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Abstract: There are several routes of drug administration, and each one has advantages and limi-
tations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual,
palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application
of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter
of relevance for children and the elderly. Another advantage is the high permeability of the oral
mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without
significant damage to the stomach. This route also allows the local treatment of lesions that affect
the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral
medications that require drug swallowing. Thus, this drug delivery route has been arousing great
interest in the pharmaceutical industry. This review aims to condense information on the types of
biomaterials and polymers used for this functionality, as well as on production methods and market
perspectives of this topical drug delivery route.

Keywords: oral cavity; drug delivery; polymers; biomaterials; topical administration

1. Introduction

The most common route for drug delivery is the oral route [1,2], in which the drugs
(tablets, capsules, syrup, solutions, suspensions, powder, emulsions, etc.) are placed
in the mouth and swallowed. Then, the drug can be absorbed in the gastrointestinal
tract. However, drug absorption can be affected by limited drug chemical and biological
stability or by physiological barriers [2]. Another limiting factor for the use of the oral
route of administration is that many people have difficulties in swallowing, especially the
elderly and children [3,4]. Liquid and semi-solid formulations do not exhibit several of the
problems concerning swallowing, but they often present palatability issues and can cause
nausea and gastric discomfort. Added to these problems, the difficulty of local treatment of
diseases affecting oral mucosa is another concern [5].

An alternative to the oral route of administration is transbuccal drug delivery, with
advantages, such as bypassing the first-pass hepatic metabolism and avoiding drug degra-
dation by gastrointestinal enzymes [6]. Moreover, topical administration is convenient and
easy to access, minimally invasive, and presents higher drug bioavailability in comparison
to transdermal administration [7]. Thus, the development of biomaterials capable of deliv-
ering drugs topically via the oral cavity is an attractive alternative for enhancing medication
bioavailability and for drug administration in emergency situations, when intravenous
application is impaired. However, despite the higher permeability of oral mucosa when
compared to the skin, the epithelium consists in an efficient barrier to drug permeation and
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protects underlying connective tissues from damage [8–12]. Therefore, efficient transbuccal
delivery remains a great challenge.

There is a range of biomaterials that can be used to deliver the drug through the oral
mucosa. The drugs may or may not have systemic action and this depends on the type of
device, dosage, and mucosa interaction, among other factors [13]. The biomaterials that are
most widespread in the literature for this purpose are pressure tablets, fast-dissolving films
and gels (oro-dissolving), mucoadhesive films and gels, and microneedles [7,14].

Biomaterials for drug delivery can be manufactured from numerous classes of mate-
rials. Nonetheless, polymers have very interesting characteristics for this purpose, and a
large range of flexible, versatile, and non-toxic molecules can be selected among them for
transbuccal delivery. These polymers should have a particular set of characteristics [15,16].
These characteristics include being non-toxic, non-irritating, and free of leachable sub-
stances. The polymers should not promote irritation and infection of the oral mucosa. In
addition, the mechanical properties of the polymers should be compatible with the type
of application, and the films formed by these polymers should have no taste. If they do,
they should be palatable. Finally, the polymers should be easily accessible, of low cost, and
should show adequate shelf-life and proper mucoadhesive properties.

Polymers can be roughly divided into synthetic and natural classes. The first includes
those produced in chemical industries and the second, those that can be extracted from
a natural source. It is also possible to have natural polymers chemically modified to
have improved properties, and another subclass, called smart polymers, which represents
molecules capable of responding to changes in the surrounding microenvironment [17].

Polymeric biomaterials containing drugs can be prepared in several ways, e.g., by
solvent casting, direct compression, hot melting extrusion, rolling method, and 3D print-
ing [18,19]. The best technique will depend on the nature of the polymer, the required
architecture of the biomaterial, its application site, and the dosage of drug required for
the treatment.

Figure 1 shows the increasing interest in polymeric oral cavity devices lately. As a
result, it is reasonable to foresee that, shortly, polymeric devices will play an essential role
in oral healthcare. Since polymeric formulations for drug delivery via topical application in
the oral cavity represent a very promising and interesting therapeutic approach, this review
addresses the types of polymeric biomaterials used for this purpose, their production
methods, and the market perspectives related to this drug delivery route.
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2. Types of Polymeric Biomaterials Commonly Used in Drug Delivery in the Oral Cavity

The main types of biomaterials used for drug delivery in the oral cavity are fast-
dissolving films and gels, mucoadhesive tablets, films and gels, and microneedles, which
will be discussed below.

2.1. Fast-Dissolving Films (Oro-Dissolving)

An oral fast-dissolving film consists of a very thin oral strip that is simply placed
on the patient’s tongue or any oral mucosal tissue. The film, instantly wet by saliva,
rapidly hydrates and adheres to the site of application, where it disintegrates and dissolves,
releasing the medication [20,21]. Oral dissolving films have large surface areas, which
facilitates their fast disintegration in the oral cavity. The drug can then be absorbed directly
and reach the systemic circulation. These biomaterials do not require special storage
or transport conditions as they are flexible, compact, and have a long shelf-life. These
formulations can be used directly by the patient, anywhere, and at any time. They can be
produced with less drug quantities, as the first-pass loss through the hepatic metabolism
effect is negligible, which reduces the drug’s side effects. These dosage forms are also
favorable for those suffering from dysphagia, repeated vomiting, hypertension, heart attack,
asthma, nausea, paralysis, and mental disorders [15,22,23]. This type of biomaterial also
allows administering high drug concentrations faster when compared to conventional
tablets, for example.

There is a wide variety of polymers that can be useful for producing fast-dissolving
films. The use of these materials has aroused great interest in the medical and nutraceutical
fields. The polymers can be used alone or combined with other materials, depending on the
required attributes of the film. For this application, the polymers should be water-soluble, as
they must dissolve in saliva, showing a high wettability rate, but appropriate disintegration
time [15,16]. Some of the polymers and drugs used to produce oral fast-dissolving films
are listed in Table 1.

Figure 2 illustrates a representative diagram of an example of one of the fabrication
techniques of an oral dissolving film, up to the moment of its application.
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the mouth, and its dissolution.

If fast film dissolution and rapid drug release are not desired, an alternative to pro-
longed drug release can be the use of mucoadhesive biomaterials, as discussed below.
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Table 1. Examples of drugs and polymers used in the formulation of oral fast-dissolving films *.

Polymer Drug Therapeutic Use Tested Model References

HPMC/PVA Levocetirizine dihydrochloride Antihistamine In vitro dissolution tests, and in vivo studies in rats [24]

HPMC/PVA Telmisartan Hypertension In vitro dissolution test [25]

PVP Paracetamol/caffeine Analgesic and antipyretic In vitro dissolution test [26]

Chitosan Metformin Diabetes In vitro dissolution test [27]

PEG/400 Lercanidipine Hypertension, and angina pectoris In vitro Dissolution test and ex vivo drug permeation
through porcine buccal mucosa [28]

HPMC Mirtazapine Depression In vitro dissolution test [29]

HPMC/Alginate Lidocaine Anesthetic In vitro dissolution test [30]

Pullullan Salbutamol sulfate Asthma In vitro dissolution tests, and in vivo studies on
humans [31]

Gelatin/Starch Vitamin C Assists in numerous functions In vitro dissolution tests, and in vivo studies on
humans [32]

Chitosan/Pullullan Aspirin Minor aches, pains, and fever In vitro dissolution test [33]

Gelatin/gelatinized tapioca starch Lidocaine Anesthetic In vitro dissolution test and ex vivo drug permeation
through chick chorioallantoic membrane (CAM) [34]

HPMC Venlafaxine Depression In vitro dissolution test [35]

Pectin/CMC Paroxetin Depression and anxiety In vitro dissolution test and ex vivo drug permeation
through chicken buccal pouch [36]

* CMC (carboxymethyl cellulose), HPMC (hydroxypropyl methylcellulose), PEG (polyethylene glycol), PVP (polyvinyl pyrrolidone), PVA (polyvinyl acrylate). As observed in Table 1,
numerous polymers can be used to produce films with rapid degradation, and cellulose-based biomaterials stand out for this purpose. Table 1 also presents a large spectrum of drugs
that can be administered through the oral cavity, minimizing the need for other invasive and often uncomfortable routes.
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2.2. Mucoadhesive Biomaterials

Mucoadhesion can be defined as the attachment of macromolecules to mucous mem-
branes. Mucoadhesive formulations are useful since products without these characteristics
can be leached and ingested by patients, causing interruptions or reductions in drug ab-
sorption during the treatment [37–39]. Adhesion of a material to a mucous membrane or a
mucus-covered surface has been employed to prolong drug contact with adsorption sites
and, consequently, to improve drug absorption [40].

The mechanisms involved in mucoadhesion are not yet fully elucidated, with diver-
gence in the methods used to quantify the interaction between polymers and mucosa [41].
Numerous polymers can be used in the oral region to achieve mucoadhesion. These poly-
mers should have the ability to hydrate and swell when in contact with the mucus-lined
epithelium [37,42]. The mucoadhesive ability of a dosage form is dependent upon a variety
of factors, including the nature of the mucosal tissue and the physicochemical properties
of the polymeric formulation [43]. The most common mucoadhesive biomaterials are
described below.

2.2.1. Buccal Tablets

Buccal tablets are easy to prepare, as they can be made only by compression, a process
easy to scale up, efficient, and an economic method for large-scale production. However,
among the formulations generally used for oral purposes, it is considered the least com-
fortable. Despite this limitation, mucoadhesive buccal tablets can be loaded with a greater
amount of drug than films and gels, being useful for treatments in which the required drug
concentration is high, and slow drug release is desired in comparison to fast-dissolving
films [37,39,43]. An example of a mucoadhesive buccal tablet and a summarized mechanism
of how it remains adhered to the mucosa are shown in Figure 3.
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Numerous works in the literature report the use of buccal tablets for drug delivery.
Koirala et al. (2021) evaluated tablets of aceclofenac for sustained drug release, to improve
patient compliance for the management of different types of pain [44]. Çelik et al. (2017)
developed a study to design and optimize risperidone mucoadhesive buccal tablets for
systemic delivery routes and concluded that this biomaterial can be used as an alternative
treatment for schizophrenia [37]. Abruzzo et al. (2015) prepared mucoadhesive tablets
consisting of chitosan/gelatin microparticles compressed with propranolol hydrochloride
for buccal delivery and concluded that this formulation can be effective for the treatment
of hypertension, angina, atrial fibrillation, postinfarction, sinus tachycardia, arrhythmias,
and obstructive cardiomyopathies [39]. Due to the route of administration, this type of bio-
material also allows bypassing the extensive hepatic first-pass, avoiding some side effects.
Chandira et al. (2009) developed mucoadhesive tablets of clarithromycin, a macrolide an-
tibiotic, which were designed to extend the gastric residence time after oral administration.
The authors were able to obtain formulations capable of releasing more than 90% of the
drug in 12 h, while keeping the physicochemical properties unchanged [45].
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In another example, buccal adhesive tablets containing theophylline (a methylxanthine
drug used in the therapy of respiratory diseases such as chronic obstructive pulmonary
disease, asthma, or emphysema) were developed using direct compression [43]. The
formulations were developed using a water-soluble resin with various combinations of
mucoadhesive polymers. The theophylline tablets were evaluated for tensile strength,
swelling capacity, and ex vivo mucoadhesion performance. The authors concluded that,
in general, the majority of the developed formulations presented suitable adhesion and
controlled drug release.

2.2.2. Mucoadhesive Films and Gels

Among the formulations commonly used for transbuccal drug delivery (tablets, films,
gels, pastes, and sprays), mucoadhesive films offer many advantages, such as high flexibility
and large surface area, which implies a greater area for drug absorption [46–48]. Another
relevant advantage is the fact that they ensure a higher drug dosage when compared
to gels and other formulations such as pastes and sprays, since they can be leached by
saliva [46,48]. They also have the advantage of being comfortable, as they are thin, flexible,
and most of the time have mechanical properties suitable for their purpose.

Gels, in turn, have the limitation of not supplying the amount of drug to the mucosa in
a homogeneous way, but they have some advantages over other types of formulation, such
as the relatively faster release of the incorporated drug and easy preparation. In addition,
their simple administration and greater mucoadhesiveness, allowing adhesion to the mu-
cosa in the gingival pocket, as well as rapid elimination through normal catabolic pathways,
which reduces allergic reactions at the application site [49], are attractive characteristics.

The use of mucoadhesive films and gels for drug delivery in the oral cavity is well
consolidated in the literature. These films are being proposed for the adjuvant treatment
of oral carcinomas [5,50], chronic pain [51], for the therapy of small buccal lesions [49], to
treat symptoms of migraine headaches, for pressure control [46,52,53], to treat recurrent
aphthous stomatitis [54], as a topical anesthetic in dentistry [55,56], and as an anxiolytic [57],
among other applications.

2.3. Microneedles (MNs)

Microneedles are three-dimensional microstructures with microscale length (usually
less than 1500 µm) that can break the barrier of transdermal drug delivery. They can
pierce the stratum corneum and generate transient microchannels through which external
molecules can passively diffuse into the skin [58]. These biomaterials can penetrate and
release drugs into the skin, which is about 10–100 times less permeable than the mucosa [59].
These biomaterials have been employed for drug delivery, vaccination, bio-sensing, and
diagnostic purposes, and analysis or current literature indicates that the development of
microneedles tends to grow in the near future. For instance, microneedles have been shown
to have potentially good effects as transmucosal delivery systems, as recently suggested in
a randomized clinical trial [60].

Microneedles can access adequate tissue depths, being able to deliver the drug deep
into tissue without stimulating nerves in the underlying tissue and damaging blood vessels.
Thus, the treatment with microneedles enables a minimally invasive delivery of several
molecules to the tissue (skin, mucosa) in a way that overcomes the limitations of con-
ventional methods of transdermal drug administration [58]. Another advantage of these
biomaterials is their versatility, as they can be used to deliver drugs not only to the oral
cavity [61], but also to the skin [62,63] and eyes [64,65].

For the reasons discussed above, this type of biomaterial will be discussed in greater
detail. Microneedles can be broadly classified based on their overall shape and tip shape,
which are important design and fabrication issues. Different designs of microneedles
have been proposed and fabricated, such as cylindrical, conical, pyramidal, candle, spike,
spear, square, pentagonal, hexagonal, octagonal, and rocket shapes [66–68]. They can be
produced using metals [69–72], glasses [73], silicon [74–76], polymers [77–81], ceramics [82],
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borosilicate [83], and carbon nanotube-polyimide [84], among other materials. Further-
more, different techniques of drug loading and delivery may be employed [66]. Figure 4
summarizes the microneedle types, fabrication materials, and methods.
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2.3.1. Types of Microneedles Concerning the Technique of Drug Loading and Delivery

Microneedles can be divided into five main classes: solid, coated, dissolving, hollow, and
hydrogel-based microneedles, as illustrated in Figure 5, showing different working mechanisms.
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Solid microneedles (SMNs) are used to mechanically disrupt the tissues and create
transient pores of micron dimensions before administration of the active pharmaceutical
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ingredients (APIs) from the external reservoir. Therefore, in SMNs-based drug delivery, the
SMNs are first pressed against the tissue surface, followed by the application of traditional
patches, or other types of dosage forms, such as the ones mentioned before, containing
drug molecules. This allows for molecules of different physico-chemical properties to
be delivered by using SMNs [86,87]. Solid microneedles are easy to manufacture, and
usually have better mechanical properties and sharper tips when compared to hollow
microneedles [88].

Coated microneedles are those in which the drug coats the microneedle surface as
a solid film. When the coated microneedle is inserted into the tissue, it carries the film
containing the active ingredient. Once in the tissue, within a few minutes, the coating
dissolves, releasing the drug, and then it is possible to remove the microneedles and safely
discard them [89].

The coated microneedle is a multifunctional system and can be used to deliver numer-
ous molecules, such as proteins and DNA, as well as viruses [90]. One of the advantages of
coated microneedles is that their mechanical properties do not vary, as occurs with soluble
microparticles. The structural base of these microneedles is fairly resistant, and only the
coating material and drug go through changes [89].

Dissolving microneedles (DMs) are ultra-small needles composed of water-soluble
materials, usually with lengths in the micrometer range (less than 1000 µm). They create
pores in the tissue and release the active principle upon microneedles dissolution [91].
These biomaterials have several advantages, such as having no risk of leaving harmful
materials in the tissue, and no generation of sharp needle waste. These biomaterials
present a relatively low cost, are easy to produce, and their fabrication at industrial scale is
feasible [92].

Dissolving microneedles are reported in the literature for several uses, such as trans-
dermal delivery of huperzine A for the treatment of Alzheimer’s disease [93]. They can also
be used for the delivery of ibuprofen, frequently used as a low molecular weight model
drug demanding high dosages [94], and for the delivery of human growth hormones [95].

In fact, when it comes to delivery to the oral mucosa, soluble microneedles show a
great rise lately in terms of the number of studies and publications. They can be configured
as a new approach to drug delivery to the oral mucosa, effective and painless. Seon-Woo
and co-workers developed a dissolving microneedle system for the oral mucosal to deliver
triamcinolone acetonide to treat aphthous stomatitis [96].

Caffarell-Salvador et al. (2021) [97] designed a highly drug-loaded microneedle patch
to deliver macromolecules and applied it to the buccal area, which allows faster delivery
than through the skin. They successfully delivered 1-mg payloads of human insulin and
human growth hormone to the buccal cavity of swine within 30 s. These are just a few
examples of how dissolving microneedles can be a very useful tool for faster and more
effective drug delivery.

Hollow microneedles are needles with an inner conduit for administering drugs in
the tissue. These microneedles are similar to hypodermic injections, which allow pressure-
actuated flow of a liquid formulation. The pressure, and consequently, the flow rate, can be
modulated for fast and high dosage drug injection (bolus), slow infusion, or time-varying
delivery rates [98].

Hydrogel-forming microneedles (HFMs) represent the newest form of microneedles,
consisting of swellable polymers (crosslinked hydrogels) showing different performances
from the microneedles mentioned above. When inserted into the tissue, HFMs swell due
to the hydrophilic nature of the hydrogels, a property useful for many applications in
biomedicine [99,100].

There are three types of drug loading methods in the case of hydrogel microneedles.
Some microneedles only have drugs at the tips, some in patches, others have drugs in both
places: needles and patches. One of the advantages of hydrogel microneedles is that the
amount of drug loaded into the needles is greater than the possible amount to be loaded in
solid and hollow microneedles. Another advantage of this type of microneedle is that it
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can be made from different types of polymers, making it possible to adjust the drug dosage
according to the characteristics of the polymers used in its production. In fact, polymers
and polysaccharides are very attractive for this purpose due to their high compatibility,
degradability, and non-toxicity [101–103].

Zhu et al. (2022) developed a lidocaine-loaded hyaluronic acid adhesive microneedle
patch for oral mucosal topical anesthesia. In this study, the authors reached the require-
ments for oral clinical application, i.e., rapid administration, water resistance, and adhesion,
circumventing the disadvantages of the pain inflicted by direct local injection of anes-
thetic drugs and its ingestion, as well as the unpleasant taste of local surface anesthesia
ointments [104].

Ye and coworkers (2016) developed a crosslinked hyaluronic acid microneedle patch
coupled with pancreatic cells and enzymes for the delivery of insulin to regulate glucose
levels, without the need for implantation, overcoming problems with the immune response
and long-term efficacy of pancreatic cells therapy [105].

2.3.2. Polymeric Microneedles

As mentioned above, microneedles can be manufactured with numerous materials,
such as metals, ceramics, silicon, silica glass and carbohydrates. However, in this work the
focus will be on discussing polymeric microneedles.

Polymeric microneedle (PMN) systems are interesting biomaterials because they can
control drug delivery, have tunable properties, and are easy and practical for patient self-
administration. They have the main advantages of being biocompatible, and easily and
painlessly penetrate the stratum corneum or mucosa, delivering their contents into where
they can be absorbed into the systemic circulation. These biomaterials allow controlling
drug release kinetics. Depending on the application site, they reach specific tissues, as well
as respond to changes in the physiological conditions of the surrounding environment [106].
Furthermore, polymeric microneedles are able to deliver a greater quantity of low molecular
weight molecules for biological therapies and vaccines.

In addition to the conventional requirements of biocompatibility and biodegradability,
solubility and mechanical properties are relevant regarding the production of polymeric
microneedles. Polymeric microneedles are produced through three main ways. The
first approach refers to coating the metal microneedles with the polymer and drug to be
released, giving rise to coated polymeric microneedles. The second approach, the dissolving
microneedles, requires the incorporation of the drug into the matrix of soluble polymeric
microneedles. In this method, delivery efficiency is determined by the rate of polymer
dissolution after insertion. The third approach allows drug delivery through passive
diffusion, as in hydrogel microneedles, or polymer matrix degradation. This approach
can be associated with a secondary encapsulation procedure (micro or nano-formulations)
which can be adjusted in a bio-responsive way [107].

Dissolvable polymeric microneedles are considered the most effective approach for
drug delivery and can be used in numerous applications. The drugs to be delivered can
be incorporated into dissolvable and degradable polymers [107]. One of the benefits of
this type of microneedle is the fact that the biomaterial itself carries the drug, and it is not
necessary to apply it at two different times, as with solid microneedles. The major challenge
of polymeric microneedles is their penetration into tissues. Polymers generally have lower
mechanical strength than silicon and metals, and the penetration of these microneedles
into the tissue can be impaired [108,109]. Therefore, two or more polymers or additional
materials can be combined to increase the mechanical strength of MNs [109].

Frequently reported polymers for the production of dissolving MNs are poly(vinylalcoh
ol) (PVA) [110–112], hyaluronic acid (HAc) [113,114], hydroxypropyl methylcellulose
(HPMC) [115,116], carboxymethyl cellulose (CMC) [115,116], fluorescein isothiocyanate
(FITC)-dextran [117,118], sodium alginate [119,120], and other biodegradable polymers,
such as chitosan [119,121], polylactic acid (PLA) [122], and polyglycolic acid (PLGA) [123],
among others.
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There are several ways to produce polymeric microneedles, but the most common and
scalable is using molding techniques. However, this technique has some limitations as it
usually involves several laborious steps, such as preparation of the polymer formulation,
mold design, and fabrication and plasticization of thermoplastic polymers, which may
limit the use of thermosensitive drugs [124].

Another technique that has been widely used for the manufacture of polymeric mi-
croneedles is three-dimensional (3D) printing. This strategy gives the prototyping and man-
ufacturing methods the flexibility to produce MN patches in a one-step manner with high
levels of shape complexity and reproducibility [125]. This technique offers customization,
cost-efficiency, a rapid response time between design iterations, and enhanced accessibility.
The increase of printing resolution, the accuracy of the features, and the accessibility of
low-cost raw printing materials have stimulated the use of 3D printing for the fabrication
of microneedle platforms [126].

3. Steps Involved in the Production of an Oral Dispositive to Drug Delivery

Pires et al. (2015) [127], based on the work of Ratner et al. (2013) [128], outlined
some important steps to identify the need for a new biomaterial, its manufacture, testing,
regulation, sale, and deployment. In the present work, a parallel can be established for
the development of any biomaterial for drug delivery in the oral cavity. Thus, the steps
required from designing to placing a new formulation on the market for this purpose and
its use by the patient are illustrated in Figure 6.
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4. Polymers Used to Produce Biomaterials for the Use in Oral Cavity

The polymers commonly used for the production of biomaterials used in the oral
cavity include natural, synthetic, and smart polymers, which are discussed in detail below.

4.1. Natural Polymers

According to the European Chemical Agency (ECHA) [129], natural polymers are those
that result from a polymerization process that has taken place in nature, independently
of the extraction process used in their production. Natural polymers have the advantage
of having generally low toxicity, being biocompatible, biodegradable, and coming from
renewable sources. However, this type of polymer can also present a high degree of
variability from lot to lot, can be structurally more complex, and may have complex
production, extraction, and purification processes of high cost [130].
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Natural polymers can be classified in different types [131]. Polysaccharides of plant
cell walls, for instance, originate from the cell wall of plants and include mainly cellu-
lose, hemicelluloses, and pectin. Gums and mucilages are polysaccharides, converted to
monosaccharides by hydrolysis [132], including guar gum, arabica gum, and karaya gum.
Exudate gums are also produced by plants, but as a result of stress, e.g., physical injury
or fungal attack. Some examples of this class include arabic gum, acacia gum, cashew
gum, karaya gum, and tragacanth gum. Another class refers to inulin, which belongs to
a class of carbohydrates known as fructans. The main sources of inulin used in the food
industry are chicory and Jerusalem artichoke. However, some vegetables, such as garlic,
asparagus, and Dahlia tubers, also have a considerable amount of inulin [133]. Within the
plant-derived category, starch, a polysaccharide present in many green plants, may also
be used, having a wide range of applications in the pharmaceutical sector as an excipient.
There are also seaweed-derived polysaccharides, which are isolated from algae. Seaweed
gums are represented by carrageenans, agar, and alginates.

Microbial polysaccharides correspond to molecules obtained as fermentation products
of microorganisms such as Xanthomonas campestris bacteria (xanthan gum), Pseudomonas
elodea (gellan gum), Sclerotium (scleroglucan), and the fungus Aureobasidium pullulans
(pulullan). Dextrans, on the other hand, are glucose-based polymers with molecular
weights ranging between 1000–40,000,000 Da, being produced by lactic acid bacteria and
also by the dental plaque-forming species Streptococcus mutans. Dextran is a family of
natural polysaccharides that is widely under investigation for use as polymeric carriers in
novel drug delivery systems.

Finally, animal polysaccharides and proteins are obtained from animal sources. The
most common polysaccharide extracted from animal sources is chitin, from which chitosan
can be produced, while the main examples of this class of protein include collagen, gelatin,
fibrinogen, silk, elastin, and keratin.

Table 2 presents the main natural polymers used to manufacture oral drug delivery
biomaterials and examples of their applications.
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Table 2. Main natural polymers used to manufacture oral drug delivery biomaterials and examples of their applications.

Natural Polymer Main Characteristic Examples of Use Tested Model References

Alginate
Ability to form reversible hydrogels through

interaction of carboxylic acid functional groups
with metal cations

Film for the delivery of
cetirizine dihydrochloride In vitro release test [134]

Cellulose Tunable mechanical properties Biomaterials for buccal delivery of non-steroidal
anti-inflammatory drugs In vitro release test [135]

Chitosan
Cationic nature, a property that allows the
formation of electrostatic complexes with

negatively charged polymers

Gel for the delivery of the antimicrobial Schinus
molle L essential oil No models have been tested [136]

Collagen Excellent biocompatibility, flexibility and ability
to absorb body fluids for delivery of nutrients Buccal patch for the delivery of lorazepan

In vitro release test and ex vivo drug
permeation through bovine buccal

mucosa
[137]

Gellan Gum Excellent gelation capability Film for the delivery of triamcinolone acetonide In vitro release test [138]

Guar Gum Excellent ability to hydrate rapidly,
generating highly viscous solutions

Film-nanoparticle composite for the delivery of
alpha-casozepine In vitro release test [57]

Gelatin Thermoresponsiveness Film for the delivery of
propranolol hydrochloride In vitro and in silico release test [48]

Hyaluronic acid Biocompatibility, hydrophilicity, low
immunogenicity and excellent viscoelasticity

Mucoadhesive microneedles for the delivery of
lidocaine

In vivo drug permeation through rat
buccal mucosa [104]

Pectin Excellent biodegradability, biocompatibility and
possibility of ionic crosslinking Film for the delivery of triamcinolone acetonide In vitro release test [139]
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4.2. Synthetic Polymers

Synthetic polymers are artificially produced through chemical reactions using well-
defined conditions, e.g., heat, pressure, and catalyst type [139,140]. Most synthetic polymers
have good mechanical properties, unlike natural polymers [140]. Compared to natural
polymers, synthetic polymers are more biologically inert, the mechanical properties and
degradation rates of synthetic polymers can be tailored, and, frequently, these polymers
can be processed into various shapes. Since the synthesis conditions are well known
and controlled, synthetic polymers offer higher batch-to-batch uniformity and show more
reproducible physicochemical properties.

Synthetic polymers of interest in drug delivery for the oral cavity can be divided
into different categories, e.g., polyethers, polyesters, poly (N-isopropylacrylamide-co-
propylacrylic acid) copolymers, and poloxamers.

Among the polyethers, one of the most common is polyethylene glycol (PEG), which
has gained great visibility due to its wide range of applications in the field of pharmacy. This
compound is hydrophilic and can be used favorably as a penetration enhancer, especially
in topical dermatological preparations. It is also widely used in cosmetics as cleansing
surfactants, emulsifiers, skin conditioners, and humectants [141]. The two most important
polyesters under intense investigation as drug carriers for active agent delivery are poly
(lactic-co-glycolic acid) (PLGA), which is a copolymer of poly lactic acid (PLA) and poly
glycolic acid (PGA), and polycaprolactone (PCL). Both can be biodegraded by hydrolysis
of the ester linkages.

Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers (PNIPAAM) and
their derivatives are also widely investigated for drug delivery purposes. They have great
potential for the delivery of therapeutic proteins and peptides since they are thermore-
sponsive. However, the clinical use of PNIPAAM and its derivatives is limited, as they are
non-biodegradable and, upon contact with blood, activate platelets.

Poloxamers, traded as Pluronic® (BASF), Kolliphor® (BASF), Lutrol® (BASF), Synperonic®

(Croda), and Antarox® (Rhodia), are nonionic triblock copolymers. The central part of
poloxamers is hydrophobic, composed of polypropylene oxide (PPO), and this region is
flanked on both sides by polyethylene oxide (PEO) chains, which are hydrophilic. This class
of polymers is thermosensitive and has been intensively studied for the sustained delivery
of therapeutic proteins. These polymers are inert and known to maintain the stability of
incorporated therapeutic proteins and peptides, with an increased in vivo half-life when
compared to other drug delivery systems.

4.3. Smart Polymers

Smart polymers or stimuli-responsive polymers undergo reversible physico-chemical
modifications with small alterations in their surrounding environment [142]. Frequently,
these polymers exhibit a non-linear response to a small stimulus, leading to a macroscopic
alteration in their structure or properties. Several changes can be observed in this sense,
from swelling and contraction to complete disintegration. These variations can be caused
by chemical events, including simple reactions, such as oxidation, acid-base reaction,
reduction, and hydrolysis of fractions linked to the polymer chain. More severe changes
can also occur, resulting in irreversible bond breakage in response to external stimuli,
causing polymer structural degradation [143]. Physical-chemical changes can occur due to
variation in pH, temperature, as well as due to the presence of enzymes and exposure to
some types of radiation. Polymers that are stimulated via electric [144] and magnetic [145]
fields are not as frequently reported in the literature for drug delivery, and therefore they
will not be covered in this work.

4.3.1. Temperature-Responsive Polymers

Thermoresponsive polymers are the most widely employed smart polymers, whose
main characteristic is the reversible phase (or volume) transition that occurs in response to
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temperature changes. This property allows the manipulation of polymers in a remote and
switchable way by controlling the temperature [30,146].

According to Hoffman (2013), different working mechanisms can be exploited for the
development of temperature-responsive polymers. The three main classes of temperature-
responsive polymers are: shape-memory materials, liquid crystalline materials, and respon-
sive polymer solutions [146].

Shape-memory polymers (SMPs) belong to a class of smart materials that are mechani-
cally modified by external stimuli. More directly, these materials can “remember” shapes.
As a simple example, a complex three-dimensional SMP shape can be compressed into
a smaller size shape (suitable for delivery of a catheter to the body or to fit in a compact
space) by applying some source of heating or cooling, for instance. In a second moment,
the application of heat, for example, can trigger a return to equilibrium, causing the object
to go back to a complex shape through the mobilization of the network chain [147].

Liquid crystalline polymers (LCPs) show properties of both solids and liquids. These
polymers can be of many types, depending on the position and type of the mesogenic units
in the molecular architecture. LCPs are mainly classified as main-chain, side-chain, and
crosslinked polymers, among others [148]. Main chain-type polymers elongate in the liquid
crystalline phase and contract when heated in the isotropic phase, with full reversibility to
the initial stage.

The most common types of thermoresponsive polymers are those that undergo a
solution liquid-liquid phase transition in response to variation of the temperature, in which
phase separation occurs from a homogeneous solution to a concentrated polymer phase
and a dilute polymer phase. This effect is associated with the transition from a clear phase
to a phase with clouds. Clouds are observed due to the formation of polymer-rich droplets,
causing phase separation. When separation occurs at a high temperature, this is referred to
as lower critical solution temperature (LCST) transition, while the reversed-phase behavior
is known as upper critical solution temperature (UCST) transition [149].

The literature reports several examples of the use of temperature-responsive polymers
for drug delivery in the oral cavity. Gao et al. (2010) developed a thermosensitive PLGA-
PEG-PLGA hydrogel for the sustained release of docetaxel to treat lung cancer [150].
Choi et al. (2014) produced hydrogels with combined properties using the thermosensitive
polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO)
to deliver the anticancer drug paclitaxel incorporated in dimethyl-β-cyclodextrin in the
oral mucosa [151]. Shin et al. (2013) prepared a thermoreversible hydrogel of the polymer
Pluronic F127 (PF127) with mucoadhesive properties due to the inclusion of the polymer
Carbopol 934P (C934P) in the formulation to deliver the anti-inflammatory and anti-pain
drug naproxen [152].

4.3.2. pH-Responsive Polymers

pH-responsive polymers represent a group of stimuli-responsive polymers that have
in their chemical structure weak acidic or basic groups that either accept or release protons
in response to a change in the environmental pH. They show different architectures, having
linear (as in homopolymers, di, ter, multiblock copolymers, and organic/inorganic hybrid
polymers), nonlinear (branched or hyperbranched polymers), and lightly or highly cross-
linked network polymers.

These polymers respond to changes in the pH of the environment undergoing struc-
tural changes, e.g., in chain conformation alteration and configuration, and with property
changes, such as surface activity and solubility [153,154]. The protonation or deprotonation
of functional groups they experience may result in chain flocculation and/or collapse.
These molecules can also self-assemble in larger structures or swell [154], as illustrated
in Figure 7.
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The most commonly used pH-sensitive polymers are linear homopolymers amphiphilic
in nature and double hydrophilic block copolymers which form micelles, vesicles, stars,
branched and hyperbranched polymers, polymer brushes, dendrimers, nanogels, micro-
gels, and hydrogels (macrogels) [154,155].

There are many studies in the literature that report the use of this type of material
for drug delivery to the oral cavity. Hu et al. (2019) synthesized a series of amphiphilic
pH-sensitive block copolymer poly(methyl methacrylate-co-methacrylic acid)-b-poly(2-
amino ethyl methacrylate) [P(MMA-co-MAA)-b-PAEMA] via activators regenerated by
electron transfer atom transfer radical polymerization (ARGET ATRP) and further self-
assembled into pH-responsive cationic polymeric micelles (PCPMs) for oral insulin deliv-
ery [156]. Zamani et al. (2019) carried out an in vivo study of the use of poly (ethylene
glycol)-poly(caprolactone)-modified folic acid nanocarriers as a pH-responsive system
for tumor-targeted co-delivery of tamoxifen and quercetin [157]. Arjama et al. (2018)
developed a sericin/rice bran albumin embedded gellan gum-based smart nanosystem
for pH-responsive delivery of doxorubicin [158]. Sherje and Londhe (2017) developed and
evaluated a pH-responsive cyclodextrin-based in situ gel of paliperidone for intranasal
delivery [159]. Ishak et al. (2020) developed pH-responsive gamma-irradiated poly(acrylic
acid)-cellulose-nanocrystal-reinforced hydrogels and concluded that they show a good
response toward pH, thus suggesting their potential as a drug-delivery system [160].
Jamshidzadeh et al. (2020) investigated the modification of halloysite nanotubes by chi-
tosan (CTS) and pectin (PCN) to produce new pH-sensitive bionanocomposites via a
layer-by-layer method. The main objective of this study was to improve loading efficiency
and control the release of phenytoin sodium (PHT) [161].

Although many of the above-mentioned works do not necessarily focus on drug
delivery to oral mucosa lesions, pH-responsive polymers have a great potential to be
further explored in this field.

4.3.3. Bioresponsive Polymers

Bioresponsive polymers are those that change their properties due to stimuli provided
by biologically relevant molecules such as glucose, ATP, enzymes, antibodies, etc. These
stimuli can cause changes in molecular interactions of the polymer, which eventually
translate into macroscopic responses, such as solution-to-gel transitions, polymer swelling,
or collapse [162,163].

Ulijn et al. (2007) categorized bioresponsive hydrogels based on three types of stim-
uli [164]. The first includes hydrogels modified with small biomolecules able to selectively
bind to protein receptors, antibodies, or other biomacromolecules. This interaction can trig-
ger a macroscopic transition in the hydrogel. The second type refers to hydrogels modified
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with sensitive enzymes. In this case, molecular recognition can cause a chemical change that
involves breaking the bonds of a substrate molecule. Hydrogels having biomacromolecules
incorporated into their structure comprise the third case. The biomacromolecules, such as
enzymes, can recognize small biomolecules as substrates and convert them into molecules
with different physical properties. This modification can trigger swelling or collapse of the
hydrogel, and the signal can be utilized, e.g., to produce a biosensor.

Maitz et al. (2013) developed bio-responsive polymer hydrogels capable to homeo-
statically regulate blood coagulation [165]. The authors synthesized unmodified amino-
terminated starPEG or the peptide-functionalized starPEG (PEG-FXRS), which were used
to form non-responsive or thrombin-responsive hydrogels, respectively, useful in case of
bleeding lesions of the oral cavity. The reported system was shown to be a simple yet
powerful and clinically relevant example, illustrating the enormous potential of reciprocally
triggered bio-responsive polymers.

5. Methods for the Production of Drug Delivery Systems

The manufacture of biomaterials for the oral cavity may be carried out by various
methods, some as simple as mixing the excipients and the active agents (e.g., in the case
of a number of gels and ointments), and some more elaborated, such as solvent casting,
electrospinning, hot-melt extrusion, and 3D printing, among many others. The most
commonly used methods will be discussed below.

5.1. Solvent Casting Method

The solvent casting method is the most common technique applied for the preparation
of single or multilayer films on a lab scale as well as in continuous industrial production
processes [18,166,167]. The solvent casting method is based on three steps: preparing a
homogeneous mixture of components, obtaining a dry laminate by evaporating the solvent,
and, lastly, cutting the laminate into the desired shape and dimensions [167].

In the first step, the drug and excipients (stabilizers, plasticizers, and other products
necessary for adequate film formation) are dissolved or dispersed in an appropriate sol-
vent or solution using, for instance, a stirring tank at an industrial level or a beaker in a
laboratory/pharmacy setting. Then, the formed mass is transferred to a cast and dried to
produce a film with constant thickness and uniformity of drug content.

The solvent casting method can be used industrially for pharmaceutical applications,
in which the drug is suspended or dissolved in a solution of polymers in a volatile solvent.
The film is deposited on a continuous-release roller impregnated on a plastic base and then
passed through a drying apparatus to remove the solvents (Figure 8). The dry film is then
cut to sizes suitable for proper use [167].
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Figures 8 and 9 illustrate the steps for producing a polymeric film using the solvent
casting technique on laboratory and industrial scales, respectively.
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5.2. Electrospinning

Electrospinning is a versatile technique useful to produce ultrathin fibers. This tech-
nique involves an electrohydrodynamic process, during which a liquid droplet is electrified,
stretched, and elongated to generate fibers, as a result of exposure to a high-voltage electric
field. The solvent in the fibers evaporates, and the fibers are deposited onto a collector [169].

The electrospinning equipment is basically composed of four elements: (1) a positive
displacement pump (or a syringe pump at laboratorial scale), to ensure constant flow of
the polymeric solution; (2) a high voltage power supply, which is responsible for yielding
the driving force necessary to attract the fibers from the polymeric solution to the collector;
(3) a metal tip or needle that directs the solution into the high voltage electric field; and
(4) a grounded collector used in static or rotating mode, over which the fibers are deposited
and form a non-woven film [169,170].

To produce the fibers, a high voltage (normally between 15 and 20 kV) is applied to
the chamber, between the tip of the needle and the collector. The polymeric solution is
pumped and tends to assume a conical shape on the tip of the needle (forming a Taylor
cone), where the liquid voltage is in equilibrium with the electric field. When the electric
field intensity exceeds the surface tension, the polymer jet is ejected, and the solution is
electrospun and deposited on the collector. When jetting occurs, evaporation of the solvent
also occurs, followed by weaving of the fibers, which produces a mat with high surface
area to volume ratio. The basic setup for electrospinning is shown in Figure 10.
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Several factors affect the characteristics of the fibers formed, e.g., electrospinning con-
ditions, solution formulation, and environmental parameters. Electrospinning parameters
comprise the intensity of the electric field, the separation distance between the needle and
the collector, solution flow rate, and needle diameter. The solution-related parameters are
polymer properties and concentration, viscosity, solvent type, and solution conductivity.
The environmental parameters include relative humidity and temperature. All these pa-
rameters must be taken into account so that the required design of the material can be
achieved [172].

Similar to the solvent casting method, the electrospinning technique is also widely
investigated for the production of biomaterials that can be used for oral drug delivery.
Table 4 illustrates some of the works found in the literature in this sense.

Although widely used on laboratory scale, electrospinning has a few limitations re-
garding its scale-up for the production of biomaterials by the pharmaceutical industry, such
as the low productivity and the use of organic solvents, in which case the manufacturer
must guarantee that the final product does not contain harmful levels of residual solvent.
Furthermore, strategies to increase productivity have been studied, such as multi-jet elec-
trospinning, multi-needle electrospinning, and free-surface electrospinning, in which the
needle is replaced by an open surface. Although these technologies also have drawbacks,
studies have been carried out to address these issues and some industrial scale equipment
is already available [173].

5.3. Hot Melt Extrusion

The hot melt extrusion (HME) technique makes use of heat and pressure in mixing a set
of materials using a screw in a barrel, which transports the molten material through a matrix
to mold it into the desired shape [174]. The pharmaceutical process involves pumping
polymeric materials with a rotating screw at temperatures above their glass transition
temperature (Tg) or above the melting temperature (Tm) to promote their effective mixing
with the active compounds at a molecular level. This molecular mixing process converts
the components into an amorphous product with uniform shape and density, increasing
the dissolution profile of poorly water-soluble drugs [175].

During the design and optimization of an HME process, two main classes of factors
should be evaluated, one related to the equipment design itself and its operating conditions,
and the other referring to the characteristics of the chemical compounds used in the
production of the biomaterial. Process variables include the selection of the appropriate
equipment, mass feeding rate, process temperature, and tolerable shear stress, while
physicochemical factors must also be considered, such as drug and excipient properties,
possible interactions among the components of the formulation, mixture physical state,
and stability.

The design and optimization of an HME process can be described in terms of pre-
formulation, formulation, and post-formulation phases and should be investigated. Factors,
such as the chemical and thermal stability of extrudates, the solid physical state of ex-
trudates, drug–polymer interaction, miscibility or solubility of the drug–polymer system,
rheological properties of extrudates, physicomechanical properties of films produced by hot
melt extrusion, and drug particle dissolution from extrudates [176], are frequently analyzed.

This technology, which follows basically the same procedures and steps at small and
large scale, may offer advantages over conventional pharmaceutical manufacturing pro-
cesses, such as shorter and more efficient time to achieve the final product, environmental
advantages due to the elimination of solvent use, increased solubility and bioavailability
of the drugs, taste masking, and production of amorphous materials. Thus, HME has
emerged as an alternative platform technology to other traditional techniques for man-
ufacturing pharmaceutical dosage forms, such as tablets, capsules, films, and implant,
for drug delivery not only via oral routes, but also for transdermal and transmucosal
administration [175–177]. Figure 11 shows a schematic of hot-melt extrusion technique
used to produce films, tablets, capsules, and pellets.
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5.4. 3D Printing Method

Three-dimensional (3D) printing is an additive manufacturing (AM) technique for
fabricating a wide range of structures with simple or complex geometries from three-
dimensional model data. The process consists of printing successive layers one above the
other until the desired shape and dimensions are obtained [177]. According to the ASTM
F2792-12A [179], the manufacturing process techniques of AM are divided into seven main
categories, as shown in Table 3 [180,181].

Table 3. ASTM F2792-12A standard terminology for additive manufacturing processes.

Type of Process Basic Description

Material extrusion Material is extruded through a nozzle or orifice and deposited on
the surface

Material jetting Drops of material are deposited on the surface until the desired
layers are formed

Binder jetting A liquid bonding agent is deposited to join powder materials

Sheet lamination Material sheets are deposited to form the final desired object

Vat photopolymerization Liquid photopolymer in a vat is selectively cured by
light-activated polymerization

Powder bed fusion Thermal energy selectively fuses regions of a powder bed

Directed energy deposition Focused thermal energy is used to fuse materials by melting as
the material is deposited

With the 3D printing technique, it is possible to produce highly customized, functional
parts of varied composition. These materials can be metals, ceramics, polymers, or even
their combinations. To produce polymeric biomaterials, extrusion techniques and those
based on resin and powder processes are commonly used. Each type of process allows the
manufacture of pieces in different ways, using exclusive steps [181,182]. In Figure 12, three
different 3D printing techniques are illustrated.
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Figure 12. Representation of different 3D printing techniques: (A) fused deposition modeling,
(B) stereolithography, and (C) selective laser sintering (adapted from [183]).

Fused deposition modeling (FDM) is an extrusion method used to deposit filaments
of thermoplastics. The layout for FDM consists of a printhead able to move along X and
Y directions above a built platform. The polymer is extruded through the heated nozzle
and laid down as filaments according to the CAD design. The build platform is then
moved along Z direction, and layers can be built until the object has the desired shape
completed [184].

By the stereolithography (SLA) printing process, it is possible to fabricate 3D objects
using light to selectively solidify a liquid resin through a photopolymerization reaction,
achieving a resolution of about 20–40 µm [185,186]. This technique can be used to directly
produce biomaterials from photopolymers and photoinitiators, as well as to create a neg-
ative replica of the desired structure. In the latter, the structure can then be filled with
ceramic or metallic slurries, followed by sintering. In this way, a broader range of materials
may be used [186].

In direct laser writing, ultraviolet light is directed towards a vat of photosensitive
resin to form solid layers with a moving build platform. Therefore, this technique is based
on the non-linear absorption of photons by the photopolymers, for which a laser beam is
focused on the volume of a transparent material, leading to the absorption of two or more
photons and polymerizing locally. This laser can be moved according to a path previously
established in a computer, being able to reproduce a CAD model, for instance [187].

Products designed for efficient and controlled oral drug delivery obtained by this
technique are exemplified in Table 4.
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Table 4. Examples of techniques to prepare biomaterials, application, matrix composition, active agents incorporated and main conclusions reached.

Biomaterial
Production Technique

Biomaterial
Application Matrix Composition Active Agent Main Conclusion Reference

Solvent casting

Oral fast-dissolving film HPMC Risperidone Satisfactory physicochemical properties and
in vitro behavior [188]

Oral fast-dissolving film HPMC Diazepam Good mechanical strength, drug release,
disintegration time and stability [189]

Oral fast-dissolving films HPMC Loratadine
Good physico chemical properties. The solvent

casting method can be adopted for the preparation of
films

[190]

Mucoadhesive buccal films EC/HPMC Ornidazole/
dexamethasone

Desirable physical characteristics and mucoadhesive
properties [191]

Microneedles PVP POXA1b laccase enzyme The microneedles were able to control the release
kinetics of the compound incorporated [77]

Electrospinning

Oral film Chitosan and PEO Insulin

Fiber morphology, film mechanical properties, and
in vitro stability dependent on PEO feed ratio. Lower
PEO content formulations produced smaller diameter
fibers with significantly faster insulin release kinetics

[192]

Mucoadhesive buccal film
PVP, Eudragit RS100 and

PEO (mucoadhesive layer)
and PCL

Lidocaine

Analysis of ex vivo diffusion through porcine buccal
mucosa suggested that lidocaine permeated the oral
mucosa, enabling its use to reduce pain in the oral

cavity.

[193]

Oral fast-dissolving films PVA Caffeine and riboflavin
Burst released of both drugs (caffeine to an extent of
100% and riboflavin to an extent of 40% within 60 s)

from PVA nanofibrous matrices
[194]

Oral fast-dissolving films Chitosan/
Pullulan Aspirin

Fast film dissolution and efficient aspirin
encapsulation indicated potential use for oral

mucosal drug release
[33]
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Table 4. Cont.

Biomaterial
Production Technique

Biomaterial
Application Matrix Composition Active Agent Main Conclusion Reference

Electrospinning

Oral fast-dissolving films PVP Escitalopram and quetiapine

The drug-loaded fibers exhibited a disintegration
time of 2 s, which accelerated the release of both
drugs (50% after 5 min) making it an attractive

formulation for oral mucosal delivery

[195]

Fast-dissolving drug
delivery system

Jelly fig
polysaccharide/Pullulan Hydrophobic drugs

Formulation consisting of a promising carrier to
encapsulate hydrophobic drugs for

fast-dissolving/disintegrating delivery applications.
[196]

Hot melt extrusion

Oral tablets EVA Metropolol tartrate Drug release dependent on drug loading and
extrusion temperature [197]

Oral fast dissolving film Lycoat® RS 780
(modified starch)

Chlorpheniramine maleate

Films showed immediate disintegration and
dissolution, due to the presence hydrophilic

excipients. The formulation showed to be a good
option to produce solvent-free thin films

[198]

Mucoadhesive buccal film HPC/HPMC/PEG Salbutamol sulphate
Evidence provided to support the selection of
formulation compositions to produce hot-melt

extruded mucoadhesive films
[199]

Mucoadhesive buccal film PEO
N10/HPMC/Eudragit RL100 Domperidone

HME is a viable technique for the preparation of
buccal-adhesive films with improved drug

bioavailability
[200]

Mucoadhesive oral tablet PEO/HPMC Pioglitazone/felodipine
The optimized formulation showed adequate in vitro

drug release, ex vivo
permeation, and bioadhesive properties

[201]

3D printing

Oral film Pullulan/HPMC Caffeine

Effective spatial deposition control of films and
successful determination of orientation to maximize

the mechanical properties of the hybrid films
obtained through 3D printing

[202]

Microneedles Alginate and hydroxyapatite Glucose
-responsive insulin

Microneedles exhibited sufficient mechanical strength
to penetrate the skin of mice and responsively

released insulin according to the glucose levels both
in glucose solution and in type 1 diabetic mice

[203]
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Table 4. Cont.

Biomaterial
Production Technique

Biomaterial
Application Matrix Composition Active Agent Main Conclusion Reference

3D printing

Mucoadhesive oral film HPMC Catechin hydrate
Flexible application of 3D bioprinters (semi-solid

extrusion-type 3D printers) to prepare
film formulations

[204]

Oral disintegrating tablets PVP/Starch/
Microcrystalline Cellulose Warfarin sodium

Tablets prepared by the 3D technique showed
uniform drug content, good mechanical properties,

and presented fast disintegration and fast dissolution
[205]

Oral fast-dissolving films PEO/PVP/
Poloxamer (P 407 and P188) Olanzapine

The films showed increased dissolution rates of the
poorly water-soluble drug, consisting in a suitable

formulation for fast drug absorption
[206]
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6. Market Perspectives of Drug Delivery Biomaterials for the Oral Cavity

Several companies that provide market research services monitor the market and
global tendencies of investment in the areas of drug delivery systems, materials for drug
delivery in the oral cavity, and mucoadhesive drug delivery systems, e.g., Databridge [207],
Future Marketing Insights [208], Grand View Research [209], Transparency Market Re-
search [210], and Biospace [211], among others.

The data provided by these companies, despite being quite divergent in many points,
show that these fields of investment are very attractive, given their market value and
growth projections for the next years.

The Future Marketing Insights company, for instance, estimates the market value of
oral controlled release drug delivery in US$ 34.1 billion for 2022, projecting a market value
of US$ 68.4 billion by 2032. However, these data are focused on oral systems designed to
deliver drugs in the gastrointestinal tract [208].

In the case of evaluation of oral transmucosal drugs market, most of the analyses cover
different routes of penetration, such as buccal and sublingual mucosa, gingival and palatal
tissues, as well as the evaluation of preferred distribution channels (e.g., retail, hospital
and online pharmacies). In 2020, according to Transparency Market Research, the buccal
mucosa segment dominated the global market and retail pharmacies were the favorite
distribution channel (around 50% of the total), with significant growth being expected in
the online pharmacy distribution channel segment [210].

The company Biospace pointed that the global oral transmucosal drugs market was
of US$ 14 billion in 2020 [211]. Transparency Market Research predicts an increase to US$
27 billion in 2031 for the same market, with a compound annual growth rate (CAGR) of
around 6% [211]. Other companies estimate CAGR values for oral transmucosal drug
market in the same neighborhoods: 6% (Transparent Market and Biospace) [210,211]; 7.2%
(Future Marketing Insights) [208]; 7.6% (Databridge Company) [207], 9.2% (Grand View
Research) [205].

There are some key factors that are driving the market growth, including the increasing
prevalence of chronic disorders, growing importance to develop drug delivery systems
tailored to the patient needs, and the increasing R&D expenditure related to drug delivery
systems by pharma companies. The use of drug delivery systems, moreover, reduces the
chances of side effects by optimizing the drug presence at the target site. This helps in
minimizing the dose and undesired effects. In addition, this helps in reducing the overall
product price by decreasing the amount of active pharmaceutical ingredient required.

According to Grand View Research [209], North America dominated the buccal drug
delivery systems market with a share of 31.6% in 2020. Delivery devices in the oral cavity
have gained prominence due to constant research and development in this field. The
delivery of drugs via the oral mucosa is considered a convenient and highly appreciated
choice, especially among elderly patients. With this delivery pathway, it is possible to
eliminate first-pass metabolism, allowing pH-sensitive and easily degradable drugs to be
administered more effectively. This route also allows rapid administration, making it a
field of many opportunities.

According to Future Market Insights, the key companies profiled in the oral controlled
release drug delivery technology segment include AbbVie (North Chicago, IL, USA),
Amgen (Thousand Oaks, CA, USA), AstraZeneca Plc. (Cambridge, UK), Bayer (Leverkusen,
Germany), BioNTech (Mainz, Germany), Boehringer Ingelheim (Ingelheim am Rhein,
Germany), Bristol-Myers Squibb Company (New York, NY, USA), Eli Lilly (Indianapolis,
IN, USA), F. Hoffmann-La Roche Ltd. (Basel, Switzerland), Gilead Sciences (Foster City,
CA, USA), GlaxoSmithKline Plc. (London, UK), Johnson & Johnson (New Brunswick, NJ,
USA), Merck & Co. Inc. (Rahway, NJ, USA), Moderna (Cambridge, MA, USA), Novartis
AG (Cambridge, MA, USA), Pfizer Inc. (New York, NY, USA), Sanofi S.A. (Paris, France),
Sun Pharmaceuticals (Mumbai, India), Takeda (Tokyo, Japan), and Viatris (Canonsburg,
PA, USA) [208].
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Specifically in the oral transmucosal drugs market, the company Transparency Market
Research pointed as main players, in addition to AstraZeneca (Cambridge, UK), Bristol-
Myers Squibb Company (New York, NY, USA) and GlaxoSmithKline Plc (Brentford, UK),
Access Pharmaceutical Inc. (Tokyo, Japan), Aquestive Therapeutics Inc. (Warren, NJ,
USA), C.L Pharm (Seoul, Republic of Korea), Cure Pharmaceutical, Eisai Co. Ltd. Inc.
(Tokyo, Japan), Solvay S.A. (Brussels, Belgium), IntelGenx Corp. (Montreal, QC, Canada),
Izun Pharmaceuticals, Ltd. (New York, NY, USA), Pfizer Inc. (New York, NY, USA), LTS
Lohmann Therapie-Systeme AG (Andernach, Germany), Mylan N.V. (Canonsburg, PA,
USA), NAL Pharma (Hong Kong, China), Otsuka Pharmaceutical Co. (Tokyo, Japan),
Seoul Pharmaceuticals (Seoul, Republic of Korea), Soligenix (Princeton, NJ, USA), Teva
Pharmaceutical Industries Ltd. (Tel Aviv, Israel), and ZIM Laboratories Limited (Nagpur,
India) [210].

The high number of companies operating in this market reinforces the perception of a
trend towards increasing investments and technology development in this sector.

7. Conclusions

Although numerous formulations and biomaterials for drug delivery are described
in the literature, drug delivery in the oral cavity is still relatively unexplored, especially
when compared to drug delivery to the skin. There is a therapeutic need for drug delivery
in this complex region which still presents many challenges for treating local oral diseases.
This approach is also interesting because it is easy to be used by children, the elderly, and
other people with difficulties, e.g., swallowing medication. In the literature, several studies
describe the use of fast dissolving oral films, mucoadhesive formulations, such as tablets,
films, and gels; and microneedles, which is a more recent category with a wide range of
applications and is highly promising. Biomaterials for application in the oral cavity can
be composed of synthetic and natural polymers. Natural polymers represent a highly
promising class, as they are more biocompatible than synthetic ones. Finally, these devices
can be produced by solvent casting, electrospinning, hot-melt extrusion, and 3D printing,
among other techniques. The 3D printing technique is one of the most applied due to its
versatility and for being customizable. While many challenges are still present in this field,
there are several opportunities to produce oral cavity systems to promote drug delivery,
which is well illustrated by the high number of companies focusing on this particular area.
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