ligase.
In all other cases, only the levels of E3 ligase in different cell lines but not those of the target
protein need to be determined. This reduces experimental efforts, since the targeted E3
ligases are often the same for different projects [43].

In contrast to the target protein’s baseline expression levels, its baseline half-life
(t1/2,P) was found to be perhaps the single most critical physiological parameter. It not
only influences the extent of degradation, but also determines the kinetics of degradation.
Therefore, even if degradation data on the relevant cell type is available, it still takes
t1/2,P to predict the time-course of degradation and target recovery. This is not limited to
the in vitro scenario, but it also applies to the indirect response models used for in vivo
modeling [33–37]. There too, degradation introduces a substantial time-delay between
exposure and a drop in protein levels, which must be considered by the model [23]. Thus,
we strongly suggest determining the target protein’s half-life early on in the drug discovery
project. There are several methods available for doing so, such as SILAC [24] or the
cycloheximide chase assay [44].

4.3. The PD Model
4.3.1. Leveraging the Inhibitory Activity of PROTACs

In order to make predictions about a downstream pharmacodynamic effect, a relation-
ship between that effect and target degradation has to be established. This also applies to
the in vivo scenario, where simple empirical models have already been used successfully to
translate protein degradation to cytokine response [45]. Our PD model provides a general-
ized version of this approach and in addition also incorporates the effect of target inhibition
by the PROTAC. Theses inhibitory effects are particularly relevant at high concentrations
and at early time points.

Although target degradation is frequently associated with a hook effect at high concen-
trations [27–30], the same may not be true for downstream pharmacodynamic effects. There,
target inhibition by the PROTAC is expected to compensate for the loss in degradation
resulting from the hook effect. Therefore, the hook effect should be of only little concern for
pharmacodynamic effects in vivo, provided the target can also be inhibited by the PROTAC.
This benefit, however, is not available for non-inhibiting PROTACs, e.g., those targeting
scaffolding proteins [46], where a hook effect in target degradation may also translate to
reduced downstream pharmacodynamic effects.

While there might be a relevant time delay between drug administration and target
degradation, inhibition acts more rapidly. Thus, the additional inhibitory activity of
PROTACs might lead to an even more sustained pharmacodynamic response in vivo.
Inhibition would allow for a rapid onset of the effect, whereas degradation would ensure
its persistence. As a result, lower doses might be feasible for PROTACs compared to
conventional target inhibitors.

4.3.2. Model-Informed Target Validation

It is critical for the rational design of PROTACs to demonstrate early on that it is really
degradation of the intended target that causes the pharmacodynamic response. This can be
done in a two-step approach with the help of the PD model.

First, comparing the PROTAC to a non-degrading control compound allows to decon-
volute effects that are due to inhibition from those caused by degradation. In principle, a
PROTAC can act (1) only as a degrader, (2) only as an inhibitor or (3) as both, a degrader
and an inhibitor. The PD model resolves this uncertainty by quantifying the relative
contributions of degradation and inhibition to the overall PROTAC effect (see Figure 6b,d).

Second, comparing several PROTACs from the same project helps to exclude the
involvement of off-targets in the PD effect. The inhibitory potencies of the respective
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degradation-incompetent controls (IC50) are used to quantify the effects that are due
to target inhibition. The remaining pharmacodynamic response is then attributed to
degradation of the target protein. If the pharmacodynamic effect produced by a certain
extent of degradation is the same among the PROTACs this is indicative of on-target effects.
If instead the same extent of degradation gives different PD responses for the PROTACs,
off-target degradation must be considered.

5. Conclusions

The presented modeling framework has three principal applications in the early phases
of the drug discovery of PROTACs (see Figure 7).
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Figure 7. Our modeling framework can be used to address three major questions, each associated
with one of the pillars of translational pharmacology (see Figures 1 and 2 for color coding). The
hook model is fitted to the concentration-degradation profile yielding three parameters which can be
used to assess PROTACs as degraders. The kcat model allows to predict what binding affinities are
necessary to achieve the desired degradation, thereby giving rational guidance to lead optimization
efforts. The PD model translates protein degradation to a defined biomarker response. This is
particularly useful when it comes to identifying a target value for protein degradation.

First, the hook model (Equation (12)) allows to describe the PROTAC concentration-
degradation profile (see Figure 7a). It takes experimental data on target protein degradation
as input and returns three fitted parameters (Dmax, DC50 and DCmax), which can be used
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to assess, rank and compare different PROTACs. The extended hook model (Equation (14))
can be used to estimate the steady-state parameter values by extrapolating in time, provided
that information on the target protein’s half-life (t1/2,P) is available.

Second, the kcat model (Equation (11)) guides the rational optimization of a PROTAC
lead compound (see Figure 7b). As input, it requires biochemical data on the PROTAC’s
binding affinities (KD,P, KD,E and α) as well as information on the relevant cellular sys-
tem (E0 and t1/2,P). The pivotal parameter kcat is obtained by fitting the concentration-
degradation profile for the lead compound. Based on that value, the model then allows to
predict what improvements in the binding affinities are necessary to get the desired level of
target degradation. The model also allows to translate results between different cell types.

Third, the PD model (Equation (20)) informs pharmacology by predicting a target value
for protein degradation to achieve a desired level of a downstream PD effect (see Figure 7c).
In addition to the three degradation parameters (Dmax, DC50 and DCmax), the PD model
also considers, if relevant, the PROTAC’s inhibitory potency (IC50). The parameter that
links degradation to downstream pharmacodynamic effects (P50) is informed by fitting the
model to data obtained from the lead compound. The resulting model can then predict
which improvements in the degradation parameters are necessary to achieve the desired
pharmacodynamic effect.

Taken together, the presented modeling framework provides a comprehensive and
very practical toolbox that enables model-informed assessment and optimization of PRO-
TACs in the early phases of drug discovery using in vitro degradation and pharmacody-
namic data. An extension of this framework towards in vivo and translational aspects is
in progress.
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Appendix A

Han [6] (Equation (1–9) in Ref. [6]) has established that the concentration of unbound
E3 ligase (Eu) is given by:

Eu =
KD,E × (E0 − TC)

KD,E + C
. (A1)

Assuming that there is no saturation of the E3 ligase by the target protein (i.e., TC � E0),
this expression can be simplified to:

Eu =
KD,E × E0

KD,E + C
. (A2)

The concentration of unbound target protein (Pu) can similarly be written as (Equation (1–7)
in Ref. [6]):

Pu =
KD,P × (P− TC)

KD,P + C
. (A3)

Furthermore, the concentration of ternary complex can be expressed as (Supp. Equa-
tion (1–3) in Ref. [6]):

TC =
C× Pu × Eu × α

KD,P × KD,E
. (A4)

Inserting the terms for Eu and Pu (Equations (A2) and (A3), respectively) into the
above equation affords:

TC =
C× α

KD,P × KD,E
× KD,P × (P− TC)

KD,P + C
× KD,E × E0

KD,E + C
. (A5)

Rearranging Equation (A5) finally yields the simplified expression for target engagement:

TE = TC
P =

α× E0

α× E0 + KD,P + KD,E + KD,P × KD,E × 1
C + C

,

assuming : TC � E0 .
(A6)

Appendix B

At steady state, the parameters of the hook model (Dmax, DC50 and DCmax) can be
calculated from the kcat model parameters (KD,P, KD,E, α, t1/2,P and kcat) according to:

Dmax =
α× E0 × kcat × t1/2,P × 1

ln(2)

α× E0 × kcat × t1/2,P × 1
ln(2) + α× E0 + KD,E + KD,P + 2×

√
KD,E × KD,P

, (A7)

DC50 = 1
2 ×

(
α× E0 ×

kcat×t1/2,P
ln(2) + α× E0 + KD,E + KD,P + 4×

√
KD,E × KD,P−√(

α× E0 ×
kcat×t1/2,P

ln(2) + α× E0 + KD,E + KD,P + 4×
√

KD,E × KD,P

)2
− 4× KD,E × KD,P

)
(A8)

and DCmax =
√

KD,E × KD,P . (A9)
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These relationships are derived from Equation (11) by reparameterization:

Dss(C) =
1

x + y× C +
z
C

,

where : x :=
α× E0 × kcat × t1/2,P × 1

ln(2)
+ α× E0 + KD,E + KD,P

α× E0 × kcat × t1/2,P × 1
ln(2)

,

y :=
1

α× E0 × kcat × t1/2,P × 1
ln(2)

and z :=
KD,E × KD,P

α× E0 × kcat × t1/2,P × 1
ln(2)

.

(A10)

Since the three auxiliary parameters in the above expression (x, y and z) do not have
an intuitive meaning, they are next replaced by Dmax, DC50 and DCmax. The concentration
of maximal degradation fulfills the following condition:

dDss

dC

∣∣∣∣∣∣C = DCmax

= 0 = −
(

y− z
DCmax2

)
× 1(

x + y× DCmax +
z

DCmax

)2 . (A11)

The only non-trivial solution to the above equation is:

DCmax =

√
z
y
=
√

KD,E × KD,P . (A12)

The maximal extent of degradation, in turn, is the extent of degradation observed at
the concentration of maximal degradation:

Dmax := Dss(DCmax) . (A13)

Using the expression for DCmax from Equation (A12) together with Equation (A10),
this can be written as:

Dmax =
1

x + y×
√

z
y + z×

√
y
z

=
α× E0 × kcat × t1/2,P × 1

ln(2)

α× E0 × kcat × t1/2,P × 1
ln(2) + α× E0 + KD,E + KD,P + 2×

√
KD,E × KD,P

. (A14)

Finally, the concentration of half-maximal degradation fulfills the following condition:

Dss(DC50) =
Dmax

2
=

Dss(DCmax)

2
, (A15)

which is equivalent to:

Dmax

2
=

1

2×
(

x + y×
√

z
y + z×

√
y
z

) =
1

x + y× DC50 +
z

DC50

. (A16)

Rearranging the above equation gives:

DC50 =
x + 4×√y× z ±

√
(x + 4×√y× z)2 − 4× y× z

2× y
. (A17)
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Due to the hook effect, there are two different drug concentrations, where degrada-
tion is half-maximal, one of them is smaller and the other one larger than DCmax. Since
experiments usually focus on concentrations below DCmax, it makes sense to define:

DC50 =
x + 4×√y× z−

√
(x + 4×√y× z)2 − 4× y× z

2× y
< DCmax . (A18)

Inserting the definitions for the auxiliary parameters (x, y and z) from Equation (A10),
this ultimately yields:

DC50 = 1
2 ×

(
α× E0 ×

kcat×t1/2,P
ln(2) + α× E0 + KD,E + KD,P + 4×

√
KD,E × KD,P−√(

α× E0 ×
kcat×t1/2,P

ln(2) + α× E0 + KD,E + KD,P + 4×
√

KD,E × KD,P

)2
− 4× KD,E × KD,P

)
.

(A19)

Note that these interconversions are only possible if the assumptions from the kcat
model hold (e.g., TC � E0). The hook model, however, might be applicable even if that is
not the case.

To derive the hook model, the auxiliary parameters (x, y and z) are expressed in terms
of Dmax, DC50 and DCmax by rearranging Equations (A12), (A14) and (A18):

x =
(DCmax − DC50)

2 − 2× DCmax × DC50

(DCmax − DC50)
2 × Dmax

,

y =
DC50

(DCmax − DC50)
2 × Dmax

and z =
DCmax

2 × DC50

(DCmax − DC50)
2 × Dmax

.

(A20)

Inserting the above expressions into Equation (A10) yields the hook model:

D(C) = Dmax ×
DC50

2 + DCmax
2 − 2 × DC50 × DCmax

DC502 + DCmax2 − 4 × DC50 × DCmax + DC50 × C + DC50 × DCmax2

C

. (A21)

If the concentration of maximal degradation is much greater than the concentration
of half-maximal degradation and the highest drug concentration (DCmax � DC50 and
DCmax � C), then:

DCmax − DC50 ≈ DCmax and DCmax − C ≈ DCmax . (A22)

Equation (A21) can also be written as:

D(C) = Dmax ×
(DCmax − DC50)

2

(DCmax − DC50)
2 − DC50 ×

(
DCmax + (DCmax − C)− DCmax2

C

) . (A23)

Applying the two approximations from Equation (A22), this becomes:

D(C) = Dmax ×
DCmax

2

DCmax2 − DC50 ×
(

DCmax + DCmax − DCmax2

C

) . (A24)

Rearranging the above equation yields:

D(C) = Dmax ×
DCmax

2

DCmax2 + DC50 × DCmax ×
(

((DCmax−C)−C)
C

) , (A25)
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which can be approximated as:

D(C) = Dmax ×
DCmax

2

DCmax2 + DC50 × DCmax2 ×
(

1
C

) , (A26)

which after rearrangements affords the hyperbolic Emax model:

D(C) = Dmax ×
C

C + DC50
. (A27)

Thus, the hook model is identical to the hyperbolic Emax model if the concentration of
maximal degradation (DCmax) is very large.

To express degradation at steady state directly as a function of target engagement,
Equation (11) is rearranged to give:

Dss(C) =
α× E0

α× E0 +
ln(2)×

(
α× E0 + KD,P + KD,E + KD,P × KD,E × 1

C
+ C

)
kcat × t1/2,P

(A28)

and then:

Dss(C) =

(
α× E0

α× E0 + KD,P + KD,E + KD,P × KD,E × 1
C
+ C

)
(

α× E0

α× E0 + KD,P + KD,E + KD,P × KD,E × 1
C
+ C

)
+

ln(2)
kcat × t1/2,P

. (A29)

Using the expression for target engagement (TE) from Equation (3), this becomes:

Dss(C) =
TE

TE + ln(2)
kcat×t1/2,P

. (A30)

Appendix C

We propose an Emax model to link the levels of active (i.e., neither degraded nor
inhibited) target protein to the pharmacodynamic response:

PD = PDmin + (Emax − PDmin)×

(
Pa
P0

)n

EC50n +
(

Pa
P0

)n . (A31)

Using the definition of target modulation (Equation (4)), the above expression can be
written as:

PD(TM) = PDmin + (Emax − PDmin)×
(1− TM)n

EC50n + (1− TM)n . (A32)

Note that the maximal extent of the pharmacodynamic response (Emax) might be much
larger than the baseline response. Since that maximal response is usually not known, it
makes sense to rewrite this equation in terms of the baseline response (PD0), which after
normalization equals 100%:

PD(0) = PD0 = 1 = PDmin + (Emax − PDmin)×
1

EC50n + 1
. (A33)
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Rearranging for the maximal extent of pharmacodynamic response gives:

Emax = 1 + EC50
n × (1− PDmin) . (A34)

Next, the target protein levels that give half-maximal pharmacodynamic response
(EC50) are replaced with the protein levels that give half of the baseline response (P50).
Again, the rationale here is to normalize all effects to their baseline values, which is in line
with common experimental design:

PD(1− P50) = PDmin +
(1− PDmin)

2
= PDmin + (Emax − PDmin)×

P50
n

EC50n + P50n . (A35)

Applying the expression for Emax from Equation (A34) gives:

PDmin +
(1− PDmin)

2
= PDmin + (1 + EC50

n × (1− PDmin)− PDmin)×
P50

n

EC50n + P50n . (A36)

Solving for EC50 yields:

EC50 = n

√
P50n

1− 2× P50n > 0 . (A37)

Finally, inserting the above expressions for Emax and EC50 (Equations (A34) and (A37),
respectively) into Equation (A32) affords:

PD = PDmin + (1− PDmin)×
(1− TM)n × (1− P50

n)

P50n + (1− TM)n × (1− 2× P50n)
,

where : P50 < n
√

1
2 .

(A38)

According to Equation (6), for a pure inhibitor, this becomes:

PD = PDmin + (1− PDmin)×
(1− I)n × (1− P50

n)

P50n + (1− I)n × (1− 2× P50n)
,

where : P50 < n
√

1
2 .

(A39)

Using the expression for I from Equation (19), this gives:

PD(C) = PDmin + (1− PDmin)×

(
1− C

KD,P+C

)n
× (1− P50

n)

P50n +
(

1− C
KD,P+C

)n
× (1− 2× P50n)

. (A40)

For the concentration, where the pharmacodynamic effect is reduced to half of its
baseline value by inhibition alone (IC50), this equates to:

PD(IC50) =
1
2
=

(
1− IC50

KD,P + IC50

)n
× (1− P50

n)

P50n +
(

1− IC50

KD,P + IC50

)n
× (1− 2× P50n)

. (A41)

Rearranging for KD,P affords:

KD,P =
IC50 × P50

1− P50
. (A42)
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Finally, inserting this expression into Equation (19) yields:

I =
C× (1− P50)

C× (1− P50) + IC50 × P50
. (A43)

Appendix D

According to Equation (20), a hook effect in the pharmacodynamic response would
require a zero in the derivative of target modulation for drug concentration:

d
dC

(TM) = 0 . (A44)

According to Equation (6), this is equivalent to:

(1− I)× d
dC

(D) = −(1− D)× d
dC

(I) . (A45)

Inserting the expressions for inhibition and degradation at steady state (Equations (19)
and (11), respectively) affords:

− (KD,P + C)× ϕ× κ × ψ

C
= (KD,P + C)× (ϕ + ψ + χ) + (ϕ + ψ + KD,E)× (ϕ× κ + ϕ + ψ + χ) ,

where : ϕ := α× E0 ,

κ := kcat ×
t1/2,P
ln(2) ,

ψ := KD,P×KD,E
C

and χ := KD,P + KD,E + C .

(A46)

Since KD,P, KD,E, C, ϕ, κ, ψ and χ are all strictly positive, there is no non-trivial solution
to Equation (A44). Thus, as long as the model assumptions are met, there cannot be a hook
effect on the level of the downstream pharmacodynamic response.
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