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Abstract: Promising results in clinical studies have been demonstrated by the utilization of electrothermal
agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating
the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability
required for highly efficient treatment. In this study, we controlled the thermal signature of the
MoS2 by harnessing MoS2 nanostructures with M13 phage (MNM) via the structural assembling
(hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell–MNM
alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy.
A percentage decrease in the cell viability of ~23% was achieved, as well as a degradation time of
2 weeks; a stimulus length of 100 µs was also achieved. Molecular dynamics (MD) simulations re-
vealed the assembling kinetics in integrated M13 phage–cancer cell protein systems and the structural
origin of the hydrophobic interaction-enabled increase in thermal conduction. This study not only
introduced an ‘ideal’ agent that avoided the limitations of ETAs but also provided a proof-of-concept
application of MoS2-based materials in efficacious cancer therapy.

Keywords: ablation; cancer cell; phage; MoS2; molecular dynamics; agent

1. Introduction

Pancreatic cancer (PC) is the fourth leading cause of death in both men and women
worldwide and has the lowest survival rate of all major organ cancers [1–4]. For instance,
approximately 56,770 people were diagnosed with PC in 2019, and 45,750 deaths from this
disease occurred in the United States [5,6]. Moreover, 80–85% of patients are diagnosed
with advanced-stage disease, with a five-year overall survival rate of ~10% [7–9]. In
Singapore, PC is the fourth and fifth most typical cause of cancer death in women and men,
respectively [10,11]. The archetypal PC type, adenocarcinoma, is inoperable by the time
patients are symptomatic [9,12]. This arises from the propensity of pancreatic tumors to
spread to adjacent structures and blood vessels in the early stage [13,14]. Thus, in this work,
the interest is in the development of alternative technologies that treat locally advanced
diseases, which are otherwise not operable.

Cancer thermal-based therapy (TBT) is a promising candidate for achieving a mini-
mally invasive, minimized ablation zone and a highly efficient therapeutic modality [15–19].
TBT operations, based on the utilization of thermal agents (TAs) to generate local hyper-
pyrexia, enabling the thermal elimination of tumors, have demonstrated excellent success in
preclinical and clinical trials [20–22]. Clinical studies have disclosed that the TBT-facilitated
ablation of tumors exhibits success in ~90% of patients without noticeable side effects, se-
vere complications, or harmful changes in organ functions [19,23]. TBT is expected to have
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not only significant but also revolutionary clinical impact due to these promising results, as
well as the recent clinical approval of the utility of metal oxide nanoparticles for the TBT
in Europe [24,25]. Moreover, experiments have demonstrated enhanced pancreatic tumor
ablation and photothermal therapy using polyprrole-based nanoparticles [26]. However,
developing TAs with excellent thermal effects (viz., high thermal stability/performance to
achieve effective therapeutic outcomes) and rapid degradability (i.e., fast degradation to
address safety concerns) is extremely challenging [22,27,28].

TAs that exhibit high thermal performance under stimulations (e.g., inorganic nano-
materials) have been demonstrated in preclinical studies [29,30]. However, traditional
high-performance TAs degrade with difficulty or slowly generate potential excretion prob-
lems and biosafety concerns [31,32]. Fewer safety and biocompatibility issues result when
TAs with a short degradation time (viz., indocyanine green) are harnessed [33,34]. A
difficulty arises from the compromise of the thermal performance, which is required for su-
perior therapeutic efficacy, due to the rapid degradation of conventional highly degradable
TAs. For instance, upon the application of a short or small number of stimulations, thermal
functions disappear [35,36]. Moreover, the degradation of typical TAs further enhances
upon the application of stimulations [37,38]. After incubation in aqueous solutions, two
dimensional (2D) materials with metal ions that reveal a lower absorption compared to
that of pristine 2D materials, indicating that the metal ions facilitate the degradation of
the 2D material, have also been demonstrated in recent studies [22]. Furthermore, experi-
ments have shown that, upon the incubation in an aqueous solution, bare nanostructures
disclose a greater loss in the absorption than that of nanostructures with a polymer coating,
which indicates faster degradation [39]. As a result, an impediment to fulfilling the clinical
promise of TBT is represented by the balance between increasing the thermal performance
and simultaneously enhancing the degradation of traditional TAs.

The molybdenum disulfide (MoS2) material system is a leading contender for next-
generation TAs with different nanostructure types, since it is a biodegradable and biocom-
patible 2D material. MoS2 oxidizes/degrades in air and dissolves in aqueous solutions
rapidly, which enhances the safety of TBT [40,41]. However, the thermal performance of
traditional MoS2 systems is limited [42,43]. The M13 is a cylindrical, ~880 nm long, and
5–6 nm in diameter bacteriophage composed of specified proteins [44,45]. We postulate
that the integration of the MoS2 and M13 results in MoS2 nanostructures with M13 (we
call it MNM) that exhibit strong thermal performance, and at the same time, maintains
excellent degradability. This is conceived by considering that: (i) MoS2 systems and M13
phages conjugate to polyethylene glycol (PEG) molecules, which maintains good degrada-
tion [46,47] and (ii) the M13 enables high thermal performance, since it carries elements to
targets and assembles on tumors/cancer cells well [45].

Herein we disclose that by stimulating and altering structural assembling processes,
we were able to control the thermal character of the MoS2 by utilizing MNM, along with
developing a combined alternating-current (AC) stimulus PANC-1 cancer cell MNM frame-
work for cancer cell ablation and electrothermal therapy (Figure 1). A degradation time of
2 weeks was achieved, together with a stimulus length of 100 µs and a percentage decrease
in the cell viability of ~23% upon the application of electrical stimuli. This work developed
an excellent strategy to avoid the previous impasse between increasing the electrothermal
performance/stability and simultaneously enhancing the degradation of electrothermal
agents (ETAs).
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Figure 1. An AC-stimulus cancer cell platform based on MNM. (a) The bindings/reactions between
the MoS2/M13 phage and the PEG molecules are illustrated. The schematic illustration was adapted
and modified from [48]. (b) The MNM is incorporated in the AC-stimulus PANC-1 cancer cell system
for cancer cell ablation and electrothermal therapy.

2. Materials and Methods
2.1. Molecular Modelling

The crystal structures of the N1 and N2 domains of the M13 bacteriophage minor coat
gene 3 protein (G3P) (PDB ID: 1G3P) and the extracellular domain of the programmed
death-ligand 1 (PD-L1) (PDB ID: 3BIK) were retrieved from the Protein Data Bank (PDB) [49].
The oxidized Trp21 in the G3P structure was converted to Trp. Missing loop residues in
G3P (residues 66–90) were modeled using the ModLoop web server [50]. Residue 18 was
removed from the PD-L1 chain, as it was part of the signal peptide. The two proteins were
then docked to each other using the ClusPro web server (accessed on 1 April 2022) [51].
The top five docked models were evaluated, and two were rejected, as they had G3P bound
too close to the transmembrane region of the PD-L1, which would result in clashing with
the cell membrane. The top-, second-, and fourth-ranked models were selected for further
evaluation in molecular dynamics (MD) simulations.

The C-terminus of both protein chains was capped by an N-methyl group. Protonation
states were assigned using the PDB2PQR [52] web server and then checked manually.
TIP3P water molecules were utilized to solvate the systems with a minimum distance of
10 Å between the proteins and the edge of the periodic truncated octahedron solvent box.
The systems were then neutralized by adding sodium ions.

Four independent MD simulation runs were performed for each of the three selected
docked models. Energy minimizations and MD simulations were performed with the
PMEMD module of AMBER 18 [53] using the ff14SB force field [54]. All bonds involving
hydrogen atoms were constrained by the SHAKE algorithm [55], thus allowing for a time
step of 2 fs. Nonbonded interactions were truncated at 9 Å. The particle mesh Ewald
method [56] was used to treat long-range electrostatic interactions under periodic boundary
conditions. Energy minimization was carried out using the steepest descent algorithm for
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1000 steps, followed by another 1000 steps with the conjugate gradient algorithm. The
systems were then annealed gradually to 300 K over 50 ps at constant volume before
equilibration at a constant pressure of 1 atm for another 50 ps. The protein non-hydrogen
atoms were kept fixed with a harmonic positional restraint of 2.0 kcal mol−1 Å−2 during
these minimization and equilibration steps. Subsequent unrestrained equilibration (2 ns)
and production (300 ns) runs were carried out at 300 K, using a Langevin thermostat [57]
with a collision frequency of 2 ps−1, and 1 atm, using a Berendsen barostat [58] with a
pressure relaxation time of 2 ps.

2.2. Binding Free Energy Calculations

Binding free energies for the G3P–PD-L1 complex were calculated using the molecular
mechanics/Poisson–Boltzmann surface area (MM/PBSA) method [59] implemented in
AMBER 18. Two hundred equally spaced snapshot structures were extracted from the last
100 ns of each of the trajectories, and their molecular mechanical energies were calculated
with the sander module. The polar contribution to the solvation free energy was calculated
by the pbsa [60] program, with the solute dielectric constant set to 2 and the exterior
dielectric constant set to 80, while the nonpolar contribution was estimated from the
solvent-accessible surface area using the molsurf [61] program, with γ = 0.00542 kcal Å−2, and
β = 0.92 [62]. Entropies were estimated by normal mode analysis [63] using the nmode program.

2.3. Electrothermal Simulations

A finite element method (FEM) was utilized in the Ansys software to analyze the ther-
mal distribution of the integrated MNM cancer cell AC-stimulus system. Supplementary
Table S1 shows the parameters utilized in the simulation. The heat conduction equation
was harnessed to model the heat transfer

∇·k∇T + Q = ρc
∂T
∂t

(1)

where k is the thermal conductivity, T is the temperature, Q is the flow of Joule heat through
a unit volume per unit of time, t is the time, ρ is the density, and c is the specific heat.
The electrical stimulus with the amplitude of 1–5 V and stimulus length of 100 µs was
administered to the system. The initial temperature was fixed at 37 ◦C (optimal temperature
for mammalian cell culture).

2.4. Cell Lines and Cell Culture

The PANC-1 cell line was purchased from American Type Culture Collection (ATCC)
and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Nacalai Tesque Inc., Kyoto,
Japan), supplemented with 10% fetal bovine serum (FBS) (Gibco Inc., Carlsbad, CA, USA)
and 1% L-glutamine (Gibco Inc., Carlsbad, CA, USA). Cells were incubated at 37 ◦C in the
humidified incubator at an atmosphere of 5% CO2.

2.5. Escherichia coli (E. coli) and M13 Phage Propagation

The 5-alpha F’Iq competent E. coli (high efficiency) was purchased from New England
Biolabs (NEB) as the host cell for M13 phage propagation. Overnight culture (O.C.) of
E. coli was made with tetracycline (TET) and left on the shaker to incubate at 37 ◦C for 4–6 h
at 90 rpm until the mixture became cloudy with an optical absorbance of 0.4 (OD600). New
culture (N.C.) was prepared by incubating the O.C. in Lennox L Broth Base (LB Broth Base)
at 37 ◦C for 4–6 h at 90 rpm. First and second precipitations were performed according to
the M13 amplification protocol recommended by the manufacturer. The concentration of
the M13 phage was measured using a µDrop plate (Thermo Fisher Scientific Inc., Singapore).
The bacteriophage M13 15669-B1 (M13 phage) was purchased from ATCC and revived as
per the phage recovery and propagation protocol (ATCC).
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2.6. MNM Conjugation

The MoS2 in sterile, deionized water (DI water) was purchased from 2D Semiconduc-
tors, Inc. MoS2 suspension was sonicated prior to MNM conjugation to establish a homogenous
mixture. The lipoic acid (LA), PEG, and N-hydroxysuccinimide ester branches (NHS) (LA-PEG-
NHS) were purchased from Nanocs Inc. and reconstituted in DI water. The mixture of the MoS2
and LA-PEG-NHS was left to incubate on the shaker at 25 ◦C for 48 h under gentle shaking.
The M13 phage was filtered to ensure sterility. The filtered M13 phage was then added to the
mixture and left to incubate at 25 ◦C for 48 h under gentle shaking. Conjugated MNM was
resuspended in Dulbecco’s phosphate-buffered saline (DPBS).

2.7. Material Characterization

Atomic force microscopy (AFM) was performed using the Bruker Dimension Icon
system (Bruker Cooperation, Billerica, MA, USA) with a 1.5 µm × 1.5 µm scanning area.
Samples were drop-cased on the Si substrate before AFM testing. Raw AFM data analysis
was performed with the NanoScope analysis software. Raman analysis was performed
using the inVia Raman microscope (Renishaw, Hoffman Estates, IL, USA) with a 532 nm
excitation laser via a measured wave number in the 100–3000 cm−1 range. Transmission
electron microscopy (TEM) imaging was performed with the field emission TEM via the
FEI Talos F200 system (Thermo Scientific, Hillsboro, OR, USA), operated at a 120 kV
acceleration voltage. Samples were negatively stained and drop-casted on the carbon
film-coated Cu grids prior to imaging. Fourier-transform infrared (FTIR) was performed
using an infrared spectroscopy (PerkinElmer, Shelton, CT, USA) after drop-casting the
samples on a silicon substrate. The stability studies were performed using the MNM with
30% MN. The MNM was dispersed in the DMEM solution and maintained at 37 ◦C in
the humidified incubator at 5% CO2. At predetermined time intervals, the absorbance
of the MNM was measured at λ = 500–600 nm. Thermal analysis was carried out using
the lock-in infrared (IR) thermography with the ELITE system (Thermo Fisher Scientific,
Waltham, MA, USA) to identify hotspot locations upon the application of direct current
(DC) electrical stimulus.

2.8. Cell Viability Studies

PANC-1 cells were plated in a 96-well plate at a seeding density of 3 × 103 cells per
well and left to incubate for 24 h at 37 ◦C in a humidified incubator at an atmosphere of
5% CO2. Different concentrations of the MN were added to the cells, and the cells with
the MNM were allowed to incubate for 24 h at 37 ◦C in the humidified incubator at an
atmosphere of 5% CO2. Cytotoxicity of the MNM was determined by the WST-1 assay
performed 24 h after adding the MNM to the cells. The cells were washed once with DPBS
prior to the addition of WST-1 assay.

2.9. Electrothermal Ablation Studies

PANC-1 cells with a density of 3 × 103 cells per well were seeded in the hybrid
MNM cancer cell AC-stimulus system. The system comprised two 650 nm-thick left and
right ITO electrodes on the glass substrate (Latech), with a cloning cylinder secured using
silicone adhesive (Sigma-Aldrich). The size of the gap between the electrodes was chosen
to be 0.1 mm. To allow attachment to the glass surface, cells were cultured for 24 h. The
cells were then incubated with MNM. After 24 h, electrical stimuli were applied to the
system (amplitude = 1 V, 2 V, and 5 V; stimulus length = 10 µs and 100 µs; and number of
stimuli = 10,000). Subsequently, the WST-1 assay was utilized 24 h after applying the stimuli
to measure cell viability.

3. Results
3.1. MD Simulations

Experiments have shown that overexpression of the transmembrane protein PD-L1
occurs in PC cells [64,65]. Therefore, we hypothesize that the interaction between the
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M13 coat protein, G3P, and the extracellular domain of the PD-L1 could account for the
selectivity targeting of PC cells by MNMs. We docked the M13 minor coat protein to the PD-
L1 using the ClusPro web server, and out of the top five docked models, three were selected
for further evaluation in MD simulations. Based on the computed binding free energies
obtained from the MD simulation, the fourth-ranked model attained from the ClusPro
web server was the most stable. Its average binding free energy of 28.4 kcal/mol was
lower than/comparable to that of other peptide–cancer cell protein models (Supplementary
Figure S1). The time evolution of the root-mean-square displacement (RMSD) of the protein
backbone atoms from the starting structure showed a gradual increase in values over the
initial period (from 0 to ~120 ns) and remained stable afterwards (up to 300 ns), indicating
that the system reached equilibrium (Figure 2a).
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Figure 2. MD simulations. (a) Time evolution of the RMSD of backbone atoms of the M13 G3P–PD-L1
protein–protein complex. Inset, snapshots of the M13 phage protein G3P and cancer cell protein
PD-L1 for different periods of run 1. (b,c) Binding free energy contributions of the (b) G3P and
(c) PD-L1 residues. (d) Binding interface of the G3P–PD-L1 complex (purple, G3P; pink, PD-L1). The
major interacting residues are shown in sticks.

The binding interface of the complex in this model was located at the N2 domain of
the G3P and the N-terminal V domain of PD-L1. To determine the residue types that are
important for the stability of the interaction between the G3P and PD-L1, we performed
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the binding free energy decomposition based on the structures of the G3P–PD-L1 complex
obtained from MD simulations. The G3P residues Pro136, Arg162, Gln163, Trp199, Arg204,
Phe208, and Ser210 and PD-L1 residues Ile54, Tyr56, Val68, Val76, Ala121, and Tyr123
contributed to most of the binding free energy (Figure 2b,c). The hydrophobic nature
of the binding interface between nonpolar residues on the G3P and PD-L1 caused the
residues to be excluded from the polar aqueous environment and be associated with one
another, allowing the proteins to interact in an end-to-end fashion. Thus, the G3P–PD-L1
interaction was stabilized by the hydrophobic core and augmented by peripheral polar
interactions (Figure 2d). The breakdown of the components of the computed binding free
energy (Supplementary Table S2) also indicates that the complex formation was dominated
by hydrophobic interactions.

The M13 phage is also able to carry the nanomaterial to the cancer cell if the phage
carries nanomaterials [66,67]. When an electrical stimulus is applied to the system, strong
Joule heating occurs because the nanomaterial, e.g., MoS2, exhibits large electrical conduc-
tance [68,69]. As a result, the peak temperature in the cell layer (~319 K) (Supplementary
Figures S2 and S3) reaches a value above the temperature required to induce cell death
(315 K) [70,71], leading to excellent ablation of cancer cells.

3.2. Synthesis and Characterization of MNM

MoS2 nanostructure (MN) results from the ultrasonication of bulk MoS2 samples. The
AFM image/cross-sectional plot discloses that the MN exhibits an average thickness of
~6.7 nm (Figure 3a,b), suggesting a stack of two triple-decker layers of MoS2. Moreover,
Raman spectroscopy of the MN is shown in Figure 3c. The Raman spectra of the MoS2 is
dominated by two peaks: (i) the A1g peak, which corresponds to the out-of-plane vibration
of S atoms in opposite directions and (ii) the E1

2g peak, which is due to in-plane vibrations
of two S atoms, with respect to the Mo atom [72,73]. The MN exhibits the Raman peaks
E1

2g and A1g at ~382 and 406 cm−1, respectively, indicating the excellent crystal quality and
structure of MN.

To enhance the stability and biocompatibility, we further modified the MN with PEG.
Moreover, the M13 phage that assembles on PD-L1 cancer cell proteins was conjugated to PEG
molecules to confer the cell-targeting ability to MN. The PD-L1 is a subtype of the integrin
protein family that regulates angiogenesis and cancer metastasis, making it an attractive tu-
mor cell and angiogenesis therapeutic target [74,75]. The M13/MN was conjugated to PEG
molecules through amine reaction/disulfide binding (Figure 3d) [68,76,77]. The conjugation
was performed by utilizing the mixture of the LA-PEG-NHS as a linker between the M13
and PEG molecules. The NHS of the LA-PEG-NHS reacted with the amine group on the
M13 phage, while the LA bound to the MN via disulfide binding. Finally, the MNM was
prepared, as illustrated in Figure 3d. The Fourier transform infrared (FTIR) spectroscopy
was also utilized to investigate the grafting of the LA-PEG-NHS on MoS2 (Supplementary
Figure S4). The prototypical stretching vibration of the carbonyl group in the PEG at
~1090 cm−1 was disclosed by the FTIR spectrum of the MNM, indicating the surface pres-
ence of PEG. The TEM image revealed that the MNM exhibited a flower-like morphology,
as well as a head/sheet-type lateral size of ~200 nm (Figure 3e). For the MN, experiments
have demonstrated that the diameter of the MoS2 nanosheet is large (~500 nm). However,
for the MNM, when the PEGylation is carried out, the sonication process can partially break
down these nanosheets, leading to a decrease in the diameter of MoS2 nanosheets. The
average thickness of the MNM was ~21 nm, as shown in the AFM image/cross-sectional
plot (Figure 3f,g), with an increase in the sample thickness induced by the M13 phage and
PEG/polymer coating. Recent studies have shown that the M13 phage revealed a thickness of
~10 nm [78–80], whereas a thickness of a few nm was disclosed for the case of PEG [81–83].
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Figure 3. Characterization of the MN and MNM. (a) AFM image of MN. (b) Height profiles of
the MN, along the white lines in (a). (c) Raman spectra of MN. (d) Schematic diagram of the
composition and process utilized to construct MNM. (e) TEM image of MNM. The yellow dashed
boxed area contains the head/ sheet-type structure. TEM images of the M13 phage with a diameter of
~10 nm and also a length of ~1 µm have been shown in M13-type samples harnessed by other research
groups [78–80,84]. Our results are similar, since a similar TEM image was achieved for the sample
utilized in this work. (f) AFM image of MNM. (g) Height profiles of the MNM, along the white lines
in (f).

3.3. MNM Thermal/Stability Signatures

The MNM in the DMEM solution at different times was examined. To measure the
absorbance of samples, the ultraviolet visible (UV-Vis) spectrometer was utilized. For
materials with a high degree of degradation, a low absorbance/normalized absorbance
resulted, whereas a high absorbance/normalized absorbance value occurred for the case of
the materials with a low degree of degradation [22,39]. The normalized absorbance (AN) is
given by

AN =
Ax − A0

A0
(2)
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where Ax is the absorbance of the MNM in the DMEM at the specified week, and A0
is the absorbance of the MNM in the DMEM at week 0. At week 0, the MNM in the
DMEM revealed a high normalized absorbance value (1.0), while the MNM in the DMEM
solution disclosed a low normalized absorbance at week 2 (~0.56) (Figure 4a,b). Thus, a low
degree of degradation was demonstrated by the MNM at week 0, and in the week-2 case,
a high degree of degradation was revealed by the MNM. Experiments have also shown
that most of the Mo element in MoS2 nanosheets were oxidized to the high valence state
(MoVI), suggesting the oxidation of the MoIVS2 with a dark brown color into a colorless,
water-soluble MoVI-oxide species, e.g., MoO4

2− [85]. Furthermore, the stimulus current-
dependent change in the peak temperature (∆T) of the MoS2 sample was investigated
(∆T = temperature achieved at a specified current Tx − reference temperature T0 (300 K)).
The ∆T increased with increasing current (Figure 4c,d), indicating that the temperature in
the system can be modified with different stimulus conditions.
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Figure 4. Stability and electrothermal effects of MNM. (a) UV-vis absorbance spectra of the MNM
in the DMEM solution, with 30% MN for different weeks. The 2D material-based samples utilized
by other research groups have demonstrated absorbance spectra with a decrease in the absorbance
due to degradation [22,39]. A similar set of spectra were obtained for the samples used in this work,
indicating that our results are similar. (b) Variation of the normalized absorbance at λ = 560 nm
in (a) for the MNM in the DMEM, with 30% MN for different periods. (c) Thermographic map of the
MoS2 sample upon the application of 500 µA stimulus. (d) Change in temperature (∆T) of the sample
for different stimulus currents. Tx is the temperature obtained at the targeted current.

3.4. Influence of MNM on Cancer Cell Ablation

We evaluated the influence of MN concentration on the cellular response to MNM.
Experiments have demonstrated that nanosheets in cancer cells generate strong Joule
heating that leads to cell death [86,87]. As the MN concentration modulates the Joule
heating in the MNM, we conceived that the therapeutic influence of the MNM could be
controlled by the variation in MN concentrations [28,69]. The PANC-1 cells were incubated
with different MN concentrations, and the cell viability was measured to test this hypothesis.
The relative cell viability is represented by

Relative cell viability =
Apc, x − Apc

Apc
× 100% (3)



Pharmaceutics 2023, 15, 106 10 of 15

where Apc, x is the absorbance of PANC-1 cells with a targeted MN concentration, and Apc
is the absorbance of PANC-1 cells only. PANC-1 cells with 10–30% MN disclosed a high
relative cell viability (~100%) (Figure 5a). On the other hand, a low relative viability was
observed for the cells incubated with 90% MN (~61%). Based on these findings, and to
achieve a high initial cell viability, as well as a large conductance for strong Joule heating,
samples with 10–30% MN were chosen. Upon the application of electrical stimuli, the
relative viability of the cells incubated with 30% MN decreased from 100% to 77% (the cell
viability decreased by 23%) (Figure 5b). Moreover, with an increase in the MN concentration
from 10% to 30%, the relative cell viability after applying the stimuli decreased from 93% to
77%. Additionally, the change in stimulus conditions affected cell viability. When stimuli
with an increased length were administered to the cells with 30% MN (from 10 µs to
100 µs), the relative cell viability decreased from 87% to 77%, as shown in Figure 5c. The
relative viability of the cells incubated with 30% MN further decreased from 100% to 77%
with increasing stimulus voltage (from 1 V to 5 V) (Figure 5d). An important part of
cancer cell studies is cell morphology. The morphology of the cells with 2D materials after
different treatments has been demonstrated by experiments [22,88,89]. As the samples were
modified from the cells with only 2D materials to the cells treated with 2D materials and
metal ions/the cells treated with 2D materials and metal ions and conditioned with the targeting
agent, the cell morphology changed. The cell morphology also changed when the cells were
adjusted from the cells with only 2D materials to the cells with 2D materials and metal ions and
conditioned with the targeting agent, including being exposed to optical stimulation. Notably,
this work demonstrated the control of thermal signatures using MNM structures, which has not
been performed before, as well as developed a previously unreported combined AC-stimulus
MNM cancer cell platform for cancer cell ablation and electrothermal therapy. This study also
disclosed MD simulations of integrated cancer cell–M13 phage protein systems, which has not
been previously carried out. These approaches allow ETAs to maintain excellent degradation,
and at the same time, enhance electrothermal performance.
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Figure 5. Cytotoxicity and electrothermal performance of MNM on ablating cancer cells.
(a,b) Variation of relative cell viabilities of the (a) PANC-1 cells with MNM only and (b) PANC-
1 cells with MNM after electrical stimuli for different MN concentrations. The cell viability was
measured by the WST-1 assay, and the cells were subjected to different concentrations of MN.
(c,d) Relative cell viability variations for different (c) stimulus lengths and (d) pulse amplitudes.
The error bars indicate the standard error of the mean (SEM) from three independent experiments
(n = 6). The significance values were calculated using Student’s t-test and are indicated as follows:
* (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001). The non-significance values were unmarked.
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4. Discussion

Due to several requirements, applications such as cancer cell ablation and electrother-
mal therapy are challenging. The requirements are: (1) understanding assembly processes
between the phage protein and cancer cell proteins, (2) excellent electrothermal perfor-
mance, (3) good degradability, and (4) short stimulus time. Currently, the number of
traditional ETAs that fulfill the requirements listed above are limited. The current state
of the MNM is able to achieve most of these requirements with reasonable performance
in relation to conventional ETAs, as indicated by examples disclosed in this work. The
vital importance of the MNM to enable the applications is the deeper levels of insights
into the hydrophobic interaction-facilitated increase in thermal conduction, which has not
been demonstrated before. These results opened the door for utilizing M13 phage–cancer
cell interactions in corresponding systems specifically for applications in materials science
and medicine. Moreover, a percentage decrease in the cell viability of 23% in the integrated
MNM cancer cell system under AC stimulation was achieved, which is ~2 times higher than
the average of ~10% in current thermal-based therapy systems (Supplementary Figure S6).
These results indicate that cell death in a larger population was induced for facilitating
effective treatments. Additionally, the MNM exhibited a degradation time of ~2 weeks,
which is 73.3% faster than the average of 7.5 weeks in existing MoS2-based systems in
physiological media (Supplementary Figure S7), indicating that the elimination of ETAs
from the systems utilized in this work occurred rapidly for enabling safe therapeutics.
Furthermore, a stimulus length of 100 µs was achieved in the combined AC-stimulus MNM
cancer cell platform, which is ~99.7% shorter than the average of 45 ms in state-of-the-art
thermal-type therapy systems (Supplementary Figure S8). This indicates that the thermal
generation is rapid for enhancing the treatment quality of patients.

5. Conclusions

These strong decreases in the cell viability and short stimulus length, together with
good degradation, are achieved through hydrophobic interactions in integrated AC-stimulus
PANC-1 cancer cell MNM systems that alter the thermal signature of MoS2. A different
ETA concept with the potential as a unique resolution for the impasse between increas-
ing the degradability of ETAs, and simultaneously enhancing the electrothermal perfor-
mance/stability, is represented by the utilization of MNM. This study paves the way for
the potential application of the MoS2 in combined cancer therapies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics15010106/s1, Table S1: Thermoelectric prop-
erties of the cell layer/nanostructure model utilized in electrothermal simulations; Table S2: Com-
ponents of the computed binding free energy (kcal/mol) for the interaction of the G3P with PD-L1;
Table S3: References for Figure S1; Table S4: References for Figure S6; Table S5: References for
Figure S7; Table S6: References for Figure S8; Figure S1: Comparison of the averaged computed
binding-free energy of the G3P–PD-L1 complex with that of current peptide-cancer cell protein mod-
els. The information of the references can be found in Table S3; Figure S2: (a) Thermal distribution
of the cell-layer/nanostructure model. The MoS2 and PEG/M13 was inserted in the middle of the
cell layer, and a square-based electrical stimulus was applied. (b) Variation of the peak temperature
in the cell layer for different stimulus amplitudes; Figure S3: Thermal profile of the cell layer upon
the application of 5-V stimulus; Figure S4: Fourier transform infrared (FTIR) spectra of the MNM,
LA-PEG-NHS, M13 and MN; Figure S5: Variation of the relative cell viability of PANC-1 cells with
MN for different MN concentrations; Figure S6: Comparison of the percentage decrease in the cell
viability of integrated MNM cancer cell AC-stimulus systems with that of existing thermal-based
therapy platforms. The information of the references can be found in Table S4; Figure S7: Comparison
of the degradation time of the MNM with that of state-of-the-art MoS2-based systems in physiolog-
ical media. The information of the references can be found in Table S5; Figure S8: Comparison of
the stimulus length of the combined MNM AC-stimulus cancer cell platform with that of current
thermal-type therapy systems. The information of the references can be found in Table S6.
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