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Abstract: In this study, hybrid polyacrylic acid and Schizochytrium sp. microalgae (PAA/Schizo)
microgels were synthesized by inverse emulsion assisted by ultrasound using the cell wall fraction as
crosslinker. Physicochemical characterization of PAA/Schizo microgels revealed polymeric spherical
particles (288 ± 39 nm) and were deemed stable and negatively charged. The produced microgels
are not inherently toxic as cell viability was sustained above 80% when mice splenocytes were
exposed to concentrations ranging 10–900 µg/mL. PAA/Schizo microgels were evaluated as antigen
delivery nanovehicle by adsorbing bovine serum albumin (BSA); with a loading efficiency of 72%
and loading capacity of 362 µg/mg. Overall, intranasally-immunized BALB/c mice showed null
IgG or IgA responses against PAA/Schizo microgel-BSA, whereas soluble BSA induced significant
humoral responses in systemic and mucosal compartments. Splenocytes proliferation assay upon
BSA stimulus revealed positive CD4+ T cells-proliferation response in PAA/Schizo microgels-BSA
group. Thus, PAA/Schizo microgels constitute functional antigen delivery vehicles of simple and
ecofriendly synthesis. Moreover, the use of cell wall fraction as cross-linker agent provides an
alternative use for the generation of high-value products using residual algae biomass from the oil
industry. Our data suggests that the PAA/Schizo microgels are potential antigen delivery vehicles
for immunotherapy development.

Keywords: antigen carrier; mucosal immunization; hybrid polymer; inverse emulsion

1. Introduction

Mucosal immunization is highly attractive as it offers easier administration compared
to parenteral routes, is more comfortable for patients, and allows the induction of effective
mucosal immune responses. In particular nasal vaccination is advantageous since the
nose is an accessible tissue with a large absorption surface due the presence of numerous
microvilli, allowing the induction of both mucosal and systemic immune responses as
consequence of the function of the nose-associated lymph tissue [1]. Therefore, nasal
vaccines are a practical approach for large scale immunization campaigns, avoiding the use
of needles, which decreased costs and lower risks associated with vaccine administration.

Several studies have focused on nasal immunization against infectious and non-
infectious diseases, such as influenza [2], hepatitis B [3], atherosclerosis [4], Alzheimer’s
disease [5], among others. However, mucosal vaccination often suffers from low efficacy
due to weak antigen adsorption, which is caused by the antigen dilution and degradation
and the short retention time onto the nasal mucosal membranes due to mucociliary clear-
ance, and reduced capacity to cross the mucus barrier [6]. To overcome these limitations, the
use of carriers for antigen delivery has been proposed as an approach to protect the antigen
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from dilution or degradation and increase its residence on mucosal surfaces. The use of
lipid-based systems, such as micro- and nanoemulsions, or polymeric materials, including
chitosan or acrylic acid, has been assessed to enhance the efficacy of mucosalvaccines [7–11].

Emulsions are colloidal systems of two immiscible liquid phases that are classified
in water-in-oil (W/O, in which the oil acts as the continuous phase where the aqueous
phase is dispersed forming small droplets), and oil-in-water (O/W, in which the oil is
dispersed in the aqueous phase) [12]. Based on the droplets size, emulsions can be iden-
tified as micro- or nanoemulsions, both of which have been used in the encapsulation
of hydrophobic bioactive molecules to assess them as drug delivery vehicles in view to
improve absorption and bioavailability [13–15]. In the vaccinology arena, emulsions have
been investigated primarily as adjuvant and antigen delivery agents in human and animal
vaccine formulations [16–18], however W/O formulations have resulted highly reactogenic
due to high oil content. Although squalene O/W-based emulsions have been licensed
in some countries, rational selection of oil composition and surfactants remains as major
concern in vaccine development [19,20]. Another important aspect that limits the use
of emulsions as antigen delivery systems is their short shelf-life and their low stability,
specially for nanoemulsions [21,22]. To overcome these limitations, high concentrations of
surfactants, which lower the surface tension, and co-surfactants are required. Alternatively,
polymeric particles stand as a promising approach to improve stability and extend antigen
release [23–25].

Polymeric microgels are a class of nanocarrier systems which are composed of nano-
metric networks assembled with amphiphilic or hydrophilic natural or synthetic poly-
mers [26]. Microgels stand as promising materials for the development of effective antigen
delivery vehicles [27]. These 3D-nanonetworks provide a large surface area that is available
for biomolecular conjugation mediated by the functional groups exposed to their surface.
Furthermore, microgels are attractive materials because they possess a tunable size, are
easily prepared, have minimal toxicity and show a stimuli responsiveness and stability
in the presence of serum. In addition, microgels are capable to retain a high amount of
water without losing their structure and they have relatively high drug encapsulation
capacity [28].

Microgels can be physically or chemically crosslinked, being the latter the approach
that renders the most stable materials upon pH and temperature variations [29]. Among
chemical crosslinkers, glutaraldehyde and formaldehyde are predominantly used. Nev-
ertheless, these molecules could induce cytotoxicity that limits their use in biomedical
applications [30]. Another issue is given by the requirement during synthesis (inverse
emulsion) of organic solvents (e.g., cyclohexane, hexadecane, and hexane) to induce poly-
mer precipitation, which implies special safety measures and residues treatment [31,32].
Therefore, the development synthesis methods based on non-toxic cross-linking agents and
natural oil medium are highly desired.

Natural polymers, including chitosan and alginate, have been widely explored as
vehicles for the encapsulation and delivery of bioactive molecules. Nanomaterials based on
these polymers show good biocompatibility, mucoadhesive properties and pH-responsiveness
in mucosal drug delivery applications [33,34]. Several synthesis methods have been re-
ported including hydrodynamic electrospray ionization jetting which allows control in
particles size [35–37]. Synthetic polymers, such as polyacrylic acid have been used for the
development of stimuli-responsive microgels (NGsPAA); these specific 3D nanonetworks
are characterized by their response to changes in external conditions by changing their
physicochemical properties [38]. NGsPAA are anionic polyelectrolytes with good biocom-
patibility that display pH [39] or temperature-responsiveness [40] and can be applied as
drug or antigen delivery vehicles [41–43].

However, in the vaccinology field there is a need to expand the portfolio of the avail-
able materials used for antigen delivery having innovative properties, such as enhanced
stability, lower cost, ecofriendly synthesis, and immunostimulatory activity. Hybrid mi-
crogels based on natural and synthetic polymers have been proposed for biomedicals
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applications since these synergistically combine the properties of the individual compo-
nents. In these emergent systems, natural polymers provide biocompatibility, low-toxicity,
biodegradability, and bioactivity, while synthetic polymers improve the stability of the
polymer nanostructure [44]. Among the natural polymers used for this purpose are proteins
and polysaccharides obtained from different organisms, such as fungi and algae [45].

Microalgae are organisms with many biotechnological applications. The cell wall
from these organisms is a source of several polysaccharides with attractive properties,
such as mucoadhesive and immunostimulatory activities; some examples include k-
carrageenan [46,47], alginate [48] and β-D-glucan [49,50], among others. Interestingly,
some of such compounds exert adjuvant properties, which make them attractive in vaccine
development [51,52].

Schizochytrium sp. is a marine microalga used at the industrial level for the produc-
tion of high-value products, such as docosahexaenoic acid (DHA). However, the residual
biomass obtained following oil extraction have not been used for the development of
high-value products; it is currently used as feed for livestock [53]. A few efforts have been
made to give this residual product a more valuable application. For instance, Yin et al. [54]
proposed the use of Schizochytrium sp. residues as a culture media supplement during fer-
mentation to produce DHA. Schizochytrium sp. biomass is a potential sustainable material
thus in this study the use of Schizochytrium sp. cell wall fraction (CWF) as a crosslinker
agent for the preparation of microgels is proposed. The proof of the concept was performed
by selecting PAA as a suitable polymeric matrix. The microgels based on PAA and CWF
from Schizochytrium sp. (PAA/Schizo) were obtained by inverse emulsion method assisted
by ultrasound, rendering a new, simple and ecofriendly synthesis method, which involves
the use of a natural oil (coconut) that facilitates the production of a toxic compounds-free
material. Synthesis parameters including polymer concentration, amplitude percentage
and sonication time were investigated in order to obtain uniform particles with low polydis-
tribution. The performance of PAA/Schizo microgels to deliver antigens was evaluated in
BALB/c test mice using bovine serum albumin (BSA) as model antigen, providing evidence
on a differential immune response when this carrier was used. The in vivo evaluation
suggests that PAA/Schizo microgels can be potentially applied as antigen delivery vehicles
as these induced a differential immune response against BSA.

2. Materials and Methods
2.1. Cell Wall Fraction (CWF) Isolation

Schizochytrium sp. (strain ATCC 20888) was cultured at 25 ◦C in modified seawater
medium prepared as follows: 1 g/L yeast extract (BD Bioscience, San Jose, CA, USA),
0.2 g/L FeSO4, 5 g/L peptone (MCD LAB, Edo. Mex., Mexico), 15 g/L agar (MCD LAB,
Edo. Mex., Mexico) and 35 g/L NaCl (Karal, Gto., Mexico). 679BY medium, which con-
tained 1 g/L yeast extract, 1 g/L peptone, 5 g/L dextrose, and 35 g/L NaCl, was used
for liquid cultures, which were incubated at 28 ◦C and 150 rpm. After 8-day incubation,
Schizochytrium sp. biomass was recovered by centrifugation at 5500 rpm for 5 min; and
the supernatant was discarded. An ultrasound probe (model GEX130 PB, Sonics & Ma-
terials Inc., Newtown, CT, USA) was used for cell disruption; the biomass was sonicated
for 10 min at 60% amplitude (pulses of 30 s with 30 s delay in between) followed by 4 min
at 90% amplitude and then it was centrifuged at 5500 rpm for 20 min at 4 ◦C (Centurion
Scientific, West Sussex, UK). The supernatant was discarded and the cell wall fraction
(CWF) was washed twice with 5 mL deionized water. CWF was dried in an oven at 50 ◦C
and it was subsequently pulverized in a ceramic mortar until a fine powder was obtained.
Then, the CWF was stored at room temperature until further use.

2.2. Synthesis of PAA/Schizo Microgels

Poly (acrylic acid)/Schizochytrium sp. CWF (PAA/Schizo) microgels were synthesized
by the inverse emulsion (water-in-oil (W/O)) method assisted by ultrasound. Synthe-
sis was adapted from the previously reported methodology by Mousaviasl et al. [50].
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Previous to the emulsion, PAA polymers were synthesized in water-borne system by
free radical polymerization using acrylic acid monomer (purity 99%, Sigma-Aldrich,
St. Louis, MO, USA) and 2,2′-Azobis (2-methylpropionamidine) dihydrochloride (purity
97%, Sigma-Aldrich, MO, USA) as initiator. The total concentration of the acrylic acid
monomer in the reaction solution was 25% (w/w). The amount of initiator was 0.5% (w/w) in
relation to the monomer. PAA synthesis was carried out at 60 ◦C and vigorous stirring, and
the reaction was finished when an increase in viscosity was observed. PAA was washed
five times with deionized water and then dried in an oven at 50 ◦C. Coconut oil (purity
99%, Carco productos, San Luis Potosí, México) was used to formulate (w/o) inverse
emulsion. 32.5 mL of coconut oil were mixed with 3 g of Polyglycerol polyricinoleate
(PGPR) (donated by Palsgaard® company, San Luis Potosí, México) to form the continuous
phase. The mixture was sonicated in an ultrasonic bath for 5 min to uniformly disperse
the surfactant in the oil phase. The aqueous phase solution was prepared by dissolving
12 mg of PAA in 6.6 mL of distilled water. The PAA suspension was dropwise added to
the continuous phase under vigorous magnetic stirring, and 6 mg of CWF were added.
The PAA/Schizo emulsion was homogenized for 2 min at a 30% amplitude using a high
energy ultrasound probe (Ultrasonic processor VCX 750 Watt, Sonics vibra-cell ™, Sonics
& Materials Inc., Newtown, CT, USA); in this step the sample heating was minimized by
using a cool water bath. Covalent bonding between PAA and Schizochytrium sp. CWF
was subsequently promoted by adding 62 mg of 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide hydrochloride (EDC, commercial grade, Sigma-Aldrich, St. Louis, MO, USA)
as carboxyl activator agent. The ultrasound treatment was continued for 20 min at a 30%
amplitude. The produced microgel emulsion was precipitated by adding 50 mL of acetone
dropwise under vigorous magnetic stirring. The precipitate was collected by centrifugation
at 4855 RCF for 20 min. The microgels pellet was serially washed with absolute ethanol,
distilled water, and 70% ethanol, with centrifugation and removal of supernatant steps in
between. Microgels were stored at 4 ◦C until further analysis.

2.3. Characterization
2.3.1. Transmission Electron Microscopy

The morphology and particle size of the PAA/Schizo microgels were analyzed using
transmission electron microscopy (TEM) with a JEOL-2100 HRTEM equipment operated at
80 kV (JEOL Ltd., Tokio, Japan). A microgel sample was resuspended in water, placed on a
copper grid, and let dry at room temperature (CF200-Cu 200 mesh, Electron Microscopy
Sciences, Hatfield, PA, USA).

2.3.2. Hydrodynamic Diameter and Zeta Potential Measurement

The mean diameter and size distribution of the PAA/Schizo microgels were mea-
sured by dynamic light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments,
Malvern, UK); the average particle size (ZAve) and polydispersity index (PDI) were deter-
mined using an aqueous fresh dispersion of microgels. All measurements were performed
at 25 ◦C in triplicate. The microgel stability was evaluated by determining the ZAve and
PDI of samples over 9 h at 25 and 37 ◦C at different pH values. The zeta potential of the
sample was measured at pH 1.2, 4.6, 6, 7.4 and 8.4 using the Zetasizer Nano ZS (Malvern
Instruments, Malvern, UK) in folded capillary cells (Malvern, UK).

2.3.3. Fourier Transform Infrared Spectroscopy

The chemical structure of PAA/Schizo microgels and the evolution of the nanoma-
terials in their various modification steps were followed by Fourier transform infrared
spectroscopy (FT-IR) using an Agilent Cary 600 series FT-IR instrument coupled with an
attenuated total reflectance (ATR) accessory (Agilent Technologies, Santa Clara, CA, USA).
The spectra were recorded in the range of 400 cm−1 to 4000 cm−1 with 4 cm−1 resolution
and 32 scans.
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2.3.4. Thermogravimetric Analys

Thermogravimetric analysis of CFW, PAA and PAA/Schizo microgels was carried out
in a 550 TGA (TA Instruments, New Castle, DE, USA). Samples were placed on alumina
pans and thermal decomposition was performed from 30 to 450 ◦C with a heating range of
10 ◦C/min under nitrogen gas flow (60 mL/min).

2.4. Preparation of BSA-Loaded PAA/Schizo Microgels

Bovine serum albumin (BSA) (purity > 98%, Equitech-Bio Inc., Kerrville, TX, USA)
loading capacity of the PAA/Schizo microgels was determined by the incubation method.
Concisely, 1 mg of microgels was mixed with a BSA solution at 1 mg/mL in PBS at pH 7.4
and 6, and incubated for 36 h at 4 ◦C under stirring. Microgels were separated from the
aqueous medium containing free BSA through centrifugation at 14,000 rpm for 20 min. The
amount of free BSA in the supernatant was measured at different time points by the Lowry
assay using a spectrometer at 550 nm. The BSA loading efficiency (LE) and loading capacity
(LC) of the microgels were calculated as follows [41]:

LE (%) =

(
Total amount o f BSA− Free BSA

Total amount o f BSA

)
× 100

LC =
Total amount o f BSA− Free BSA

Dry nanogel weight

2.5. In Vitro Cell Viability

Cytotoxicity of the PAA/Schizo microgels was evaluated in mouse splenocytes by
the resazurin assay. Mice splenocytes were obtained following the protocol reported
by Govea-Alonso et al. [55], and cell viability was estimated by trypan blue staining.
1 × 106 splenocytes were seeded in 24-well culture plates and maintained in RPMI
(Sigma-Aldrich, St. Louis, MO, USA) medium supplemented with 1 Mm sodium pyruvate
(Sigma-Aldrich, St. Louis, MO, USA), 0.1 Mm non-essential amino acids (Sigma-Aldrich,
St. Louis, MO, USA), 2 Mm glutamine (Sigma-Aldrich, St. Louis, MO, USA), 25 Mm HEPES
(Purity > 99.5%, Sigma-Aldrich, St. Louis, MO, USA), 100 U/Ml penicillin (IBI Scientific,
Peosta, IA, USA), 100 µg/mL streptomycin (IBI Scientific, Peosta, IA, USA) and 10% (v/v)
fetal bovine serum (FBS, Gibco BRL, Grand Island, NY, USA). PAA/Schizo microgels at dif-
ferent concentrations (10, 100, 500 and 900 µg/mL) were added and cultures were incubated
for 24 h at 37 ◦C in a 5% CO2 atmosphere. Splenocytes without microgels were used as pos-
itive control, whereas cells treated with DMSO (Sigma-Aldrich, St. Louis, MO, USA) were
used as negative control. After incubation, cells were washed and incubated with resazurin
(30 µg/mL) during 72 h. Fluorescence was measured (Ex = 560 nm and Em = 590 nm)
using a FlexStation II equipment (Molecular Devices, San Jose, CA, USA) and the SoftMax
Pro software. Samples were analyzed in triplicate.

2.6. Immunization Study

Six groups (n = 4) of 8–12-week-old male BALB/c mice were randomly established
and subjected to intranasal (i.n.) administration with one of the following treatments: 50 µg
of soluble BSA, 50 µg of BSA embedded in PAA/Schizo microgels, 10 µg of soluble BSA,
10 µg of BSA embedded in PAA/Schizo microgels, 10 µg of BSA plus 1 µg of Cholera
toxin (CT, Sigma-Aldrich, St. Louis, MO, USA) as adjuvant, or PAA/Schizo microgels
in PBS. PBS was used as the vehicle (pH = 7.4). Mice were nasally immunized on days
1, 14 and 39 and blood samples were collected on days −1, 13, 21, and 53. Sera were
separated by centrifugation at 5000 rpm for 10 min and stored at −20 ◦C until further
use. Mice were sacrificed by cervical dislocation 2 weeks after the last immunization.
Spleens were collected and used for proliferation assays described in the previous section.
For nasal washes, the jaw of euthanized mice was carefully removed until the trachea
showed up, blood present was cleaned using cold PBS. Afterwards, a 19 G needle was
inserted into the trachea and the mice were positioned vertically to a 1.5 mL collection tube.
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200 µL of PBS containing 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma-Aldrich,
St. Louis, MO, USA) was flushed through the needle, passed the mice nasal cavity and
collected from nostrils into the tubes. During the collection it was ensured that PBS did
not escape through the oral cavity of the mice by keeping the needle in the direction of the
back of the trachea avoiding making a second hole. The fluid recovered from the nostrils
was used for antibody content analysis right after collection [56,57]. This protocol was
approved by the Committee on Research Ethics from the Faculty of Chemistry/University
of San Luis Potosi (Permit Number: CEID-2015069).

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was performed to determine the presence of anti-BSA IgG antibodies in serum
and anti-BSA IgA antibodies in nasal washes. 96-well polystyrene plates were coated
overnight at 4◦C with BSA (1 µg/well) in carbonate buffer (15 mM Na2CO3, 35 mM
NaHCO3). Then, plates were washed three times with PBS-Tween (PBS-T) and blocked
with 5% fat-free dry milk dissolved in PBS at room temperature for 2 h. After washing,
diluted serum samples (1:20) and nasal washes (undiluted) were added and plates were
incubated overnight at 4 ◦C. Samples were analyzed in triplicate. Plates were washed and
goat horseradish peroxidase-conjugated anti-mouse IgG or IgA was added as a secondary
antibody (1:2000). After incubation for 2 h at room temperature, plates were washed and a
substrate solution composed of 0.3 mg/mL 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS, Sigma-Aldrich, MO, USA) and 0.1 mM H2O2 was added. After 30 min
incubation, optical density (OD) values at 405 nm were measured using a Thermo Scientific
Multiskan® FC microplate photometer (Thermo Scientific, USA).

2.8. Flow Cytometry

Flow cytometry was performed to measure the percentage of CD4+ T cells in spleno-
cytes from immunized mice. Splenocytes were obtained as described above and cultured
in 24-well plates, with a 1 × 106 splenocytes/mL initial density in RPMI medium. Cells
were stimulated or not with 2.5 mg/mL BSA and incubated for 65 h at 37 ◦C in a 5% CO2
atmosphere. Cells were subsequently harvested, washed, and stained with phycoerythrin
(PE)-conjugated anti-CD4 antibody (BD Biosciences, San Jose, CA, USA) for 20 min (4◦C)
and then fixed with 1% paraformaldehyde. Unstained cells were used to compensate the
background autofluorescence. Cells were washed, resuspended in PBS, and acquired on a
BD FACScanto II™ cytometer (BD Biosciences, San Jose, CA, USA). Results were analyzed
in the FlowJo software.

2.9. Statistical Analysis

Data were presented as mean ± standard deviation (SD). Significant differences in
antibody levels and cell viability values between pairs of groups were assessed using
one-way analysis of variance (ANOVA) followed by mean comparisons using Tukey’s test
(p > 0.05) in the GraphPad Prism software.

3. Results
3.1. Production of Stable PAA/Schizo Microgels

Microgels constitute attractive materials for the development of innovative vaccines,
especially for those administered by mucosal routes. This study was focused on the
development of a microgel for nasal immunization using algae cell wall fractions, which is
a low-cost material that at the industrial level is not used for the generation of high-value
products. Hence, PAA/Schizo microgeles were synthesized by inverse emulsion assisted
by ultrasound using an aqueous phase containing PAA and CWF, emulsified in coconut oil
phase containing PGPR as surfactant.

The impact of synthesis parameters and the viability of using ultrasound treatment
to break the bulk PAA polymer synthesized by free radicals was first determined. The
evaluated parameters were initial concentration of PAA polymer (0.1, 0.3, 0.5 mg/mL),
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ultrasound time (5 and 20 min) and amplitude (20, 40%). The goal in this step was to obtain
spherical shape polymeric nanoparticles with a narrow size distribution. In the first stage,
the synthesis of microgels was performed in aqueous solution to determine the impact of
this innocuous medium and the influence of initial parameters in particle size and shape.
Figure 1 shows TEM images of PAA/Schizo hybrid polymers obtained at various initial
concentrations of PAA, keeping constant the ultrasound period and amplitude (5 min
and 20%, respectively). From Figure 1A it can be noticed that at low PAA concentration
(0.1 mg/mL) any structured polymer is formed; in fact, cell debris were observed separated
from the PAA polymer, which is likely due to the lack of reaction between PAA polymer
and microalgae cell walls under this reaction conditions. Figure 1B shows the morphology
of the polymeric material obtained when PAA was used at 0.3 mg/mL, which consists of a
polymeric material with more structured and condensed regions, suggesting an interaction
between PAA and Schizochytrium sp. CWF. At high polymer concentration (0.5 mg/mL)
aggregates of bulk polymer were found (Figure 1C). Based on these results the selected
PAA concentration for further experiments was 0.3 mg/mL.
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Figure 1. Transmission electron microscopy (TEM) micrographs of reactions carried out in aqueous
medium using different concentrations of polyacrylic acid (PAA): (A) 0.1 mg/mL, (B) 0.3 mg/mL
(red arrows indicate PAA bulks), (C) 0.5 mg/mL (red arrows indicate interaction between PAA and
Schizochytrium sp.); maintaining constant the following parameters: Schizochytrium sp. cell wall
fraction (CWF) (6 mg), ultrasound time (5 min), and amplitude (20%).

The influence of the amplitude percentage and ultrasound time for the formation of
spherical particles was next determined. Figure 2A shows a picture of the suspensions
formed by varying the mentioned conditions. It can be observed that control polymer
(PAA) is characterized by a transparent suspension while hybrid PAA/Schizo microgels
synthesized at different amplitudes and ultrasound times became turbid, indicating the
reaction of PAA and Schizochytrium sp. CWF.

The morphology and hydrodynamic size of PAA/Schizo microgels were evaluated by
TEM and DLS to select the best synthesis conditions. The synthesis performed at 20% and
40% amplitude and 5 min ultrasound time led to the formation of structures without defined
morphology (Figure 2B,C). But increasing the ultrasound time (20 min) allowed to obtain
spherical particles at either 20 or 40% amplitude (Figures 2D and 2E, respectively). A more
homogeneous sized particles were obtained at the lower amplitude (PDI: 0.293 ± 0.031)
when compared those obtained at high amplitude (PDI: 0.35 ± 0.071), in which high
polydispersity was observed (figures inset). These findings point out sonication time as a
crucial factor for the formation of microgels particles while amplitude might help to control
particle size dispersion.
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Figure 2. (A) pure polyacrylic acid (PAA) (control) and polyacrylic acid/Schizochytrium sp.
(PAA/Schizo) microgels suspensions obtained at various synthesis conditions. Transmission electron
microscopy (TEM) micrographs of PAA/Schizo microgels synthesized at 5 min of ultrasound time
and (B) 20% amplitude, and (C) 40% amplitude. 20 min of ultrasound time at (D) 20% amplitude
(polydispersity index (PDI): 0.293 ± 0.031) and (E) 40% amplitude (PDI: 0.35 ± 0.071). (F) The hydro-
dynamic diameters of PAA/Schizo microgels synthesized at the same described conditions obtained
by dynamic light scattering. Data shown is the mean of three independent measurements ± standard
deviation (SD).

The hydrodynamic diameter of PAA/Schizo microgels was evaluated by DLS at dif-
ferent reaction conditions; increasing sonication time and amplitude percentage led to the
formation of smaller particles (Figure 2F). Li et al. [39] reported PAA/calcium phosphate
hybrid nanogels synthesized by ultrasound, observing a decrease in particle size as long
as sonication time and amplitude were increased. In this study, conditions determined as
convenient for the synthesis of PAA/Schizo microgels comprised 20 min of ultrasound
treatment at a 20% amplitude, which allowed the production of more homogeneous spheri-
cal shaped particles with a narrow size distribution; which is a desirable goal to achieve
a more consistent biological activity since particle size influences the uptake by immune
system cells [27,58].

The stability of PAA/Schizo microgels was determined by measuring PDI of the
samples prepared at 20 min of ultrasound time and 20% amplitude (particles observed in
Figure 2D). The results showed a substantial increase in PDI values as well as in particle size
along the time. This effect was attributed to particle breaking and polymer aggregation. The
lack of stability of hybrid PAA/Schizo particles in aqueous suspension might indicate that
the synthesis conditions selected to prepare the microgels mainly promoted intermolecular
interactions between PAA and microalgae CWF, which are easily broken by hydrolysis in
aqueous solution due to their intrinsic weak nature.

Therefore, stability and homogeneity of PAA/Schizo microgels were achieved thanks
to the formation of amide bonds between PAA and microalgae CWF, in a reaction induced
in a water-in-oil (W/O) microemulsion prepared with non-toxic compounds (coconut
oil and PGPR as the surfactant). Under this synthesis approach PAA concentration and
ultrasound time were maintained constant at 0.3 mg/mL and 20 min, respectively, and the
effect of amplitude (20, 30, 40%) on particle size and shape was determined (Figure 3).
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Figure 3. Morphological characterization and particle size of polyacrylic acid/Schizochytrium sp.
(PAA/Schizo) microgels obtained by inverse emulsion assisted by ultrasound. (A) Size of synthe-
sized microgels at different amplitudes. (B) Transmission electron microscopy (TEM) image of
microgels syntesized at 30% amplitude for 20 min. Data shown is the mean of three independent
measurements ± standard deviation (SD).

The 30% amplitude treatment (Figure 3A) allowed to obtain microgels with the smallest
average hydrodynamic size (281 ± 2.9 nm) and PDI value (0.21 ± 0.013), compared with
microgels synthesized at 20% (362 ± nm, PDI 0.35 ± 0.031) and 40% (304 ± 2.4 nm, PDI
0.25 ± 0.01). Ruiz et al. [59] recently analyzed the influence of sonication parameters on
particle size and PDI of polylactic acid (PLA) nanoparticles, observing that an increase in
sonication power led to a decrease in particle size. The authors argue that the hot spots
created by the transitory cavitation causes a reduction in the size of the droplets and the
progression of the treatment led to breakdown of smaller drops. However, particle size and
PDI increased when a 40% amplitude was applied, an effect that could be explained by
the increment in temperature after constant sonication, leading to a decrease in the energy
system that causes particle aggregation.

The reproducibility of the microemulsion synthesis method was determined by DLS
measuring the particle size in 20 samples from independent reactions performed at 30%
amplitude, observing an average diameter of 288 ± 39 nm. Average size here obtained is
desirable for biological applications due to particles > 100 nm are uptake by peripheral
antigen presenting cells (APCs) and then migrate and maturate to present the antigen to T
cells [27,58]. Morphological characterization of this representative PAA/Schizo microgel in
dried form is shown in Figure 3B, which revealed a compact structure, with spherical-like
shape particle and a diameter below 100 nm. The difference in particle size observed
between DLS and TEM is attributed to the dehydration effect of the nanoparticles upon
TEM analysis.

The comparison of the two synthesis methods revealed that the inverse microemulsion
allows the production of more nanostructured and smaller microgels. Thus the final
synthesis conditions for further experiments were set as follows: 0.3 mg/mL PAA, 6 mg
CWF, 30% amplitude, and 20 min ultrasound time.

3.2. Infrared Spectroscopy Shows Modifications in the Chemical Structure of PAA/Schizo Microgels

The evolution of hybrid polymer was monitored by FT-IR at the different synthesis
steps and compared with the pure components. The infrared spectrum of CWF is shown in
Figure 4, where the major absorption bands of the -NH2 group are observed (at 3260 and
1620 cm−1), while the stretching vibration of –NH is observed at 1515 cm−1, both belonging
to proteins. In the pure PAA, the strong stretching vibration band of C = O characteristic of
the carboxyl group belonging to carboxylic acid is located at 1690 cm−1. For the coconut oil
and PGPR, the major IR bands characteristic of triglyceride functional groups are observed



Pharmaceutics 2023, 15, 133 10 of 22

around 2920 cm−1 for C-H asymmetric stretching, 2850 cm−1 for C-H symmetric stretching,
and 1740 cm−1 for C=O stretching. The formation of hybrid PAA/Schizo microgels was
confirmed by the IR band centered at 3260 cm−1, which belongs to primary amine groups
observed in CWF, while the band at 1690 cm−1 assigned to the carboxylic acid of PAA
became lower, broader, and slightly shifted, indicating modifications in the chemical
structure of the polymeric molecule. All these changes suggested the chemical bonding
between carboxyl groups of PAA and amine groups of CWF leading to the formation
of amide groups, which is further confirmed by the presence of the vibration bands at
1620 and 1515 cm−1 corresponding to amide I and II groups, respectively.
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Figure 4. FT−IR spectra of polyacrylic acid/Schizochytrium sp. (PAA/Schizo) microgels and their
components: cell wall fraction (CWF), polyacrylic acid (PAA), polyglycerol polyricinoleate (PGPR)
and coconut oil.

3.3. Schizochytrium sp. CWF Improves Thermal Stability of PAA/Schizo Microgels

In addition, thermal decomposition of PAA, CWF and PAA/Schizo microgels was
evaluated by TGA. As shown in Figure 5A, CFW presented the highest thermal stability
with initial weight loss that may correspond to the adsorbed and bound water. A sig-
nificant weight loss in CWF was observed in the range of 260–400 ◦C that could be due
to the organic molecules such as proteins and carbohydrates present in the biomass [60].
Weight loss in PAA can be observed in two stages: first one ranges between 200–290 ◦C
and can be attributed to the thermal decomposition of carboxyl groups, whereas the sec-
ond one occurred in the range of 330–450 ◦C belonging to the breaking of PAA backbone.
PAA/Schizo sample showed the initial weight loss at 200 ◦C corresponding to carboxyl
groups degradation followed by a maximum weight loss starting at 250 ◦C. DTGA thermo-
grams showed differences in the decomposition temperature peaks of the different samples
analyzed. PAA/Schizo microgels presented a maximum degradation peak at 314 ◦C which
is not observed in PAA DTGA thermogram. This could indicate the presence of inter- and
intramolecular interactions between PAA and CWF. In addition, CFW improved thermal
stability at higher temperatures.
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Figure 5. Thermogravimetric analysis (A) and derivative thermogravimetric (DTG) curves (B) of
PAA, Schizochytrium sp. biomass and PAA/Schizo microgels. Thermal decomposition of the samples
was carried out from 30 to 450 ◦C with a heating range of 10 ◦C/min under nitrogen gas flow.

3.4. PAA/Schizo Microgels Are Stable at Neutral and Basic pH Values

On the other hand, stability of the PAA/Schizo microgels in buffered aqueous suspen-
sions was determined in terms of zeta potential (Z). It was found that Z of microgels is
pH-dependent (Figure 6). Basic pH confers a negative charge to PAA/Schizo microgels,
which is attributed to the deprotonation of carboxylic acid of the polymeric network. The
highest negative value (lower than −30 mV) was found between pH 7.4 and 8.4, denoting
the high stability of the microgels at physiological pH [61] assuring a good dispersion of
the nanoparticles in the suspension.
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Figure 6. Zeta potential (Z) of polyacrylic acid/Schizochytrium sp. (PAA/Schizo) microgels was
evaluated at different pH values at 25 ◦C. Data shown is the mean of three independent measure-
ments ± standard deviation (SD).

In order to determine the suitability of the PAA/Schizo microgels for biomedical
applications, their stability was assessed by DLS in buffered aqueous solutions at different
pH values at 25 and 37 ◦C. When incubated at 25 ◦C PAA/Schizo microgels display a
wide size range at pH 1.2 and 4.6 (Figure 7A). PDI also increases over the time at pH 1.2
and 4.6, indicating an increase in nanoparticles size distribution with a final PDI values
of 0.68 ± 0.134 and 1, respectively; this behavior is attributed to the lower stability of
microgels, which apparently lose their spherical shape and form aggregates at acid pH.



Pharmaceutics 2023, 15, 133 12 of 22

PAA/Schizo microgels show good stability with no significant changes in average size and
PDI at pH 7.4 and 8.4 at either 25 or 37 ◦C (Figure 7A,B). When incubating at 25 ◦C, final
PDI values were 0.183 ± 0.026 and 0.239 ± 0.013 for pH 7.4 and 8.4, respectively. These
results are in agreement with those obtained in the zeta potential analysis.
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Figure 7. Microgel stability of polyacrylic acid/Schizochytrium sp. (PAA/Schizo) microgels was
analyzed by determining the changes in particle average size (size) and polydispersity index (PDI)
of samples over 9 h, at (A) 25 and (B) 37 ◦C at different pH values. PAA/Schizo microgels showed
higher stability at 7.4 and 8.4 pH values. Data shown is the mean of three independent measure-
ments ± standard deviation (SD).

PAA have been used to synthesize microgels for drug delivery due to its pH-responsiveness
capability [39,62,63]. PAA/Schizo microgels resulted stable at pH 7.4 and 8.4 for a pro-
longed time at 25 and 37 ◦C while at acidic pH they dissolved due to the association
between the carboxylic groups with the protons of the medium. The hydrogen bonds
formed between carboxyl groups and H+ at lower pH may lead to aggregates formation
after dissolution, which is reflected in an increase in PDI and particle size values; whereas
at basic pH values, PAA/Schizo microgels have higher stability and a negative surface
charge because of PAA chains deprotonation. These hypotheses are also supported by
the non-significative changes observed in particle size and PDI, as well as zeta poten-
tial values under −30 mV. Swelling occurs at a pH above the pKa (4.25 for acrylic acid),
in this case a 4.6–6 pH range at 37 ◦C, where microgels are in a swollen state owing to
electrostatic repulsion between segments within the particles. When exposed to higher
temperatures, average size of PAA/Schizo microgels increase due to the breakage of weaker
hydrogen bonds between acrylic acid units [64]. These characteristics make PAA/Schizo
microgels a promising material for biomedical applications owing to its compatibility with
physiological conditions [65].

Morphological and physicochemical characteristics of microgels depend on the synthe-
sis method, cross-linking agents, polymerization degree, among others. In fact, we obtained
similar results compared with other studies. Koul et al. [66] reported the synthesis of inter-
penetrating polymer network (IPN) based on different combinations of gelatin and PAA by
inverse miniemulsion, obtaining spherical microgels with a 255 ± 25 nm mean diameter
with high stability at basic pH values; Pal et al. [67] also synthesized stable and spherical
PAA grafted gelatin microgels of 442 nm in diameter for drug delivery. Chitosan/PAA
microgels have also been reported, synthesized by free radical polymerization rendering
nanospheres of 114.5 nm in diameter [68]. However, these synthesis methods involve the
use of toxic cross-linkers and solvents, which generate hazard residues and imposes the
need of a strident purification process of the material to guarantee its safety for biomedical
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use. Interestingly, our synthesis method avoids the use of toxic reagents and relies in the
use of Schizochytrium sp. CWF as novel cross-linker, therefore will serve as an attractive
vehicle in several biomedical applications.

3.5. PAA/Schizo Microgels Adsorb BSA and Are not Inherently Toxic

To evaluate PAA/Schizo microgels as antigen delivery vehicles, BSA protein was
used as model antigen, which was loaded into microgels by the incubation method. BSA
loading efficiency (LE) of PAA/Schizo microgels at different pH are shown in Figure 8. The
PAA/Schizo microgels exhibit higher LE (72%) at pH 7.4 compared to pH 6 (57%), which
could be due to favored intermolecular bonds at higher pH values. The highest amount for
BSA loaded on the microgels occurred after 24 h incubation for both cases; no noticeable
increase in loading was observed after this time suggesting saturation of the PAA/Schizo
microgels with the antigen. At pH 6 and 7.4, both BSA and PAA/CWF microgels have
negative charges so the driving force of loading BSA onto the PAA/Schizo microgels could
be through hydrophobic interaction between BSA and the PAA chains [41]. The LC of BSA
in the PAA/Schizo microgels at pH 7.4 was 362 µg/mg while at pH 6 was 285 µg/mg.
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 Figure 8. BSA loading efficiency of polyacrylic acid/Schizochytrium sp. (PAA/Schizo) microgels.
A bovine serum albumin (BSA) solution (2:1) at pH 7.4 and 6. Microgels were incubated at 4 ◦C with
a BSA solution at a 2:1 proportion, and the amount of free BSA in the supernatant was measured at
different time points by the Lowry assay using a standard calibration curve. Data shown is the mean
of three independent experiments ± standard deviation (SD).

The yields obtained in this system are attractive when compared with those reported by
Argentiere et al. [69] who synthetized PAA microgels by emulsion polymerization of methyl
acrylate and subsequent acidic hydrolysis with a loading capacity of 36 and 8 µg/mg at
pH 4.5 and 7, respectively. PAA/Schizo microgels LE and LC also resulted higher than
those reported by Morelli et al. [70] who synthetized a hybrid microgel composed by
N-vinylcaprolactam and ulvan (algal sulphated heteropolysaccharide) by UV-initiated
radical copolymerization; they reported a protein loading of 44 and 22 µg and a LE of
34 and 17%, respectively. PAA/Schizo microgels loading capacity also resulted higher
when compared with other nanomaterials such as porous silica nanoparticles (430 nm in
size), which exhibited a loading capacity of 41.2 µg BSA/mg nanoparticles [71].
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Cell viability of mice splenocytes was investigated by resazurin assay after incubation
with PAA/Schizo microgels at different concentration. As shown in Figure 9, cell viability
after incubation with the microgels for 24 h resulted higher than 80 % for all tested con-
centrations (10, 100, 500 and 900 µg/mL) and there was not significative difference when
compared with control. Thus, PAA/Schizo microgels could be used as antigen delivery
systems due to its good biocompatibility.
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Figure 9. Cytotoxicity assessment for polyacrylic acid/Schizochytrium sp. (PAA/Schizo) microgels in
mice splenocytes. Cells from BALB/c mice were exposed during 24 h to PAA/Schizo microgels at
different concentrations and viability was subsequently measured by the resazurin assay. Vehicle
(PBS) and 5% dimethyl sulfoxide (DMSO) were used as controls. Data represent mean ± standard
error of the mean (SEM) (n = 3). Statistic differences (* p < 0.05) are indicated by the asterisk.

The obtained microgel was safe as it did not exert a significant depletion on cell
viability in splenocyte cultures and no obvious toxic effects in immunized mice (weight loss,
mortality). This data is critical to continue with the preclinical evaluation of the PAA/Schizo
microgels. Other groups have investigated the safety of PAA-based nanomaterials in
different cell lines, such as LoVo cells [41,72], L02 human cells [39], and Caco-2 cells [73].
Interestingly, Mahajan et al. [74] reported thermally reversible xyloglucan gels applied for
nasal drug delivery, which were obtained from tamarind seed by partial degradation by
β-galactosidase. This material induced no damage in the nasal mucosa and achieved a
28.64% increase in the drug bioavailability.

3.6. PAA/Schizo Microgels Modified the Immune Response against BSA

To investigate the capacity of PAA/Schizo microgels to potentiate the immune re-
sponse induced against BSA, an initial study was carried out in test mice. An i.n. immuniza-
tion scheme comprising three weekly doses of BSA (10 or 50 µg of BSA) was implemented.
All mice survived during the immunization scheme. IgG serum antibody levels were
determined by ELISA, observing that the 50 µg dose of soluble BSA induced significant
antibody responses at a similar magnitude to that induced by the 10 µg BSA dose plus CT
as adjuvant. Surprisingly, the 50 µg BSA dose included in the PAA/Schizo carrier induced
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no significant responses (Figure 10A). In terms of the mucosal immune response, IgA levels
were determined in nasal washes, observing the same effect: soluble BSA at a 50 µg dose
induced significant humoral responses similar to that induced by BSA (10 µg plus CT),
whereas BSA (50 µg) absorbed into the PAA/Schizo carrier did not (Figure 10B).
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Figure 10. Humoral response analysis induced in test mice upon nasal administration of bovine
serum albumin (BSA) soluble or adsorbed in polyacrylic acid/Schizochytrium sp. (PAA/Schizo)
microgels. (A) serum anti-BSA IgG or (B) nasal washes anti-BSA IgA levels were measured by ELISA
in samples from BALB/c mice immunized with soluble BSA at two different doses: 10 or 50 µg (BSA
50, BSA 10); or embedded in microgels at two doses: 10 or 50 µg (microgel/BSA 50, microgel/BSA 10).
One group received 10 µg BSA soluble plus Cholera toxin (CT) as an adjuvant. Mice were subjected
to a scheme comprising three intranasal (i.n.) doses. Data represent mean ± standard error of the
mean (SEM) (n = 4). Statistical differences (* p < 0.05) are indicated by an asterisk (versus the group
treated with PAA/Schizo microgels in PBS only).

To assess whether the CD4+ T cells response is differentially induced when the
PAA/Schizo microgels are used as antigen carriers, splenocytes were isolated from test
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mice and subjected to in vitro stimulation with BSA and analyzed by flow cytometry. Re-
sults showed that mice immunized with PAA/Schizo microgels + 50 µg BSA have an
increased rate of proliferating CD4+ T cells upon BSA stimuli compared with unstimulated
splenocytes (Figure 11B); whereas proliferating CD4+ T cells response of mice treated with
50 µg soluble BSA was significant but lower than that of the mice group immunized with
the PAA/Schizo microgel carrying the 50 µg BSA dose.
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Figure 11. Splenocytes from mice immunized with polyacrylic acid/Schizochytrium sp. (PAA/Schizo)
microgel + 50 µg bovine serum albumin (Microgel/BSA 50), 50 µg bovine serum albumin soluble
(BSA 50) or Cholera toxin + 10 µg bovine serum albumin (CT BSA 10) were incubated for 65 h in
either the presence or absences of 2.5 mg/mL BSA soluble and labeled with anti− CD4− PE antibody.
(A) Lymphocyte-gated regions along with dot plots of representative results are presented. (B) Mean
percentage of fluorescence is presented. Augment in CD4+ T cell proliferation was observed in mice
immunized with PAA/Schizo microgel + 50 µg BSA.

By one hand, neither IgG (systemic) nor IgA (nasal mucosa) responses were induced
after nasal immunization with 50 or 10 µg BSA doses embedded in PAA/Schizo microgels,
whereas immunization with the soluble antigen resulted in significant humoral responses
in both compartments. On the other hand, CD4+ T−cells proliferation assays using spleno-
cytes revealed significant responses induced by the PAA/Schizo microgel carrying BSA.
This differential behavior observed for the humoral and lymphoproliferative responses
leads us to speculate on some of the immune mechanisms behind. It is known that upon
immunization APCs, like dendritic cells (DCs), present epitopes of antigens on MHC class
II (MHC−II) to naïve CD4+ T−cells, leading to their activation. In draining lymph nodes,
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CD4+ T−cells can differentiate into effector cells such as Th1 and Th2 or into regulatory
T-cells (Tregs) [75]. Tregs play an essential role in development of self−tolerance and they
downregulate proinflammatory responses of effector Th cells, and also downregulate the
induction of humoral responses [76,77].

It has been documented that nasal or mucosal tolerance can be induced by repeated
administration of low antigen doses [78]. The slow antigen release presented by PAA-based
microgels [41,79] could provide a low antigen uptake by APCs directing CD4+ T−cells
differentiation into Tregs. PLGA (poly-lactic-co-glycolic acid) nanoparticles are polymeric
materials that also show slow release and they have been involved in the induction of
tolerance via intranasal. Slütter et al. [80] synthetized N-trimethyl chitosan (TMC) and
PLGA-based nanoparticles loaded with OVA; Balb/c mice were nasally immunized with
20 µg OVA loaded in PLGA-based nanoparticles. PLGA and PLGA/TMC nanoparticles
showed no significant burst release and up to 80% release of initial OVA in 25 days. Al-
though PLGA (320 ± 17.9 nm, zeta potential −48.2 mV) and PLGA/TMC (448 ± 55.9 nm,
zeta potential 24.5 mV) nanoparticles failed to elicit specific antibody response after nasal
vaccination. A subsequent study revealed that PLGA nanoparticles (371± 17.9 nm, zeta po-
tential −16.8 mV) induced mucosal tolerance after nasal vaccination, which was associated
to the CD4+ T cell differentiation into FoxP3+ T-cells [81]. A critical perspective for this
study is the characterization of the Treg response promoted by the PAA/Schizo microgels.

The functional difference in DCs (immunogenic, tolerogenic) depends on the matura-
tion state and maturation environment. Maturation of DCs is a complex process in where
antigen processing and presentation, migration and T-cell co-stimulation are involved [82].
Mature DCs are capable of induce clonal expansion of antigen-specific naïve T cells and
their concomitant differentiation into effector T cells. The homeostatic balance of high levels
of MCH class II in DCs confers tolerogenic properties rather than immunogenic properties.
In addition, anti-inflammatory cytokines such as IL-10 drives differentiation of Tregs, which
promotes the production of IL-10 and transforming growth factor (TGF)-β inhibitors of
immune response. PLGA particles have been reported not to increase DCs maturation
while they prolong the expression of MHC class II on the cell surface of DCs [80,83].

Induction of mucosal tolerance is an important therapeutic approach in autoimmune
diseases, allergy and chronic inflammatory disorders [84,85]. Polymeric-based nanomateri-
als such as PLGA have been used as tolerogenic vaccine carriers in experimental models of
autoimmune diseases [86]. Interestingly, Kim et al. [87] administered a single oral dose of
PLGA nanoparticles encapsulating type II collagen (CII) (a potential Rheumatoid Arthritis-
associated autoantigen) in DBA/1 mice. CII was retained up to 14 days in Peyer’s Patches
dome area, where tolerance takes places, moreover, mice were protected from collagen-
induced-arthritis. In this context, the PAA/Schizo microgels obtained in the present study
are promising candidates for the development of immunotherapy prototypes targeting
relevant human diseases whose correlates of protection are related to the downregulation
of inflammatory responses. At this point we can only speculate that the enhanced Th
response observed in the PAA/Schizo microgels-treated mice and absence of humoral re-
sponses could be related to the expansion of Tregs that down regulate the humoral response
against BSA. Further research will comprise mechanistic studies that will allow to assess
this hypothesis and assessing if this effect is also observed for antigens related to relevant
pathologies, such as type I diabetes and atherosclerosis.

The potential of microgels for vaccination is clearly illustrated by the case of pullulan-
based microgels that are under evaluation in clinical trials for the delivery of vaccines
against cancer. NY-ESO-1 and HER2 cancer antigens have been associated to complexes
of cholesteryl pullulan (CHP) microgels and have induced specific humoral and cellular
immune responses [88–90].

4. Conclusions

This study provides a new, sustainable biomaterial based on PAA and Schizochytrium
sp. CWF as a cross-linker agent, called PAA/Schizo microgels, which is synthesized
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by an innovative methodology which avoid the use of toxic solvents and crosslinkers.
The obtained PAA/Schizo microgels have several attributes, such as spherical shape,
high stability at basic pH, no inherent toxicity in mouse splenocytes at concentrations
up to 900 µg/mL. The staibilty of the PAA/Schizo microgels is likely due to the strong
interactions of CWF and the PAA chains. Furthermore, PAA/Schizo microgels have a
high antigen loading efficiency and were deemed functional intranasal antigen delivery
vehicle since these induced a differential immune response when compared to the response
induced by the soluble antigen. Therefore, PAA/Schizo microgels offer a new alternative
to obtain a high value, sustainable antigen delivery system by using a subproduct form
algae bioprocessing, with a possible application in tolerogenic immunotherapies.
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