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Abstract: Peste des Petits Ruminants (PPR) is a highly pathogenic disease that is classified as a World
Organization for Animal Health (OIE)-listed disease. PPRV mainly infects small ruminants such as
goats and sheep. In view of the global and high pathogenicity of PPRV, in this study, we proposed a
novel nanoparticle vaccine strategy based on ferritin (Fe) self-assembly technology. Using Helicobacter
pylori (H. pylori) ferritin as an antigen delivery vector, a PPRV hemagglutinin (H) protein was fused
with ferritin and then expressed and purified in both Escherichia coli (E. coli) and silkworm baculovirus
expression systems. Subsequently, the nanoparticle antigens’ expression level, immunogenicity and
protective immune response were evaluated. Our results showed that the PPRV hemagglutinin–
ferritin (H-Fe) protein was self-assembled in silkworms, while it was difficult to observe the correctly
folded nanoparticle in E. coli. Meanwhile, the expression level of the H-Fe protein was higher than
that of the H protein alone. Furthermore, the immunogenicity and protective immune response of H-
Fe nanoparticle antigens expressed by silkworms were improved compared with the H antigen alone.
Particularly, the protective immune response of H-Fe antigens expressed in E. coli did not change, as
opposed to the H antigen, which was probably due to the incomplete nanoparticle structure in E. coli.
This study indicated that the use of ferritin nanoparticles as antigen delivery carriers could increase
the expression of antigen proteins and improve the immunogenicity and immune effect of antigens.

Keywords: Peste des Petits Ruminants; hemagglutinin; ferritin nanoparticle; Escherichia coli prokary-
otic expression system; silkworm baculovirus expression vector system

1. Introduction

Peste des Petits Ruminants (PPR), or ovine rinderpest, is an acute, severe and conta-
gious disease caused by the Peste des Petits Ruminants Virus (PPRV). PPR mainly infects
small ruminants such as goats and sheep and is characterized by fever, stomatitis, gastritis,
diarrhea and pneumonia [1,2]. PPRV consists of a 15,948 bp non-segmented single-stranded
RNA genome, which encodes six structural proteins and two non-structural proteins [3,4].
Among them, F and hemagglutinin (H) proteins are the most immunologically relevant
determinants of protection against the measles virus, containing several T–cell epitopes
and most of the neutralizing antibody epitopes [5–7]. Both F and H proteins induce host
immune protection. The H protein stimulates a stronger humoral immune response and
more neutralizing antibodies than the F protein [8,9]. Due to the high incidence of PPR,
the mortality rate can reach almost 100% in severe cases [10], which poses a great threat
to sustainable small-scale agriculture, especially small ruminant farming systems. The
disease has spread to more than 70 countries, including Africa, the Near and Middle East
and Asia. More than 1.7 billion sheep and goats are infected [11], which causes serious
economic losses [12,13]. The PPR epidemic was first reported in Tibet, China, in 2007 and
was effectively curbed by slaughtering infected animals, introducing vaccinations and
imposing restrictions on animal transport in PPR-infected areas [14]. PPR subsequently
re-emerged in Xinjiang, China, in December 2013 and spread rapidly to most parts of
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China in 2014. Subsequently, it was significantly brought under control throughout the
country [15].

At present, PPRV control strategies depend on live-attenuated vaccines. The attenu-
ated PPRV vaccines Nigeria 75/1 and Sungri 96 are the most widely used worldwide and
are considered to be completely attenuated, safe and effective. These two vaccines also
provide lifelong protection for immunized animals [15]. However, these live-attenuated
vaccines have poor thermal stability and are often subject to harsh transport conditions,
especially in subtropical regions. Live-attenuated vaccines also have the risk of reversing
into virulent phenotypes and cannot distinguish infected animals from vaccinated animals
(DIVA), which complicates control and regulatory measures [16]. Therefore, the devel-
opment of a new vaccine with heat resistance, high efficiency and the ability to identify
vaccine-immunized animals has become key to effectively eliminating the PPR epidemic.

Because they have a small immune doses, good biocompatibility and site-specific
targeting, nanoparticles are increasingly used in the field of vaccine development. Among
them, ferritin (Fe) is a type of iron storage protein which widely exists in organisms and
is involved in a variety of physiological and pathological processes [17]. Ferritin consists
of 24 subunits, each of which forms a trimer subunit, and eight trimers form the highly
symmetrical octahedral cage structure that is characteristic of ferritin nanoparticles [18].
Ferritin nanoparticles exhibit remarkable thermal and chemical stability, meaning they
can be used as drug delivery carriers and scaffolds to display exogenous peptides or
proteins [18–20]. In 2006, New Century Pharmaceuticals, Inc. Fused and expressed the Tat
peptide of HIV at the N-terminal of the ferritin L subunit. The expressed protein had ferritin
nanostructures and could induce efficient immune responses. Since then, self-assembled
ferritins have been increasingly used in vaccine development.

In the virus-like particle (VLP) assembly of PPRV, the co-expressions of M, H and N
proteins have higher expression levels than that of a single protein, which can also induce
the high-level production of specific antibodies and protective immune responses [21].
Compared with a VLP vaccine, in this study, we only fused the main antigen H protein
of PPRV with Helicobacter pylori (H. pylori) ferritin. In this study, the hemagglutinin–
ferritin (H-Fe) fusion sequence was constructed to be expressed and self-assembled in
spherical nanoparticles in the Escherichia coli (E. coli) expression system and the silkworm
baculovirus expression system. Subsequently, the immune effects of the H-Fe and H
antigens were evaluated. Nanoparticle antigens expressed by silkworms induced BALB/c
mice to produce more high-level specific antibodies than the antigen alone, which could
be used to neutralize PPRV and induce a protective immune response. However, due
to the incomplete folding of the fusion protein in E. coli expression, the H protein did
not induce higher-level titer-neutralizing antibodies after ferritin assembly. In conclusion,
ferritin can be used as an ideal antigen delivery carrier to improve the immunogenicity
of H proteins and represents a new strategy for the development of PPR vaccines. The
post-translational modification function of the silkworm baculovirus expression system
could improve the self-assembly of the fusion protein so as to induce an improved immune
effect. Compared with the E. coli expression system, this system is more suitable for use
with ferritin self-assembly technology.

2. Materials and Methods
2.1. Cells, Viruses and Animals

The defective-rescue BmNPV BES reBmBac vector and the recombinant BmNPV trans-
fer vector pBmPH (GenBank submission ID: 2426173) were constructed and maintained in
our laboratory [22]. The pET-28a (+) vector was saved in our laboratory. BmN cells were
preserved in our laboratory and cultured in TC100 insect cell culture medium (Applichem,
Darmstadt, Germany) with 10% fetal bovine serum (FBS, Gibco, Waltham, MA, USA) at
27 ◦C. Vero cells were cultured with DMEM medium containing 10% fetal bovine serum
(FBS) at 37 ◦C in a 5% CO2 incubator. The E. coli strains DH5α and Rosetta (DE3) were
cultured in Luria–Bertani (LB) medium. The PPR Clone 9 virus strain was purchased
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from TECON Co., Ltd. (Urumqi, China), Specific-pathogen-free (SPF) BALB/c mice were
obtained from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China).

2.2. Construction of Recombinant Vector
2.2.1. Construction of Recombinant Vectors pET-28a-H-Fe and pET-28a-H

After codon preference optimization, the PPRV H protein (GenBank: AJE30413.1)
and H. pylori ferritin (GenBank: NP_223316, 5-167aa, N19Q) sequences were synthesized
using GenScript (Nanjing, China) with BamHI and EcoRI restriction sites at the upstream
and downstream, respectively. The H protein sequence was fused to the N-terminal of
ferritin by a linker (Ser-Gly-Gly). The H-Fe and H fragments were amplified via fusion
PCR (Phanta Max Super-Fidelity DNA Polymerase was purchased from Vazyme), and then
the H-Fe and H protein sequences were inserted into the pet28a vector by BamHI/EcoRI
(FastDigest enzymes BamHI and EcoRI were purchased from Thermo Scientific) digestion
to construct the vectors pET-28a-H-Fe and pET-28a-H.

2.2.2. Recombinant BmNPV Construction

As shown in Section 2.2.1, the H-Fe and H fragments were amplified via fusion PCR
and cloned into the pVL1393 vector to obtain pVL1393-H-Fe and pVL1393-H. Then, they
were cloned into the pBmPH vector to construct the transfer vector pBmPH-H-Fe. Then, the
transfer vectors were co-transfected (VigoFect was purchased from Vigorous Biotechnology
Beijing Co., Ltd., Beijing, China) with reBmBac into BmN cells. Finally, the recombinant
BmNPV baculovirus reBm-H-Ferritin and reBm-H were obtained from the supernatant
of co-transfected cells. The recombinant viruses reBm-H-Ferritin and reBm-H obtained
via co-transfection were used as the starting stocks for mono plaque purification, and the
highly expressed strains were selected for amplification, which were used as the parent
strains of the virus for further experiments.

2.3. Expression and Purification of H-Fe and H Protein

In terms of E. coli expression, 1 µL pET-28a-H-Fe or pET-28a-H plasmids were added
to 50 µL E. coli Rosetta DE3 competent cells on a sterile operating table. After 30 min on
ice, the mixture was heat-shocked at 42 ◦C for 90 s, then left on ice for 1 min. Added
1 mL LB medium, shook at 37 ◦C for 1 h. 200 µL bacterial solution was evenly coated on
the culture plate containing kana resistance and cultured for 8–12 h. Monoclonals were
picked and cultured in liquid LB medium containing kana resistance at 37 ◦C for about
12 h. According to the proportion of 1%, the cultured bacterial solution was added to the
new LB liquid medium for further culture. After optimization, 0.5 mM IPTG was used in
7 h of induction to obtain the expression product. The supernatant and precipitation were
separated after the expression product was ultrasonically disrupted, and then, they were
analyzed via SDS-PAGE. The fusion protein was then expressed and purified via Ni-NTA
affinity purification. To assemble the H-Fe protein in the inclusion body into spherical
nanostructures, the fusion protein was refolded in dialysis buffer (Fe3+ with an appropriate
concentration) with a gradually decreased urea concentration (Dialysis buffer: 20 mM Tris-
HCl (pH8.0), 10% sucrose, 0.6 mM Arg, 0.2 mM EDTA, and then urea with concentrations
of 6 M, 4 M, 2 M, 1 M and 0.5 M was added respectively to prepare dialysate.). The target
protein after Ni-NTA affinity purification was loaded into the 3.5 kDa dialysis bag.

In terms of silkworm expression, the recombinant virus was injected into the intern-
odes of the dorsal abdomen of fifth instar silkworm larvae or pupae, and then rearing
was continued at 25–27 ◦C and 65% humidity. After 108–120 h, larval hemolymphs or
pupae expressing the protein of interest were harvested. Crude samples were diluted
with PBS containing ascorbic acid and subjected to mild sonication and ultracentrifugation
(35,000 rpm, 3 h) with 30% sucrose as the medium for crude purification. The white clear
pellet deposited at the bottom of the tube was resuspended with PBS overnight at 4 ◦C.
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2.4. Identification and Concentration Determination of H-Fe and H Protein

The purified H-Fe and H proteins were verified via Western blot [23]. The His mon-
oclonal antibody or the mouse anti-PPRV H monoclonal antibody (Pirbright Institute,
Surrey, UK) was used as the primary antibody, and the HRP-labeled goat anti-mouse IgG
antibody was used as the secondary antibody. To verify the correctness of the purified
protein, SDS-PAGE was performed. The gel strip containing the target protein was cut
and placed in PBS buffer, and then sent to Shanghai luming biological technology co., Ltd.
for analysis by LC-MS/MS. Nano-HPLC liquid phase system EASY-nLC1200 (Thermo
Scientific, Waltham, MA, USA) was used for separation, and Q-Exactive mass spectrometer
(Thermo Scientific) was used for mass spectrometry analysis.

A transmission electron microscope (TEM) (New Bio-TEM H-7500, HITACHI, Tokyo,
Japan) was used to observe whether the self-assembly of nanoparticles was successful or
not. The purified protein sample was negatively stained, and the steps were as follows:
10 µL of the suitable diluted sample was dropped onto the coated copper network and
incubated for 5 min. After being washed three times with distilled water and dried, 5 µL
of uranyl acetate was dropped for staining and then dried and observed under the TEM.
Immunogold labeling was used to identify whether H proteins were present on the surfaces
of the nanoparticles. The specific operation was as follows: 10 µL of protein sample was
dropped onto the coated copper mesh, washed with distilled water and dried. Then, 10 µL
of 1:50 diluted H monoclonal antibody was dropped onto the copper mesh, incubated for
15 min, washed again and dried. After that, 10 µL of 1:40 diluted goat anti-mouse IgG (full
molecule) gold-10 nm antibody (goat anti-mouse gold particle labeled secondary antibody
purchased from Sigma Aldrich) was dropped onto the mesh, incubated for 15 min, washed,
dried and stained with uranium acetate under the electron microscope.

The H-Fe and H proteins expressed in E. coli were purified via Ni-NTA affinity pu-
rification and quantified using the BCA Protein Assay kit [24]. We collected the expressed
bacteria and washed twice with sterile water. We then added 20 mL of lysis buffer to
the bacteria, suspended it and lysed on ice for 30 min. The bacteria were ultrasonically
disrupted according to the procedure of breaking for 3 s and stopping for 5 s, 10 times for
each group, and 3 groups in total. Then, the precipitate was collected by centrifugation,
and the precipitate was washed with 20 mL of inclusion body washing solution I and II
in turn. Centrifugation occurred at 12,000 rpm for 10 min, supernatant was discarded,
precipitate was suspended with urea NTA0 Buffer and dissolved overnight at 4 ◦C. After
centrifugation at 12,000 rpm for 10 min, the supernatant was filtered by a 0.45 µm filter
and then loaded into a nickel gravitational column. An NTA-urea buffer with imidazole
concentrations of 50 mM, 100 mM, 250 mM and 500 mM was used for elution, and the
eluent was collected for SDS-PAGE detection.

ELISA was performed to detect the expression levels of the H-Fe and H proteins in
silkworms, while the expressed and purified H protein was set as a standard substance.
The serially diluted H protein expressed and purified by E. coli was coated in a 96-well
plate, while, at the same time, the protein to be tested expressed by the silkworm was
diluted 5-fold with PBS, sonicated and centrifuged, after which the supernatant was taken
and made a 2-fold dilution from 100-fold with coating buffer. We then took 100 µL to coat
on the microtiter plate and blocked with 5% skimmed milk powder for 3 h and washed
four times with PBST. The mouse-derived anti-H monoclonal antibody (prepared by our
laboratory) was used as the primary antibody, diluted 200 times with antibody diluent, and
added to a 96-well plate at 100 µL/well, incubated for 1.5 h, and then washed four times
with PBST. HRP-labeled goat anti-mouse IgG antibody (ZSGB-BIO, Beijing, China) was
used as the secondary antibody, diluted 5000 times with antibody diluent, incubated for
1.5 h, and washed four times with PBST. After coloration with OPD, the absorbance was
detected at 492 nm. The standard curve was made according to the values measured by
the standard substance, and then the expression levels of H-Fe and H protein expressed in
silkworms were calculated.
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2.5. Immunizations

Six-week-old BALB/c mice (n = 70) were randomly divided into six groups (n = 10; H-
Fe (E. coli or silkworm), H (E. coli or silkworm), Luciferase (Luc), PBS and adjuvant groups).
The antigens for the H-Fe and H groups were prepared by mixing 25 µg of H-Fe protein or
an equimolar dose of H protein with a 15% Montanide GEL adjuvant (SEPPIC, Courbevoie,
France). In the Luc injection group, mice were immunized with Luc expressed in silkworm
using the same method as those mixed with the adjuvant. The Luc injection group, PBS
group and adjuvant alone injection group were set as the control groups. Subsequently,
all mice were multiple points intraperitoneally injected with corresponding antigen (H-Fe:
25 µg/100 µL; H: 20 µg/100 µL), injected with 100 µL of antigen per mouse. BALB/c
mice were immunized in prime/boost mode on day 0 and day 21, respectively. Blood
samples were collected from the orbital venous plexus on day 14 and 35 after prime-mode
immunization. Mice were euthanized at week 6.

In the vaccine safety test group, mice were injected with 5-fold doses of H-Fe and
H antigens. Serum was collected on day 0 and day 21. The mice were euthanized on
day 21, dissected, and observed in appearance and tissue sections (CEICA-CM3050S). The
obtained heart, liver, lung, kidney, muscle, stomach and spleen tissues were frozen in
liquid nitrogen and stored in a refrigerator at −80 ◦C. Removed tissue, dropped OCT
embedding agent to make it completely submerged, then put it into liquid nitrogen for
10–20 s. Subsequently, the tissues were sliced in a cryostat, with a thickness of 8 µm, and
then placed on the slide. The cut samples were dried, fixed in 80% acetone solution for
15 min, and cleaned with distilled water. Dyed in hematoxylin solution for 5 min, rinsed
with distilled water three times. The slides were placed in the differentiation solution for
10 s, and the absorbent paper was dried. The slides were put into the blue solution for
5 min and washed with distilled water for 2 min, and then dyed in eosin staining solution
for 5 min and rinsed three times with distilled water. The slides were placed in 95% ethanol
(3 s), 95% ethanol (3 s), 100% ethanol (3 s), 100% ethanol (1 min), dimethylbenzene (1 min)
and dimethylbenzene (1 min) for dehydration and transparency, then observed under a
microscope and photographed for the record.

2.6. Analysis of PPRV Hemagglutinin-Specific Antibody

The determination of H-specific IgG antibody in mouse serum was achieved using
ELISA [25]. The purified H protein was diluted to 2 µg/mL with the coating solution,
added to 96-well plates at 100 µL/well and incubated overnight at 4 ◦C. After washing
three times with PBST, 300 µL of 5% skimmed milk powder blocking buffer was added
to each well and blocked in a 37 ◦C incubator for 3 h. The serum of the mice used in
the test was firstly diluted 100 times, then diluted according to a gradient of 2 times, and
then added to the 96-well plates at 100 µL/well, with three replicates in each gradient.
Subsequently, the HRP-labeled goat anti-mouse IgG secondary antibody (diluted with
PBST containing 1% skimmed milk powder at 1:5000) (Bioss, Beijing, China) was incubated
at 37 ◦C for 1 h. After OPD coloration in the dark, 50 µL/well 2MH2SO4 was added to
terminate the reaction. The absorbance at 492 nm was measured on the microplate reader,
and the P/N value was calculated.

2.7. Neutralization Assay

Vero cells (2 × 105) (maintained in our laboratory) were cultured overnight in 96-well
plates. After the complement was inactivated at 56 ◦C for 30 min, the serum to be tested
was filtered for sterilization. The serum was diluted 10 times with serum-free DMEM
medium and then diluted according to a gradient of 2 times. The continuously diluted
serum was mixed with the same volume of PPRV strain (100 tissue culture infective dose
50% (TCID50)) and incubated at 37 ◦C for 1 h. The mix of serum and virus was added to
the 96-well plates that contained Vero cells cultured in advance, with at least 8 replicate
wells for each dilution. The virus control group and the Mock group were set, and the
cells were further cultured in a 37 ◦C incubator. In this study, the onset of half of the virus
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group was observed as the starting point, and the total incidence of the virus group was
the statistical node. The number of cytopathic effect holes was observed and recorded
under a microscope, and the neutralization value was calculated using the Reed–Muench
method [26].

2.8. Statistical Analysis

All statistical analyses were carried out with GraphPad Prism software. Differences
between groups were analyzed using two-way ANOVA. p < 0.05 was considered significant.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Results
3.1. Preparation of H-Fe and H Antigen

Through restriction enzyme digestion and sequencing identification, pET-28a-H-Fe
and pET-28a-H plasmids were successfully constructed. Subsequently, they were expressed
in the E. coli Rosetta (DE3) strain and induced with 0.5 mM IPTG for 7 h. The expression
products were detected via SDS-PAGE, as shown in Figure 1B. The results showed that
there were obvious bands near 90 kDa and 71 kDa, which was consistent with the predicted
fusion protein size, and it mainly existed in the form of inclusion bodies with less soluble
expression. Subsequently, the fusion protein was expressed in large quantities, purified
via Ni-NTA affinity purification, and then detected using the BCA Protein Assay kit. The
results showed that the concentrations of the H-Fe and H proteins were 3.67 ± 0.31 µmol/L
and 1.52 ± 0.25 µmol/L, respectively.
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Fe and H sequences. (B) SDS-PAGE analysis of recombinant pET-28a-H-Fe and pET-28a-H Figure 1. Construction and expression of the H-Fe and H proteins. (A) Molecular design maps

of H-Fe and H sequences. (B) SDS-PAGE analysis of recombinant pET-28a-H-Fe and pET-28a-H
expressed in E. coli Rosetta (DE3). Lane M, protein marker. Lane 1, pET-28a-H not induced and
supernatant after sonication. Lane 2, pET-28a-H not induced and precipitated after sonication. Lane
3, pET-28a-H induced and supernatant after sonication. Lane 4, pET-28a-H induced and precipitated
after sonication. Lane 5, pET-28a-H-Fe induced and supernatant after sonication. Lane 6, pET-28a-H-
Fe induced and precipitated after sonication. Lane 7, pET-28a-H-Fe not induced and supernatant
after sonication. Lane 8, pET-28a-H-Fe not induced and precipitated after sonication. (C) Western
blot analysis of H-Fe and H recombinant proteins expressed in silkworm. The gray value of H-Fe
and H protein bands were 32,076 and 45,489, respectively. (D) Western blot analysis of H-Fe and H
recombinant proteins expressed in E. coli. The gray value of H-Fe and H protein bands were 33,518
and 49,246, respectively. (E) Detection of H-Fe and H protein expression level. Expression levels of
silkworm-expressed proteins were measured by ELISA. Expression levels of E. coli-expressed proteins
measured were by BCA.
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The H sequence was fused to the N-terminal of H. pylori ferritin by the “Ser-Gly-Gly
(SGG)” linker (Figure 1A) [20]. The pVL1393-H-Fe and pVL1393-H plasmids were identified
using enzyme digestion and sequencing, which proved the successful construction of
plasmids. Then, well-growing cells were selected for co-transfection. The same batch
of recombinant viruses obtained via the co-transfection of Luc plasmids was used as
the quality control standard, and the luminescence detected was 2.3 × 106 RLU, which
proved that the process of recombinant viruses in this experiment was qualified. Then,
the recombinant virus plaque was cloned and purified, and the high expression strain
was selected for amplification and expression in healthy silkworms. The Luc recombinant
virus underwent the same treatment and was then set as the control, and the luminescence
detected was about 1.5 × 107 RLU, indicating that the material silkworm was in good
health and was not contaminated by wild viruses or other pathogens.

3.2. Western Blot Analysis and Mass Spectrometry Identification of H-Fe and H Protein

The H-Fe and H proteins expressed in E. coli were purified via Ni-NTA affinity purifi-
cation (Figure S1). Western blot analysis was performed with the His monoclonal antibody
as the primary antibody and HRP-labeled goat anti-mouse IgG as the secondary antibody.
The results showed that the H-Fe and H proteins expressed in E. coli had clear bands near
90 kDa and 71 kDa, respectively, which were consistent with the predicted protein size,
indicating the successful expression of the target protein (Figure 1D). Further identification
via LC-MS/MS showed that the coverage rates of the H-Fe and H protein peptides reached
88% and 77%, respectively, and the molecular weights were consistent with the target
protein, indicating that the H-Fe protein was successfully expressed.

The H-Fe and H proteins expressed in silkworms were subjected to ultrasonic frag-
mentation, centrifugation and filtration after appropriate dilution, followed by Western blot
verification. The results of the Western blot analysis showed that the molecular weights of
the H-Fe and H proteins were 87 kDa and 68 kDa, respectively. The results were consis-
tent with the predicted molecular weights, indicating that the H-Fe and H proteins were
successfully expressed in the silkworm expression system (Figure 1C).

3.3. Determination of H-Fe and H Recombinant Protein Expression Levels in Silkworms

In order to determine the content of recombinant protein expressed in silkworms,
the expression levels of the fusion protein, H-Fe, and H were detected via ELISA, while
the purified H protein expressed in E. coli was set as the standard substance. The results
showed that the expression levels of the proteins H-Fe and H were 13.64 ± 0.30 µmol/L
and 11.66 ± 0.41 µmol/L in the larval hemolymph, respectively (Figure 1E). The expression
level of H-Fe nanoparticles was higher than that of the H protein alone, which proved that
ferritin also effectively increases the expression level of the H protein in silkworms.

3.4. Electron Microscopic Observation of H-Fe and H Recombinant Protein

The inclusion bodies in the H-Fe and H proteins expressed in E. coli were refolded via
dialysis and observed using an electron microscope (Figure 2B). The results showed that a
similar spherical structure was found in the H-Fe group, while a similar structure was not
found in the H group. Further immunogold particle labeling of H proteins showed that H
proteins were located on the surfaces of the spherical nanostructures. The results showed
that H-Fe was assembled into spherical nanostructures via refolding, and the H protein was
displayed on their surfaces. However, there were few nanoparticles in one field of vision,
which may have been due to the low refolding efficiency, and most proteins were unable to
fold in the correct way. More than 30 clearly visible nanoparticles could be observed from a
silkworm expressed protein sample in one field of vision (4 × 105 nm2), while only two
spherical particles could be observed in the E. coli expression protein sample. These results
showed that the silkworm eukaryotic expression system was more suitable for use with the
self-assembly ferritin technology than the E. coli prokaryotic expression system.
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The appropriate dilution of the crude purified sample after ultracentrifugation was
carried out for sample preparation under electron microscopy. The TEM observation results
(Figure 2A) showed that compared with the H proteins, clear spherical particles about
30 nm in size could be observed after negative staining on the H-Fe fusion proteins, which
proved that the H-Fe fusion proteins could express and self-assemble ferritin efficiently
in the physiological environment of silkworms. Furthermore, this also showed that com-
pared with the prokaryotic expression system, the eukaryotic expression system has a
post-translational modification function and is more conducive to the self-assembly of
nanoparticles. Furthermore, for the immunogold particle labeling of the H proteins, the
results from immunoelectron microscopy (IEM) showed that gold particles were attached
on the surfaces of spherical ferritin particles, indicating that H protein was successfully
displayed on the surface of the ferritin nanoparticles during the self-assembly process. This
structure was similar to the natural virus which helped the host to recognize the antigen.

3.5. Safety Evaluation of H-Fe and H Antigens

In order to investigate the safety of the H-Fe and H antigens expressed in E. coli
and silkworms, we conducted a large-dose immunization test in mice. After high-dose
immunization, no abnormal growth or physiological phenomena regarding aspects such
as the weight, appearance, body temperature and behavior of mice were observed during
growth. At the end of the experiment, after the euthanasia and anatomy of the experimental
animals, no inflammation was observed in the abdominal cavity or in common organs.
Seven tissues from the heart, liver, lung, kidney, muscle, stomach and spleen were sliced
and observed in tissue slice experiments (Figure 3 (E. coli), Figure 4 (silkworm)). The results
showed that there were no obvious histopathological changes in the dissected tissues of
the mice compared to the experimental group and the control group, indicating that a
5-fold dose of antigens in order to immunize mice did not produce obvious side effects and
was safe.
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3.6. Detection of Antibody Titers in Serum of Mice Immunized with H-Fe and H Antigen

To evaluate the immunogenicity of H-Fe and H, BALB/c mice were immunized with
the H-Fe or H antigen twice at an interval of 3 weeks. Here, 25 ug of H-Fe protein or
equal moles of the H protein were used per mouse. Serum was collected after the first
immunization on days 14, 21, 28 and 35. Subsequently, the purified H protein expressed in
E. coli was used as an antigen to detect the titer of the H-specific IgG antibody in mouse
serum via ELISA. The results showed that with the prolongation of time, the antibody
titer gradually increased. It was shown that on the day 21 after the first immunization,
the specific IgG antibody titer induced by H-Fe nanoparticle antigens (E. coli) in mice
was 4.3 ± 1.1 × 103, which was shown to reach 1.7 ± 0.4 × 104 on the day 35 after the
first immunization (Figure 5). In addition, on the day 14 after the first immunization, the
specific IgG antibody titer induced by H-Fe nanoparticle antigens (silkworm) in mice was
1.6 ± 1.2 × 103, which was shown to reach 8.5 ± 3.0 × 104 35 days after the first immuniza-
tion (Figure 5). Similarly, the specific IgG titer of H protein (E. coli) preparation antigens
was 1.3 ± 0.3 × 103 on the day 21 after the first immunization and 8.5 ± 2.1 × 103 on the
day 35 after the first immunization (Figure 5). The specific IgG titer of H protein (silkworm)
preparation antigens was 3.3 ± 1.2 × 102 on the day 14 after the first immunization and
3.4 ± 1.5 × 104 on the day 35 after the first immunization (Figure 5). The levels of antibody
titers induced by H-Fe nanoparticle antigens were significantly higher than those induced
by H alone. The Luc group and adjuvant group did not produce H antibodies. These
data showed that compared with the H antigens, the H-Fe antigens could induce mice
to produce high-level serum antibodies earlier, and the H-Fe antigens could induce mice
to produce higher levels of antibody titers than the H antigens, which proved that the
self-assembly characteristics of ferritin enhanced the immunogenicity of the H protein.
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3.7. Neutralization Test

A neutralization test was carried out on serum antibodies produced by mice immu-
nized with H-Fe and H antigens to evaluate the ability of serum samples to neutralize
PPRV (Clone 9). The TCID50 of PPRV Clone 9 was 105. The 35-day mouse serum was used
for the neutralization test. The results showed that all of the cells in the virus control group
showed cytopathic effects (CPE), while cells in the Mock infection group grew normally. In
contrast to the normal cells, the cells infected with PPRV exhibited evident morphological
changes, the CPE was characterized by rounding of cells, their detachment from the surface
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and syncytia formation. Figure 6 was shown as a schematic of the cytopathic state in
neutralization experiments. In the only PPRV treatment group, there are syncytia appeared
and clearly shown in the figure (Figure 6A); In the treatment group where the neutralizing
antibody completely inhibited PPRV, there are no the lesions such as syncytia shown in the
cells (Figure 6A), which was constant with the untreated control group (Figure 6C). No CPE
was observed in the samples with high concentrations of H-Fe and H serum. When the
H-Fe and H groups were diluted to a certain proportion, CPE began to appear in the cell
pores. According to the calculation results from the Reed–Muench method, the titer of the
neutralizing antibody induced in the H-Fe antigen (silkworm) group was higher than that
of the H antigen (silkworm) group. The neutralizing titer in the H-Fe group was 1:135.5,
and that in the H group was 1:68.1. The sera of mice immunized with Luc had no protective
effect on viral infection, even in the highest concentration group. However, the neutralizing
titers in the H-Fe and H (E. coli) groups were 30.20 and 28.18, respectively. The titers of the
neutralizing antibodies induced by H-Fe and H antigens were basically the same, indicating
that due to the limitations of the prokaryotic expression system, ferritin failed to effectively
self-assemble, thus failing to induce an efficient protective immune response.
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virus control group; (B) Neutralizing antibodies completely inhibited PPRV; (C) CK. This study used
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and the treated cells had no syncytia after the virus was completely inhibited by the appropriate
dilution concentration of serum. The arrow points to the syncytium in the figure. The scale bar is
50 µm.

4. Discussion

At present, the control strategy for PPRV mainly depends on the administration of live-
attenuated vaccines, but these live-attenuated vaccines have disadvantages; they have poor
thermal stability, they are often subjected to harsh transportation conditions. In addition,
it is difficult to distinguish animals vaccinated by live-attenuated vaccines and animals
infected by PPRV. In response to this, an increasing number of PPRV genetic engineering
vaccine strategies have emerged. The H protein has neuraminidase and hemagglutinin
activity in Peste des Petits Ruminants virus [27], which is the main antigenic protein on
the surface of PPRV and binds to the receptor on the surface of host cells. The H protein
is an ideal immunogenic protein for inducing neutralizing antibodies in PPRV [8,28]. In
previous studies, Bovine Herpesvirus-4 was used as a carrier of PPRV H antigens to protect
sheep from PPRV attack [29]. Another study was carried out to express fusion protein
(F) or hemagglutinin (H) using recombinant replication deficient-human adenovirus type
5 vector (Ad5) and inoculated sheep. This study showed that both recombinant adenovirus
vaccines could induce PPRV- specific B-and T-cell responses, and neutralizing antibodies
were detected in immunized sheep sera [16].
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Nanoparticle vaccines are more likely to be captured and presented by dendritic
cells (DCs) and macrophages than other types of vaccines that have been developed for
PPRV [30]. In this study, a PPRV H-Fe nanoparticle antigen was prepared on the basis of
ferritin nanoparticles, and in an experiment that involved immunizing mice, it was proved
that it could cause strong immune responses. At the same time, it was shown that the
induced antibodies could protect the host against the corresponding virus infection in vitro.
Ferritin, as a nanoparticle, has a stable structure, high temperature resistance (70–80 ◦C)
and resistance to various mutagens [31,32]. In addition, the use of silkworm expression
systems to produce these nanoparticles is quite convenient. Compared to other nanoparticle
vaccines containing artificial materials, all of the components of the nanoparticles that were
constructed in this study were natural and highly safe. Furthermore, H. pylori ferritin and its
antibodies are unlikely to be significantly toxic in vivo, based on the fact that no serious side
effects were reported during the development or clinical evaluation of two H. pylori ferritin-
based influenza nanoparticle vaccines (NCT03186781 and NCT03814720) [30]. Based on the
advantages of ferritin, it is expected to become a good antigen- presenting carrier, which
means a large-scale vaccination program for PPRV is possible.

In this study, we used the E. coli prokaryotic expression system and the silkworm
eukaryotic expression system to prepare nanoparticle antigens. The Eukaryotic expression
system is capable of post-translational modification and correct protein folding; therefore,
it is more efficient and stable than the prokaryotic expression system. The baculovirus
expression system (BES) is suitable for use regarding protein expression from eukaryotic
sources. Many PPRV vaccines based on the BES have been developed [33]. In this study, the
silkworm baculovirus expression system was used to prepare nanoparticle vaccines in silk-
worms. This system has a low production cost and enables a high expression level, and the
effectiveness of nanoparticles is apparent, which means this system could be used to help
control the transmission of PPRV in animals [34]. Compared with the eukaryotic expression
system, the prokaryotic expression system is one of the widely used expression systems.
As it enables rapid propagation, is easy to operate and enables the rapid production of
E. coli, it has been used for the expression of multiple exogenous proteins [35]. However, as
the prokaryotic expression system does not have post-translational modification functions
such as glycosylation and phosphorylation, complex proteins cannot be correctly folded
and thus cannot carry out their biological activities. Therefore, it must be determined how
the expression level of exogenous proteins in the prokaryotic expression system can be
increased and how the correct folding of exogenous proteins can be improved. In terms
of the results from this study, compared with the H protein alone, the expression level of
the H-Fe fusion protein in both the silkworm baculovirus expression system and the E. coli
expression system was significantly increased, indicating that ferritin has the potential to
increase the expression level of exogenous proteins.

Ferritin nanoparticles provide another strategy for the rational design of immunogens.
Ferritin nanocages can enhance the immunogenicity of antigens by orderly displaying
multiple antigens on their outer surfaces. This assumption is based on the fact that highly
ordered repeats can induce stronger immune responses [20,36]. TEM analysis showed
that the spherical structure with a diameter of about 30 nm was clearly observed. Mean-
while, IEM analysis showed that gold-labeled particles were attached to the surfaces of
spherical particles, which proved that ferritin was self-assembled in the silkworm expres-
sion system, and the H protein was successfully displayed on the outer surface of ferritin.
Similar nanoparticles were also observed in E. coli expression proteins, indicating that the
expression of the H-Fe protein in E. coli could be assembled into higher structures in vitro.
However, there were few nanoparticles in one field of vision, which may have been due
to the low refolding efficiency, meaning most proteins could not fold in the correct way,
which indirectly affected the titers of the antibodies produced via H-Fe fusion protein
immunization in mice, especially the titer of the neutralizing antibody.

Nanoparticle vaccines have been successfully prepared by fusing antigenic proteins at
the amino end of ferritin with connective peptides. In 2013, Kanekiyo et al. fused the HA



Pharmaceutics 2022, 14, 1902 13 of 16

protein of H1N1 subtype influenza virus with H. pylori ferritin to form a nanostructure with
eight HA trimers on the surface, and compared with the inactivated trivalent influenza
vaccine, the vaccine prepared with this fusion protein enhanced the antibody response
by more than 10 times. Therefore, the antibodies induced with the nanoparticle vaccine
could neutralize different H1N1 strains from 1934 to 2007, indicating that the ferritin self-
assembly nanoparticle vaccine could induce strong humoral immunity and could also
improve the efficacy and breadth of influenza virus immunity [20]. Another study showed
that the VP6 protein of rotavirus was fused with the amino end of ferritin to be expressed
in E. coli and self-assemble into a uniform spherical structure similar to ferritin. Mice were
induced to produce high humoral and mucosal immunogenicity via oral administration [37].
Nanoparticle vaccines prepared through the fusion of antigenic proteins of HIV-1 [19], foot-
and-mouth disease virus [38,39] and SARS-CoV-2 [30] with ferritin were shown to induce
high levels of specific antibody titers and resist infection by the corresponding viruses. In
this study, H-Fe nanoparticles expressed in silkworms were self-assembled into uniform
spherical particles. After the antigen was mixed with the adjuvant, the BALB/c mice were
immunized. Subsequently, 35 days after the first immunization, the specific IgG excited by
the H-Fe nanoparticle antigens reached 85,333 ± 29,560.33, which was significantly higher
than that of the H antigens alone. A further neutralization test showed that the neutralizing
antibody induced by the H-Fe nanoparticle antigens was significantly higher than that
induced by the H monomer antigens. These data showed that the H-Fe nanoparticle
antigens could induce higher specific antibody levels than the H antigens alone, and the
nanoparticle antigens induced higher neutralizing antibody levels, which enhanced the
protective immune response. To achieve efficient presentation and interaction with cellular
receptors, it is crucial for antigens to retain their structural stability and conformation. The
successful self-assembly of nanoparticle antigens not only mimics the size and structure of
pathogens but also facilitates the surface conjugation of antigens to promote interaction with
immune cells [40]. However, it was found that the H-Fe fusion protein in the prokaryotic
system has a very low correct folding rate, as it was difficult to observe correctly folded
nanoparticle antigens. These results showed that fusion ferritin could produce higher
specific antibody titers, and correctly folded nanoparticle antigens were more conducive to
inducing the body to produce protective antibodies.

In summary, in our study we successfully confirmed that the H-Fe fusion protein
can self-assemble into spherical nanoparticles and induce a higher immune response than
H protein monomer antigens. The successful establishment of this method provides a
new strategy for the design and production of PPRV vaccines. In addition, the synthe-
sized nanoparticles were completely recombined, eliminating the possibility of producing
potentially dangerous viruses in eggs or cell cultures and allowing antigen modification
to enhance immunogenicity. In this study, BALB/c mice were used as animal models to
study the feasibility of such nanoparticles, but in subsequent studies, we will explore the
feasibility of this nanoparticle vaccine using large animals such as sheep and goats, etc.

5. Conclusions

In this study, we fused the PPRV hemagglutinin protein with H. pylori ferritin. The
fusion protein was self-assembled in silkworm, and the H protein was also successfully
displayed on the surfaces of ferritin nanoparticles. By evaluating the immunogenicity
and effective immune response of antigens, we found that using ferritin nanoparticles as
delivery carriers of antigens can significantly improve the immunogenicity and protective
immune response of antigens. Fusion ferritin was shown to produce higher specific
antibody titers, and it was shown correctly folded nanoparticle antigens were more helpful
in inducing the body to produce protective antibodies. This study provides a concept for
the development of a new PPRV nanoparticle vaccine and a potential vaccine strategy for
the global elimination of PPRV.
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purified sample.
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