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Abstract: In the present study, the blends of CS and Vanillin–CS derivative (VACS) were utilized
for the preparation of printable inks for their application in three-dimensional (3D) printing proce-
dures. Despite the synergic interaction between the blends, the addition of ι-carrageenan (iCR) as a
thickening agent was mandatory. Their viscosity analysis was conducted for the evaluation of the
optimum CS/VACS ratio. The shear thinning behavior along with the effect of the temperature on
viscosity values were evident. Further characterization of the 3D-printed structures was conducted.
The effect of the CS/VACS ratio was established through swelling and contact angle measurements.
An increasing amount of VACS resulted in lower swelling ability along with higher hydrophobicity.
Fluticasone propionate (FLU), a crystalline synthetic corticosteroid, was loaded into the CS/VACS
samples. The drug was loaded in its amorphous state, and consequently, its in vitro release was
significantly enhanced. An initial burst release, followed by a sustained release profile, was observed.

Keywords: polymer blends; 3D printing; drug release; chitosan; fluticasone propionate; atopic dermatitis

1. Introduction

Three-dimensional (3D) printing is a powerful technique vastly utilized for tissue
engineering applications [1]. Currently, 3D printing is also applied in drug delivery systems
since drug release can be modified by changing the infill percentage or geometry during
printing [2]. An interesting application for 3D printing is the formation of patches for
topical and transdermal applications, for the prolonged and sustainable delivery of the
drugs. Over the years, various techniques have been utilized for the preparation of patches,
including solvent casting [3], freeze-drying [4], and electrospinning [5], while the main
key properties of their design are breathability, flexibility, good mechanical properties, and
biocompatibility [6].

Over the years, various synthetic and natural polymers have been applied in the 3D
bioprinting technique, including polycaprolactone (PCL) [7], poly(vinyl alcohol) (PVA) [8],
cellulose [9], and chitosan (CS) [10]. Among them, CS is the only cationic natural polysac-
charide. It is derived from the exoskeleton of crustaceans and from certain fungi. It is a
biocompatible, biodegradable, and non-toxic material extensively applied in pharmaceuti-
cal and cosmetic applications [11–13].

Depending on the desired application, the amelioration of CS properties is feasible. The
derivatization of CS and preparation of CS blends are key techniques for improvement in
CS innate properties [14]. Through CS derivatization, new characteristic groups are inserted
in the CS backbone, ameliorating its solubility or swelling properties. Additionally, the
preparation of blends by blending solvents results in the formation of gels with increased
viscosity values, an important factor in the 3D printing technique [15].

Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory
skin disorder affecting millions of people, particularly infants and young children [16]. It
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is characterized by pruritic, erythematous, and scaly skin lesions mainly to the flexural
surfaces of the body. It is caused by a genetic defect in the filaggrin protein provoking
increased skin permeability that incites further itching, scratching, and inflammation [17].
Unfortunately, AD is not curable, and many patients will experience a chronic course of
the disease.

The management of AD aims to minimize the exacerbations and alleviate scaly
skin [18]. Cream ointments and lotions are utilized to treat AD with topical corticos-
teroids [19], focusing on increasing skin moisture and protection from bacterial infections
corticosteroids [19]. Among the corticosteroids applied for AD treatment, fluticasone propi-
onate (FLU), a synthetic corticosteroid with potent anti-inflammatory properties, has been
vastly employed to alleviate patient symptoms. It is best known as an inhaled preparation
in asthma and COPD treatment [20]. Nevertheless, topical FLU preparations have been
formulated for use in AD. Indeed, FLU, as cream or ointment, underwent in vivo studies
in double-blind randomized groups conducted in 2003 [21] and 2017 [22], with exceptional
results. Nevertheless, prolonged delivery is necessary for patients’ compliance.

Hence, the aim of the present study was to evaluate the inks designed for 3D printing
applications consisting of blends between CS and Vanillin–CS (VACS) derivatives. The
preparation of CS/VACS blends was chosen since (i) CS and VACS present high synergic
interactions and (ii) inks with high viscosity and printing accuracy were prepared. An
examination of the 3D-printed structures and their further use for the preparation of
drug-loaded patches was conducted. The effect of the CS/VACS blend ratio on the final
3D-printed structure, as well as the load of FLU on the 3D-printed patches for dermal
applications, were examined for the first time.

2. Materials and Methods
2.1. Materials

Chitosan with high molecular weight (310,000–375,000 Da) and a degree of deacetyla-
tion >75% was supplied from Sigma Aldrich Co. (St. Louis, MO, USA). Vanillin with 99%
purification was supplied from Alfa Aesar (Thermo Fisher (Kandel) GmbH, Kandel, Ger-
many). Fluticasone propionate (99.99% purity) was kindly donated by Medicair Bioscience
S.A. (Athens, Greece). All the other reagents utilized were of analytical grade.

2.2. Preparation of VACS, CS/VACS/iCR Inks, and Patches

Vanillin–CS derivative (VACS) synthesis was performed according to our previous
paper [23]. Briefly, a 1.6% v/w CS solution was prepared in an acetic acid solution (1%
v/v), and an ethanolic solution of vanillin (15% w/v) was added dropwise under magnetic
stirring (molar ratio CS/vanillin 1/1.3). The mixture was stirred for 12 h, dialyzed against
distilled water for two days, and freeze-dried at −60 ◦C.

The CS/VACS/iCR inks were prepared at the weight ratios of 70/30, 60/40, and
50/50, according to our previous paper [23], with a few alternations. Briefly, CS and
VACS solutions were separately prepared in 2% v/v acetic acid, and iCR was prepared
in a 1% w/v aqueous solution under heating (80 ◦C). The solutions were blended under
stirring, forming gels with concentrations of 3% w/v, and iCR was added in a concentration
of 1% w/w. The obtained gels were heated (60 ◦C) under magnetic stirring in order to
evaporate half of the solvent, and the concentrated inks with a final concentration of 6%
w/v were acquired.

The blends were pneumatically extruded using an extrusion-based 3D Bioprinter
(CELLINK® Inkredible, Gothenburg, Sweden), through a nozzle with an inner diameter
of 0.6 mm (G20). An STL file of a three-dimensional rectangle (3 × 3 × 0.6 cm) was
utilized for 3D printing, while the slicing of the STL sample was performed with the
Slic3r software (infill 80%, 19 layers, angle of layers 0◦). The printing conditions were
individually optimized for each sample, and they are summarized in Table 1. The post-
printing crosslinking of the obtained structures was conducted with 12% w/v sodium
hydroxide (NaOH) in a 30% v/v ethanol (EtOH) solution for 60 min. After that, the
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samples were washed several times with a H2O/EtOH 50/50 v/v solution, suspended in
deionized water, frozen, and freeze-dried. All the printed samples were depicted through
a stereomicroscope (SteREO Discovery V.20, Zeiss, Germany) equipped with a camera
(GRYPHAX Altair, Jenoptik, Jena, Germany). The scaffolds’ line diameters and pore sizes
were measured using stereomicroscope images.

Table 1. Optimum printing parameters of the CS/VACS/iCR inks.

Sample Infill (%) Speed (mm/s) Pressure (kPa) Temperature

CS/VACS/iCR 70/30 80 8 200 RT
CS/VACS/iCR 60/40 80 8 220 RT
CS/VACS/iCR 50/50 80 8 240 RT

The drug-loaded samples were prepared through absorption according to the fol-
lowing procedure: The accurately weighted amounts of FLU, corresponding to 5, 10, and
20 wt% of FLU to the dry scaffold, were dissolved in a mixture of H2O/methanol (50/50
v/v). Then, the freeze-dried samples were inserted into the prepared drug solution and left
until the drug was completely absorbed. The resultant FLU-loaded samples were frozen and
freeze-dried under reduced pressure at −60 ◦C in order to obtain the final FLU-loaded sam-
ples. Each sample was printed multiple times for various physicochemical measurements.

2.3. Viscosity Measurements

The viscosity measurements of the inks were performed at three different temperatures,
25 ◦C, 40 ◦C, and 55 ◦C, together with increasing the rotational speed (20–60 rpm) using
the SC29 spindle of a rheometer (BGD 157/TS, Biuged Instruments, Guangzhou, China).

2.4. Characterization of 3D-Printed Structures
2.4.1. Fourier Transformed Infrared Spectroscopy (FTIR)

The FTIR spectra of the samples were obtained using an FTIR spectrometer (model
FTIR-2000, PerkinElmer, Waltham, MA, USA). In brief, a small amount of each sample
was triturated with a proper amount of potassium bromide (KBr), and the disks were
formed under pressure. The spectra were collected in the range from 400 to 4000 cm−1

at a resolution of 4 cm−1 using 16 coadded scans, while the baseline was corrected and
converted into absorbance mode.

2.4.2. Wide-Angle X-ray Scattering (XRD)

The X-ray diffraction (XRD) patterns were reported using an XRD diffractometer
(Rigaku-Miniflex 600, Chalgrove, Oxford, UK), with CuKα radiation for crystalline phase
identification (λ = 0.15405 nm). All the samples were scanned with 2θ ranging from 5◦ to
50◦ and a scan speed of 1◦/min.

2.4.3. Contact Angle

For the calculation of the contact angle, films of approximately 2 × 2 cm2, prepared
via the solvent evaporation of 1% w/v polymeric solutions at 50 ◦C, were placed onto a
microscope glass. The contact angles were measured in water, employing the sessile drop
method with Ossila Contact Angle Goniometer L2004A1 (Ossila Ltd., Sheffield, UK). The
experiment was performed in triplicate. The results are expressed as mean ± standard
deviation (SD).

2.4.4. Swelling and Water Content Capacity

The swelling ability of the prepared printed patches was evaluated by measuring the
amount of the water sorption aptitude of a simulated body fluid (SBF) buffer (pH = 7.4).
Each dry sample was carefully weighed (Wd) and immersed in SBF. The samples were then
placed on filter paper in order to remove the excess surface water, and their weight (Wf) was
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measured at predetermined times (5 min, 10 min, 20 min, 30 min, 1 h, 2 h, 3 h, and 48 h). The
swelling ratio and water content were calculated according to Equations (1) and (2), respectively.

Swelling ratio% = (Wf − Wd) × 100/Wd (1)

Water content% = (Wf − Wd) × 100/Wf (2)

The dehydration progress of the samples was evaluated by measuring the water
content loss of the samples. The samples were placed in water for 24 h (W0, water content
100%) and then placed in a vacuum oven (40 ◦C, 200 mbar). The weight of the samples
(Wf) was measured at predetermined times (5 min, 10 min, 20 min, 30 min, and 60 min).
The measured weight was compared with the initial weight of the dry samples (Wd,
water content 0%). The relative water content was assessed through Equation (3). The
measurements were performed in triplicate.

Relative water content = (Wf − Wd) × 100/W0 − Wd (3)

2.4.5. Enzymatic Hydrolysis

The enzymatic hydrolysis of the samples was evaluated by placing the samples in
5 mL of SBF, pH = 7.4, containing 1 mL of a lysozyme solution (0.8 mg/mL). The samples
were then placed in an oven at 37 ◦C and at predetermined times (0 h, 24 h, 48 h, 72 h, 96 h,
144 h, and 240 h); they were washed with distilled water, vacuum-dried in an oven at 50 ◦C,
and weighed. The measurements were performed in triplicate.

2.4.6. High-Pressure Liquid Chromatography (HPLC), Quantitative Analysis and Drug
Loading Quantitative

Quantitative analysis and drug loading were conducted utilizing a Shimadzu HPLC
(Kyoto, Japan) system consisting of a degasser (DGU-20A5, Kyoto, Japan), a liquid chro-
matograph (LC-20 AD, Kyoto, Japan), an autosampler (SIL-20AC, Kyoto, Japan), a UV/Vis
detector (SPD-20A, Kyoto, Japan), and a column oven (CTO-20AC, Kyoto, Japan). The
samples were eluted with an isocratic method described by Jetzer et al. [24]. The column
was a type of CNW Technologies Athena C18, 120 A, 5 µm, 250 mm × 4.6 mm set at room
temperature. Briefly, the mobile phase consisted of ACN/H2O/TFA (58/42/0.1 v/v/v),
and FLU was detected at the wavelength of 238 nm. The flow rate through the HPLC
system was 1 mL/min, the adjusted injection volume was 10 µL, while the sharp peaks
were obtained at approximately 14 min. The calibration curve was developed by diluting a
500 ppm stock methanol solution of the drug to the concentrations of 0.01, 0.05, 0.1, 0.25,
0.5, 1.0, 2.5, 5.0 10.0, 20.0, 30.0 and 50.0 ppm, using ultrapure water. For further demonstra-
tion of the drug-loading capacity of the 3D-printed patches, 10 mg printed patches were
dissolved in 10 mL of aqueous acetic acid solution (1% v/v): methanol (50/50 v/v). The
subsequent solution was stirred for 24 h and filtered through nylon filters (0.45 nm pore
size). The percentage of drug loading was calculated using the following equation:

Drug loading (%) = [Weight of drug in patches/Weight of patches] × 100 (4)

2.4.7. In Vitro Dissolution Studies

In vitro release studies were performed with the aid of DISTEK Dissolution Apparatus
using the paddle method (USP II) (North Brunswick, NJ, USA) equipped with an autosam-
pler (Evolution 4300, North Brunswick Township, NJ, USA). The 3D-printed patches were
placed into dissolution vessels corresponding to 75 mg of each formulation in an appropri-
ate patch holder, with its application side up. The dissolution operation was performed
at 32 ± 1 ◦C, with a rotation speed of 100 rpm. The dissolution medium was 500 mL of a
phosphate buffer adjusted at pH = 7.4. At predefined time intervals, 2 mL of the aqueous
solution was withdrawn from the release media and further analyzed for the actual drug
content using HPLC, as previously described.
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3. Results and Discussion
3.1. Characterization of CS/VACS Inks

In our previous paper, inks consisting of CS/VACS 5 and 6% w/w blends were
promising candidates for a successful pneumatic extrusion since they were able to extrude
uniformly. However, when printing multiple layers, the inks were not able to maintain
their structure and collapsed under the gravity force (Figure 1). Consequently, the addition
of a gelling agent in order to maintain the dimensional accuracy of the printed samples is
mandatory. ι-carrageenan (iCR) is a natural polysaccharide, with exceptional characteristics
as a gelling agent since it forms elastic gels stable through refrigerated storage, freezing,
and thawing procedures [25]. Therefore, 1% w/w iCR was applied as a thickening agent in
the CS/VACS blends.
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Figure 1. The 3D-printed multilayered scaffolds of CS/VACS 6% w/v (a) 50/50, (b) 60/40, and
(c) 70/30.

The preparation of inks with certain printable behavior greatly depends on the flow
ability of the bioinks. In general, an ideal ink for 3D printing should present a shear thinning
behavior [26]. The utilized materials ought to be sufficiently viscous to retain their shape
during the printing process but not too viscous, in order to obtain uniform strands and
avoid nozzle clogging. Ink’s high viscosity value is beneficial during 3D printing as well as
during post-printing since the prepared filament is firm and difficult to flow and spread.
Therefore, the shape of both the filament and the final sample is retained [27]. The inks with
viscosity values exceeding 10.000 Pa·s are characterized as too viscous; when their viscosity
is lower than 100 Pa·s, they are characterized as too fluidic [23]. CS has been applied in
many 3D printing applications owing to its innate nature of forming non-Newtonian gels
with high viscosity values, which is an essential requirement for a successful 3D printing
application [2].

The viscosity of the new-formed CS/VACS/iCR inks was assessed through rheo-
logical measurements via increasing the rotational speed. The viscosity values of the
CS/VACS/iCR blends with increasing rpm are presented in Figure 2. As depicted, the
blends presented a shear-thinning behavior with a decrease in viscosity values as the rota-
tional speed increased. It is interesting that the viscosity values of the blends were slightly
affected by the application of different temperatures. Typically, in CS gels, an increase
in the applied temperature results in a decrease in its viscosity value [28]. As depicted
in Figure 2b,d,f, the increase in temperature at 40 ◦C had a small impact on the viscosity
values of the blends. A further increase in the temperature to 55 ◦C affected the viscosity
values to a higher extent. In the CS/VACS/iCR 50/50 ink, the only deviation was observed
in the low rotational speed (20–25 rpm), while in the samples CS/VACS/iCR 60/40 and
CS/VACS/iCR 70/30, a decrease in the viscosity values was detected during the initial
12 rpm (20–32 rpm) and 9 rpm values (20–29 rpm), respectively. These steady viscosity
values are attributed to the extensive hydrogen bonds formed between CS, VACS, and iCR.
Nevertheless, the viscosity values of all the samples lay within the appropriate values and
rendered the CS/VACS/iCR samples exceptional candidates for their further 3D printing.
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(d) CS/VACS/iCR 60/40 25–26 rpm, (e) CS/VACS/iCR 70/30 20–60 rpm, and (f) CS/VACS/iCR
70/30 24–25 rpm.

3.2. Characterization of 3D-Printed Structures
3.2.1. Morphological Characterization

During 3D printing, the ability to control the resolution and dimensionality of the
scheme is a key point for the successful preparation of 3D constructs [29]. The macroscopic
images of the CS/VACS/iCR constructs are presented in Figure 3 in the three different
ratios analyzed. In any ratio, squared grid structures with excellent shape fidelity were
successfully prepared. Their dimensional stability before and after gelation was evident
since the void area of the grids was unaffected. The stereoscopy images before and after the
drying procedure are also presented in Figure 3. The preparation of multilayered scaffolds
with distanced lines and clear squared grids was apparent.

The addition of a strong NaOH solution to the printed structures leads to the augmen-
tation of the pH value reaching the alkali region, where both CS and VACS are insoluble.
The increase in the pH above 6.5 leads to a sol–gel transition of CS and VACS, forming a
three-dimensional network due to the generation of physical junctions of H bonds [30].
The primary amino groups are neutralized, forming extensive hydrophobic interactions
and hydrogen bonds among the different moieties present in the CS and VACS backbones,
such as amines, hydroxyl, and carbonyl groups [31].
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In the further step of the process, the drying of the scaffolds is important since their
storage, transfer, and study are easier in comparison to wet scaffolds [32]. After the freeze-
drying process, the pores’ sizes were enlarged, while the scaffolds’ lines were smaller.
Figure 4a,b present the average scaffold’s line diameters and pore sizes, respectively.
Regarding the pore size, the scaffolds with larger diameters naturally presented a smaller
pore size and vice versa. As can be observed, when the scaffolds contained a solvent, their
pores had a smaller diameter, while their grid line diameters were wider. After the drying
procedure, their pores were enlarged, while the grid lines were narrower. It is interesting
that, as the percentage of the VACS increased, the average line was augmented. This
observation is probably attributed to the extended hydrogen bonds between CS and VACS,
leading to more swelled scaffolds with wider lines and narrower pores. After the removal
of the solvent, the dry constructs appeared to have wider pores and narrower lines.
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3.2.2. Physicochemical Characterization

The successful preparation of the VACS derivative as well as the interaction between
neat CS and VACS initial materials were well-established in our previous paper through
FTIR measurements [23]. In brief, CS characteristic peaks were present at 3000–3600 cm−1,
which are attributed to the broad overlapped peak of O–H and N–H bonds. The bands
at 1651 cm−1 and 1567 cm−1 are attributed to amide I and II, respectively, while further
peaks were present at 1421 (C–H and O–H vibrations), 1326 (C–N axial deformation), 1154
(anti-symmetric stretching of the C–O–C bridge) and 1077 cm−1 (skeletal vibrations, C–O
stretching) [33]. Concerning the VACS derivative, the characteristic peaks of CS were
present in the VACS spectra; however, they were slightly shifted to lower wavenumbers.
Moreover, the characteristic C–N peak was present at 1591 cm−1, confirming successful
derivatization. Subsequently, the CS/VACS/iCR samples were examined through FTIR
spectra (Figure 5a). The overlapped curve attributed to the hydrogen bonds of hydroxyl and
amino groups present in the CS and VACS structure was detected in all the CS/VACS/iCR
ratios. Due to the physical gelation of the samples, the overlapped peak was narrower [34].
Moreover, amides I and II were not clearly distinguished in the CS/VACS/iCR samples, due
to the gelation of the samples with the NaOH solution. Nevertheless, the characteristic peak
of the VACS derivative, present at 1591 cm−1 and indicative of the C–N bond, increased by
increasing the VACS ratio. Finally, the iCR was hardly distinguishable in the FTIR spectra
owing to its low concentration, i.e., 1% w/w, while its characteristic peaks overlapped with
the CS or VACS peaks. However, the peak present at 1225 cm−1 is attributed to the ester
sulfate of the iCR, confirming the presence of iCR in the samples [35].
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In a further step, the CS/VACS/iCR gelated samples were examined through XRD
measurements (Figure 5b). CS is a semicrystalline polysaccharide with two characteristic
peaks at 10 and 20◦, while the semicrystalline behavior of the VACS derivative was de-
scribed in detail in our previous work, with three distinct peaks at 13.8◦, 21◦, and 26.9◦ [23].
The CS/VACS/iCR samples presented a slightly modified behavior in comparison to those
of the initial materials. The peak of CS at 20.2◦ shifted to 20.8◦ in the 60/40 ratio, which
is attributed to the VACS ratio of the blends, while its intensity diminished. Furthermore,
the peak of CS at 10◦ shifted to 9◦, while its intensity varied according to the content of
VACS. The gelation of the samples with NaOH is critical for their crystalline structure.
The sol–gel transition occurring during gelation provokes a rearrangement of the poly-
meric chains, leading to changes in the crystalline structure of the CS/VACS/iCR printed
structures. This behavior is described in the literature with the study of Takara et al., who
observed the differentiation in CS semicrystalline peaks when treated with different NaOH
solutions [36].

In the pharmaceutical field, the wettability of the utilized materials is an important
factor in describing the interaction between the surface of a tablet or patch with the body
fluids. The absorption rate of the liquid into the surface has an impact on the drug release
in a particular dissolution medium [37]. More specifically, when designing skin patches
for atopic skin, their innate wetting properties are important [38] since transepidermal
water loss is one of the abnormalities of atopic skin. Consequently, those materials able
to reduce water vapor are preferable [39]. The contact angle is a relatively simple method,
commonly used for estimating the hydrophilicity or hydrophobicity of a surface through
the measurement of the angle made in a solid/liquid/gas interface on a surface [40].
Those materials with values θ < 90◦ are described as hydrophilic, while with θ values of
90◦ < θ < 150◦ or θ > 150◦, the surface of the materials is characterized as hydrophobic and
super-hydrophobic, respectively [37]. Figure 6 presents the contact angle measurements of
neat CS and the samples CS/VACS/iCR 50/50, 60/40, and 70/30. Neat CS had a value
of 69.87◦, and its high contact angle value is attributed to the hydrophobic backbone of
its chains. When examining the CS/VACS/iCR films, the decreased contact angle values
are attributed to the higher hydrophilicity of the VACS derivative. These results are in
accordance with the literature data where the water content of CS/xylan and CS/cellulose
blends were examined [41,42]. Furthermore, it is evident that by increasing the ratio of
VACS, the average θ value increased, probably attributed to the increased presence of the
phenolic ring of the vanillin monomer on the VACS backbone.
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One significant characteristic of the polymeric materials designed for dermal patches
is their ability to swell in aqueous environments. Naturally, CS is able to swell its dry
mass up to 500% w/w, while its derivatives with hydrophilic monomers are able to swell
their dry mass up to 5000% w/w [20,23,43]. Figure 7a,b present the swelling ability and
the water content of the 3D-printed CS/VACS/iCR samples with 50/50, 60/40, and 70/30
ratios, respectively. The swelling ability of the samples lay between 600% and 800% of their
dry mass, while higher swelling ability was observed in the sample with the higher CS
content. This result is attributed to the presence of the aromatic ring of vanillin in the VACS
derivative. The presence of the large ring affected the ability of the blends to swell and
retain large amounts of water in their structure owing to steric hindrance. The swelling
process follows a two-phase behavior: an initial fast swelling phase during the first 1 h
followed by a steady swelling phase. In addition, water content follows a similar pattern to
swelling efficiency. The higher water content was observed in the sample CS/VACS/iCR
70/30 with the higher content in CS equal to 89%. The swelling efficiency and water content
were lower in the printed samples in comparison to the initial CS and VACS materials,
which is attributed to gelation. This observation is in accordance with the literature data
where the gelation of hydrogels was revealed to have a great impact on their swelling
efficacy [44].
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An important factor for hydrogels and drug delivery patches is their dehydration
ability or swelling reversibility [45]. Figure 7c presents the dehydration of the swollen
samples. The samples presented a reversible behavior in terms of their swelling ability. The
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fastest dehydration was observed in the sample CS/VACS/iCR 50/50, followed by those
with ratios of 60/40 and 70/30. The sample with a 50/50 ratio retained the least amount
of water during the swelling process in comparison to those with the ratios of 60/40 and
70/30, resulting in faster dehydration. However, even though during the swelling behavior,
rapid retention of water was observed, with a fast swelling step during the first hour, the
dehydration occurred gradually, with a linear relationship over time.

In the next step, the enzymatic hydrolysis of the 3D-printed structures was examined
(Figure 7d). Hydrolysis provokes the depolymerization of CS and VACS through the
scission of the sensitive β-1,4 glycosidic bond, forming aldehyde groups [46]. The mass
loss during hydrolysis is defined by various factors, namely polymeric concentration,
degree of deacetylation, specific surface area, and swelling behavior [47]. In Figure 7, the
swelling-dependent mass loss behavior of the CS/VACS/iCR samples is evident. The
sample CS/VACS/iCR 70/30, with the higher swelling ability, reduced its mass up to 24%,
whereas the samples with 60/40 and 50/50 ratios presented a reduction in their mass of
up to 28% and 34%, respectively. The higher swelling ability resulted in a more efficient
distribution of the enzyme into the polymeric chains, leading to a higher degradation of
the glycosidic bonds and subsequently diminishing the mass.

3.2.3. Characterization of Drug-Loaded Patches

For the study of the successful loading of FLU in the CS/VACS/iCR samples and
the determination of the potential interactions between the drug and polymeric matrixes,
FTIR measurements were performed (Figure 8a). Regarding the CS/VACS/iCR spectra, all
their characteristic peaks were observed. According to the literature, neat FLU displays its
principle sharp peaks at 1744 cm−1, corresponding to the ester carbonyl group (C=O); at
1701 cm−1, attributed to the thioester carbonyl group; at 1661 cm−1, attributed to the ketone
groups (C=C); and at 1409 cm−1, which is characteristic for the stretch of the hydroxyl
group (–OH). Moreover, thiol stretch is detected at 991 cm−1 (S–H), fluorine stretches at
1024 cm−1 (C–F), and ether groups stretch at 883 cm−1 [20,48]. In the FTIR spectra of the
FLU-loaded samples, all the FLU characteristic peaks were detected throughout the spectra
without any noticeable changes in band position, indicating the absence of interactions
between FLU and the polymeric matrix. This result is in agreement with the literature [49].
Nevertheless, the peaks corresponding to ester carbonyl groups, thioester carbonyl groups,
and ketone groups at 1744 cm−1, 1701 cm−1, and 1661 cm−1, respectively, were present in
the CS/VACS/iCR samples, indicating that FLU was successfully loaded.

In the next step, XRD analysis was performed to determine the physical state of the
FLU loaded into CS/VACS/iCR structures. In general, the crystallinity of active compounds
has a great impact on the properties of the final products. The solubility and dissolution
rate are the most important factors [50]. According to a previous study of our group,
higher crystallinity results in a lower dissolution rate [51]. Consequently, the loading of
FLU should occur in its amorphous state. Figure 9b presents the outcomes of the XRD
measurements. FLU is a highly crystalline compound, with characteristic peaks throughout
its diffractogram [52]. Contrarily, the CS/VACS/iCR 3D-printed samples were amorphous
in all the ratios under study, with a characteristic hollow shape. In the drug-loaded patches,
FLU was loaded in its amorphous phase since no crystalline peak was detected in the
diffractograms from any of the ratios. DSC measurements were performed to confirm
the XRD results (Figure S1). FLU, as a crystalline compound, presents a melting peak
at 300 ◦C [53]. According to the literature, CS is a polysaccharide with a characteristic
endothermic peak at 60–100 ◦C, ascribed to its loss of moisture and exothermic peak at
295 ◦C, when the decomposition of the polymeric matrix occurs [54]. None of the ratios of
the CS/VACS/iCR-FLU samples revealed the characteristic endothermic peak of FLU while
the decomposition of polysaccharides occurred. These results confirmed the amorphous
loading of FLU into the 3D-printed structures.
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The loading efficacy of the patches is a characteristic drastically affecting their further
in vitro release behavior, leading to the optimum absorption, and consequently relief, of
the patient [55]. Table 2 summarizes the drug-loading efficacy of all the patches. Our
results indicated that efficient drug loading was achieved in all the CS/VACS ratios for
the patches theoretically containing FLU 20 wt%. The actual percentages were 14.3%,
19.4%, and 19.1% for 50/50, 60/40, and 70/30 ratios, respectively. Concerning the samples
containing FLU 10 wt%, their actual drug-loading efficacy was 2%, 5.7%, and 9.7% for the
CS/VACS samples with ratios of 50/50, 60/40, and 70/30, respectively. Regarding the
samples containing FLU 5 wt%, their drug-loading efficacy was negligible. It is interesting
that concerning the CS/VACS sample with a 50/50 ratio, the drug-loading efficacy was
lower, probably due to the steric hindrance effects of the aromatic ring of the vanillin
present in the VACS derivative.

Table 2. FLU loading percentage in CS/VACS/iCR patches.

Sample Drug Loading (%)

CS/VACS/iCR 50/50
FLU 5% 0.7

FLU 10% 2.0
FLU 20% 14.3

CS/VACS/iCR 60/40
FLU 5% 0.4

FLU 10% 5.7
FLU 20% 19.4

CS/VACS/iCR 70/30
FLU 5% 0.6

FLU 10% 9.7
FLU 20% 19.1

In vitro dissolution studies were also conducted for the evaluation of FLU release rate.
Figure 10 shows the dissolution profiles of neat FLU and CS/VACS/iCR patches. Since
the drug loading in the ratios containing FLU 5 wt% was very low, their further in vitro
dissolution profiles were not examined. FLU, as a glucocorticosteroid with low aqueous
solubility and high hydrophobicity, exhibits a low dissolution profile [56]. As shown in
Figure 10, neat FLU practically remained undissolved, while its dissolution profile did not
exceed 4% after 8 days.

Concerning the release of FLU from the 3D-printed patches, our dissolution studies
revealed an optimization of its in vitro behavior since all the blends displayed a significant
increase in the amount of the dissolved FLU in comparison to neat FLU. The improvement
in the drug’s dissolution rate from the patches is attributed to FLU loading into the patches
in the amorphous phase. According to Teja et al. [57], the amorphous phase of the crystal
compounds has higher solubility and an enhanced dissolution rate compared with the
crystal phase. The release of FLU from the patches followed a two-phase release profile.
An initial burst release was detected during the first 10 h, followed by a sustained release
up to 8 days. The samples containing FLU 20 wt% achieved a release of up to 62%, 67%,
and 63% for the CS/VACS ratios 50/50, 60/40, and 70/30, respectively, whereas when
containing FLU 10 wt%, the maximum release was 70%, 93%, and 77% for the CS/VACS
ratios 50/50, 60/40, and 70/30, respectively. Noteworthy is the fact that, by increasing the
percentage of the FLU present in the patches, the in vitro release ability decreased. This
inverted correlation between drug content and drug release behavior is typical for poorly
water-soluble drugs and is attributed to the formation of hydrophobic interactions among
the molecules of the drugs [51,58].

In addition, the release behavior of drugs in terms of swelling matrixes is heavily
dependent on their innate swelling ability. In this context, the release profiles are associated
with the ratios of the CV/VACS blends. The ratio with the higher content of VACS resulted
in the lowest swelling ability and, consequently, decreased dissolution ability. By contrast,
according to the swelling data, the optimum dissolution was expected from the sample
CS/VACS/iCR 70/30 FLU 10%. However, complete dissolution ability was observed in
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the sample CS/VACS/iCR 60/40 FLU 10%. The main reason for this behavior is that other
than swelling: drug dissolution and diffusion along with the erosion of the polymers also
contribute to this result [59].
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Figure 10. In vitro release of FLU from CS/VACS/iCR patches at pH 7.4. (a) CS/VACS 70/30,
(b) CS/VACS 60/40, (c) CS/VACS 50/50.

These in vitro dissolution results render the CS/VACS/iCR FLU-loaded samples
promising candidates for the treatment of AD. However, further studies are required on
in vitro keratinocytes and fibroblast cell cultures [60] for confirming the biocompatibility
and suitability of the patches analyzed in this study. Moreover, in vivo animal models [61]
would support the applicability of these patches for the alleviation of AD symptoms.

4. Conclusions

In the present study, CS/VACS/iCR blends were prepared for the formation of 3D-
printed patches for the administration of FLU. The CS/VACS/iCR blends revealed appro-
priate viscosity values for extrusion with a 3D printer. The 3D-printed samples were able to
maintain their shape after printing and crosslinking procedures, while their swelling ability
and hydrophilicity were found to be dependent on the CS/VACS ratio, providing higher
swelling ability and hydrophilicity in the samples with the lowest ratio of VACS. Further-
more, FTIR measurements confirmed the successful loading of FLU into the 3D-printed
samples, while XRD and DSC measurements established the amorphous state of FLU.
Finally, in vitro release studies indicated the enhanced release of FLU in the dissolution
medium, while the complete release of FLU was obtained from the sample CS/VACS/iCR
60/40 FLU 10%. The aforementioned results render the 3D-printed CS/VACS/iCR FLU
samples potential candidates for the treatment of AD.
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