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Abstract: Adhesion G-protein-coupled receptors (aGPCRs)—a major family of GPCRs—play critical
roles in the regulation of tissue development and cancer progression. The orphan receptor GPR97, ac-
tivated by glucocorticoid stress hormones, is a prototypical aGPCR. Although it has been established
that the palmitoylation of the C-terminal Go protein is essential for Go’s efficient engagement with
the active GPR97, the detailed allosteric mechanism remains to be clarified. Hence, we performed ex-
tensive large-scale molecular dynamics (MD) simulations of the GPR97−Go complex in the presence
or absence of Go palmitoylation. The conformational landscapes analyzed by Markov state models
revealed that the overall conformation of GPR97 is preferred to be fully active when interacting with
palmitoylated Go protein. Structural and energetic analyses indicated that the palmitoylation of Go

can allosterically stabilize the critical residues in the ligand-binding pocket of GPR97 and increase
the affinity of the ligand for GPR97. Furthermore, the community network analysis suggests that
the palmitoylation of Go not only allosterically strengthens the internal interactions between Gαo

and Gβγ, but also enhances the coupling between Go and GPR97. Our study provides mechanistic
insights into the regulation of aGPCRs via post-translational modifications of the Go protein, and
offers guidance for future drug design of aGPCRs.

Keywords: G-protein-coupled receptor (GPCR); GPR97; palmitoylation; molecular dynamics simulation;
Markov state model

1. Introduction

G-protein-coupled receptors (GPCRs) constitute the largest family of cell-surface
signaling receptors in mammalian cells, regulating numerous cellular and physiological
processes [1]. GPCRs represent the largest class of drug targets, as their dysregulated signal-
ing has been associated with a broad spectrum of human diseases, including central nervous
system disorders; cardiac, metabolic, and inflammatory diseases; and cancers [2]. Human
adhesion GPCRs (aGPCRs)—a major family of GPCRs—contain 33 members; aGPCRs
are known for a large ectodomain containing the GAIN domain [3]. When aGPCRs are
activated by agonists, the GAIN domain functions mutually with the seven-transmembrane
(7TM) bundle [4,5]. Then, aGPCRs couple to the heterotrimeric G proteins such as the
Go protein at the plasma membrane, and activate downstream signaling [6,7]. The aG-
PCRs are key molecular switches, regulating diverse physiological responses including
brain development, ion–water homeostasis, inflammation, and cell fate determination [8,9].
Mutations in aGPCRs are implicated in numerous human diseases, including vibratory
urticaria, bilateral frontoparietal polymicrogyria, chondrogenesis, Usher syndrome, and
male infertility [10–12]. However, the structural basis of aGPCRs’ activation and their
coupling with G proteins remains unclear [13].
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The orphan receptor GPR97, encoded by Adgrg3, is a member of the aGPCR family [1].
GPR97 is implicated in the progression of experimental autoimmune encephalomyelitis, the
fate determination of B lymphocytes, and the development of acute kidney injury [14–16].
The 7TM bundle of GPR97 comprises a large crevice that accommodates the Go trimer at
the cytoplasmic surface [17]. Glucocorticoid stress hormones such as the anti-inflammatory
drug beclomethasone (BCM) and cortisol can activate GPR97 by binding to a pocket within
the 7TM domain [1]. Two recent cryo-electron microscopy (cryo-EM) structures of BCM- or
cortisol-bound GPR97−Go complexes indicate that there is a palmitoylation at the C351
of the α5 helix at the C-terminus of the Go protein, inserting deeply into the 7TM core of
GPR97 [18]. The palmitoylation at the C-terminus is critical for efficient engagement of the
Go protein with GPR97 in the active state, but has not been reported previously in other
solved GPCR−G protein complex structures [18].

Palmitoylation is a dynamic and reversible post-translational modification (PTM) that
is prevalent in GPCRs and their cognate G proteins [19], and is considered to have important
regulatory functions [20]. While previous studies largely focused on the palmitoylation of
GPCRs [21], the exploration of the palmitoylation of G proteins achieved limited knowledge
that the palmitoylation of G proteins contributes to recruitment of the Gα protein to
membranes [19,22,23]. Despite the recent first report of the palmitoylation of G proteins in
the allosteric regulation of GPCR functions, the role of palmitoylation at the C-terminus of
the Go protein in its specific allosteric coupling to GPR97 remains to be clarified.

To characterize the detailed conformational dynamics of GPR97 in different states, we
performed extensive large-scale molecular dynamics (MD) simulations of BCM- or cortisol-
bound GPR97 in the presence or absence of Go or palmitoylated Go. The simulations
revealed that the dynamic conformation of the active GPR97 is more stable upon Go
binding—especially with palmitoylated Go. Dissection of conformational landscapes
through Markov state model (MSM) analysis showed that the interaction of Go with
GPR97 contributes to the high basal activity of GRP97, while palmitoylation of Go further
increases the proportion of active GPR97 conformation. Analysis of key conformational
substates indicated that palmitoylation of Go allosterically enhances the interaction between
agonist ligands and GPR97. Hence, our results reveal an in-depth mechanistic mechanism
underlying the palmitoylation of Go in its specific coupling to GPR97. Although advances in
the GPCR structures and pharmacology have improved drug discovery [24], the regulation
of GPCR functions by diverse PTMs of G proteins has still received little attention. To the
best of our knowledge, this study provides the first dynamic structural insights into GPCR
regulation via PTMs of G proteins, and offers guidance for the innovative improvement
and refinement of GPCR modulators [25].

2. Materials and Methods
2.1. Construction of Stimulation Systems

Six systems were constructed: BCM–GPR97, BCM–GPR97–Go, BCM–GPR97–palmitoylated
Go, cortisol–GPR97, cortisol–GPR97–Go, and cortisol–GPR97–palmitoylated Go. The ini-
tial structures for BCM–GPR97–palmitoylated Go (PDB ID: 7D76) and cortisol–GPR97–
palmitoylated Go (PDB ID: 7D77) were derived from the Protein Data Bank [18]. We
modeled the missing residues in the original crystal profile with available X-ray structures
of relevant homologs using the Discover Studio program. According to the BCM–GPR97–
palmitoylated Go complex, the structures of BCM–GPR97 and BCM–GPR97–Go were
extracted from the complex. Similarly, both the cortisol–GPR97 and Cortisol–GPR97–Go
complexes were extracted from the cortisol–GPR97–palmitoylated Go complex.

The obtained complexes were first oriented in the Orientations of Proteins in Mem-
branes (OPM) server [26]. These structures were fixed into the DOPC membrane on the
CHARMM-GUI server (Figure 1) [27]. Secondly, the systems were implanted in water
molecules, with 80 water molecules per lipid molecule. A salt concentration of 0.15 mol/L
NaCl was used to balance the charge. Finally, we obtained the coordinates and topologies
for AMBER according to the input generation of CHARMM-GUI.
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Figure 1. Orthogonal view of the model of the BCM–GPR97–Go complex. GPR97 is shown in light
sea green, Gαo in salmon, Gβ in light blue, Gγ in yellow, and BCM in pink.

2.2. MD Simulations Settings

MD simulations for the six systems were performed with AMBER 18. The initial
parameter files for minimizations and simulations were prepared using the AMBER ff14SB
force field and general AMBER force field (GAFF) [28,29]. A transferable intermolecular
potential three-point (TIP3P) truncated octahedral water box (10 Å) was used for solvation,
followed by the addition of counterions for neutralization [30]. Subsequently, 0.15 mol L−1

NaCl was added to each system to achieve the required physiological conditions for
the proteins.

Next, the six systems were subjected to two-round energy minimizations with the
steepest descent and conjugate gradient algorithms. Every system was heated from 0 to
310 K in 300 ps in a canonical ensemble (NVT), with equilibrium runs of 700 ps. Finally,
3 independent MD runs with random initial velocities and a duration of 1 µs were carried
out for the six systems. We obtained 18 independent trajectories with a cumulative 18 µs
in length. The particle mesh Ewald method was employed for the incorporation of the
long-range electrostatic interactions within the systems, and a 10 Å cutoff was introduced
for the short-range electrostatics and van der Waals interactions [31]. All covalent bonds
engaging hydrogen atoms were restricted using the SHAKE method [32].

2.3. Dynamic Cross-Correlation Matrix (DCCM) Analysis

To determine the inter-residue correlations in each system, the DCCM of all protein
Cα atoms, which represents the fluctuations in Cα atom coordinates, was calculated with
the CPPTRAJ plugin [33] using Equation (1):

Cij =
∆ri × ∆rj√

(∆ri)
2 × (∆rj)

2
(1)

where ∆ri and ∆rj represent the atomic displacement vectors for the ith and jth Cα atoms, respectively.

2.4. Principal Component Analysis (PCA)

During MD simulations, PCA is a normal tool used to analyze large-scale collective mo-
tions of biological macromolecules. This statistical technique can capture large-amplitude
motions of the system by reducing the number of degrees of freedom to a vital subspace
set. To identify the system motions, we calculated and diagonalized the covariance matrix
of the receptor Cα atoms using the CPPTRAJ plugin of AMBER. Then, a new set of coordi-
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nates was generated (named eigenvectors), which were also named principal components
(PCs). The eigenvalue is related to the mean square fluctuation contained in the trajectory
projected along the eigenvector.

Since the first PC (i.e., PC1) corresponds to the largest-amplitude motion of the system,
the dynamics along PC1 are usually considered to be the “essential dynamics” of the
system [34]. In this work, the covariance matrix of the protein’s Cα atoms was mass-
weighted to compute the protein’s principal motions. Specifically, we projected the sampled
conformations corresponding to the trajectories onto the collective coordinate space defined
by PC1, in terms of the initial structure of the receptor for each system. Finally, using a
plugin in Visual Molecular Dynamics (VMD), the visualization of major motions for every
system was presented as porcupine plots.

2.5. Markov State Model Construction

Based on the coordinates of GPR97 in the six systems, the PCA of the overall protein
backbone throughout the simulation of all systems was calculated and then taken as the
input for MSM analysis. The Python library PyEMMA (http://www.emma-project.org/
latest/) (accessed on 15 January 2022) was utilized to construct and validate Markov state
models (MSMs) with MD simulation data [35]. Based on implied timescale verification, we
confirmed that the six systems were Markovian and reliable, with a lag time of 60 ns for
100 microstate models, and a maximum of 100 k-means iterations [36]. Then, the microstates
were clustered into three metastates in each system using the PCCA+ algorithm, which
was confirmed by the Chapman–Kolmogorov test [37].

Utilizing TPT, we successfully identified the transition probability matrix of the MSMs,
and measured the average first-pass time [38]. The structures near the microstate clus-
ter centers of each macrostate were extracted into the trajectories for the corresponding
metastates using the MDTraj package [39]. Finally, the representative conformation of each
metastate was selected according to the similarity score Sij.

Sij = e−dij/dscale (2)

In Equation (2), the structure with the highest Sij among the trajectories is the most
representative conformation of the metastate. The dij represents the RMSD between the
conformations i and j, while dscale is the standard deviation of d.

2.6. Community Network Analysis

Using the NetworkView plugin in VMD [40], we calculated the community organiza-
tions among different systems based on the correlation coefficient matrix Cij. The whole
GPR97 in every system was considered as a group of nodes (assigned to the Cα atom
of each residue) connected by edges, which were drawn between nodes that remained
within a cutoff distance of 4.5 Å for at least 75% of the simulation process [41,42]. The edge
connections between certain nodes were calculated using Equation (3):

di,j = −log(|Ci,j|) (3)

where i and j represent two nodes, and Cij was calculated by Equation (1).
Next, optimal pathways between all pairs of nodes were computed using the Floyd–

Warshall algorithm. The gncommunities program was used to determine the substructures
of the communities, which embedded the Girvan–Newman divisive algorithm and applied
edge betweenness, defined as the number of paired optimal paths. To determine the optimal
substructure of the network, the edges with the highest betweenness were iteratively
removed from the network, and the remaining edges were recomputed until each node
represented an isolated community. Communities with less than three residues were
discarded. Connectivity between communities was quantified by the betweenness value.

http://www.emma-project.org/latest/
http://www.emma-project.org/latest/
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3. Results

We performed 1 µs × 3 independent MD simulations with random initial veloci-
ties for BCM–GPR97, BCM–GPR97–Go, BCM–GPR97–palmitoylated Go, cortisol–GPR97,
cortisol–GPR97–Go, and cortisol–GPR97–palmitoylated Go systems, leading to a cumula-
tive simulation timescale of 18µs.

3.1. Palmitoylated Go Enhances the Stability of GPR97’s Conformational Dynamics

The root-mean-square deviation (RMSD) of the Cα atoms of GPR97 in six systems was
measured to quantify the dynamic conformational changes throughout the simulations
(Figure 2A). The RMSD plots indicated that all six systems reached equilibrium at ~200 ns
simulations. The RMSD values of GPR97 in the BCM−GPR97, BCM–GPR97–Go and BCM–
GPR97–palmitoylated Go systems were 2.28 ± 0.35 Å, 1.83 ± 0.24 Å, and 1.73 ± 0.28 Å,
respectively. Similarly, the RMSD values for the cortisol–GPR97, cortisol–GPR97–Go,
and cortisol–GPR97–palmitoylated Go systems were 2.00 ± 0.21 Å, 1.86 ± 0.32 Å, and
1.82 ± 0.24 Å, respectively. It should be noted that the RMSD value of GPR97 decreased
when complexed with Go, with the lowest RMSD values in complex with the palmitoylated
Go. This indicates that GPR97 in the BCM-/cortisol-bound GPR97–palmitoylated Go states
exhibited the most stable conformational dynamics, further supporting the notion that
Go binding can stabilize GPR97—especially when the aliphatic chain of palmitoylation is
inserted into the 7TM bundle of GPR97.

To investigate the local conformational dynamics of GPR97, the atomic root-mean-
square fluctuations (RMSFs) of Cα atoms around their original positions were quantified for
each residue (Figure 2B). The RMSF values of GPR97 in the six systems were 1.12 ± 0.69 Å
(BCM–GPR97), 0.93± 0.48 Å (BCM–GPR97–Go), 0.89± 0.51 Å (BCM–GPR97–palmitoylated
Go), 1.04 ± 0.58 Å (cortisol–GPR97), 0.92 ± 0.47 Å (cortisol–GPR97–Go), and 0.83 ± 0.46 Å
(cortisol–GPR97–palmitoylated Go). Typically, GPR97 in the BCM–GPR97–palmitoylated
Go and cortisol–GPR97–palmitoylated Go systems displayed a lower RMSF, suggesting
that the conformational dynamics of GPR97 were relatively more stable in the presence of
palmitoylated Go. Notably, intracellular loop 1 (ICL1), which interacts directly with the
α4, α5, and β6 of Go, displayed relatively higher RMSFs in the BCM–GPR97 and cortisol–
GPR97 systems, but decreased when in complex with Go—especially the palmitoylated Go.
This was due to the fact that ICL1 participates in the interaction between GPR97 and Go,
while the palmitoylation chain at the C351 of the Go α5 helix contributes to the coupling of
GPR97 with Go.

To explore the intrachain correlations within GPR97 in each system, we calculated
residue interactions via dynamic cross-correlation matrices (DCCMs) (Figure 3). Globally,
GPR97 in both BCM–GPR97–palmitoylated Go and cortisol–GPR97–palmitoylated Go
systems displayed lower values of DCCM. The markedly reduced dynamic correlated
motions of GPR97 in the palmitoylated Go systems indicated that palmitoylation of Go
might limit the residue motions within GPR97, and the flexibility of GPR97 was reduced,
which was consistent with the RMSD and RMSF analyses. In particular, the correlated
motions between the TM7 and TM5/TM6 regions were relatively reduced upon Go binding.
This may be related to the interruption of kinks between TM5/TM6 and TM7, which are
required for GPCR to achieve an active state [43].

3.2. The Palmitoylation of Go Contributes to the High Activity of GRP97

Based on MD trajectories, principal component analysis (PCA) of the overall protein
backbone was carried out to characterize the predominant overall conformational variations
of GPR97. Porcupine diagrams were constructed, where PC1 was projected onto the initial
structure for each system to graphically visualize the dominant motions of different regions
in GPR97 during the simulations (Figure 4).

The principal dynamic motions of GPR97 mainly resided in its TM5, TM6, and TM7
regions. In the BCM–GPR97 system, TM6 and TM7 exhibited a weak outward motion and
a weak inward motion, respectively. This is a feature of active GPR97 conformation [44].
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However, TM5 showed an opposite motion trend compared to TM6, suggesting a low level
of GPR97 activation. In the BCM–GPR97–Go system, TM5 appeared to move outward and
TM7 displayed an increased inward motion trend, indicating an elevated active state of
GPR97. Furthermore, in the BCM–GPR97–palmitoylated Go system, the intracellular half
of TM5 and TM6 consistently oriented outward, and the inward motion of TM7 increased.
These coupled motions thus locked the GPR97 in an active conformation. Furthermore, the
overall movement tendency of GPR97 was minimal in the BCM–GPR97–palmitoylated Go
system, suggesting that GPR97 has the most stable conformation when in complex with the
palmitoylated Go.
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Positive areas (pink) indicate correlated motion, whereas the negative areas (green) denote anti-
correlated motion. The correlation motions with absolute values less than 0.3 are ignored and shown
in white.

In the cortisol–GPR97 system, TM6 tended to move inward, indicating the low activity
state of GPR97. In contrast, TM5 and TM6 exhibited outward motions while the upper half
of TM7 started to move inward in the cortisol–GPR97–Go system. In the cortisol–GPR97–
palmitoylated Go system, there was an increased outward motion of TM5 compared to that
in the cortisol–GPR97–Go system, suggesting enhanced GPR97 activity.

To further explore the conformational dynamics of GPR97 during the simulations, we
projected the overall conformation ensembles onto two-dimensional (2D) plots based on the
two most dominant collective principal components (PC1 and PC2) of the PCA data. MSM
analysis of the conformational landscape was performed using PyEMMA [45] to investigate
the key conformational states of GPR97 (Figure 5). Our MSM models were confirmed to be
Markovian using implied timescale tests (Figure S1) and the Chapman–Kolmogorov test
(Figure S2).

Conformational ensembles of GPR97 were clustered into three MSM metastable states
in each system, with the most distinguishing conformational differences of the TM5, TM6,
and TM7 regions. The conformations of M1 and M2 in the BCM–GPR97 system exhibited
the TM6 “in” conformation, implying their inactive states. M3, which accounted for 36%
of the BCM–GPR97 conformational cluster, displayed a TM6 “out” active conformation.
Notably, the conformational ensemble of GPR97 transformed to an active state in response
to Go binding. M2′ and M3′, accounting for 68%, reached their fully active states, as the
intracellular end of TM6 shifted noticeably outward. In the BCM–GPR97–palmitoylated
Go system, the active conformations were further stabilized, shifting all three metastable
substates (M1′′, M2′′, and M3′′) towards their fully active forms.
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low level of GPR97 activation. In the BCM–GPR97–Go system, TM5 appeared to move 
outward and TM7 displayed an increased inward motion trend, indicating an elevated 
active state of GPR97. Furthermore, in the BCM–GPR97–palmitoylated Go system, the 
intracellular half of TM5 and TM6 consistently oriented outward, and the inward mo-
tion of TM7 increased. These coupled motions thus locked the GPR97 in an active con-
formation. Furthermore, the overall movement tendency of GPR97 was minimal in the 
BCM–GPR97–palmitoylated Go system, suggesting that GPR97 has the most stable con-
formation when in complex with the palmitoylated Go. 

In the cortisol–GPR97 system, TM6 tended to move inward, indicating the low ac-
tivity state of GPR97. In contrast, TM5 and TM6 exhibited outward motions while the 
upper half of TM7 started to move inward in the cortisol–GPR97–Go system. In the cor-
tisol–GPR97–palmitoylated Go system, there was an increased outward motion of TM5 
compared to that in the cortisol–GPR97–Go system, suggesting enhanced GPR97 activity. 

Figure 4. Comparison of the principal modes of motion along PC1 in BCM–GPR97 (A), BCM–
GPR97–Go (B), BCM–GPR97–palmitoylated Go (C), cortisol–GPR97 (D), cortisol–GPR97–Go (E), and
cortisol–GPR97–palmitoylated Go (F) systems. Red arrows depict the directions of protein motions,
while the length of the arrows represents the magnitude of the movements. The TM5, TM6, and TM7
regions are colored red, green, and purple, respectively.

In the cortisol–GPR97 system, the representative substate S1, which accounted for
27% of the GPR97 conformational cluster, presented an inactive structure. S2 (34%) and
S3 (39%) exhibited active and a fully active states, respectively, which may have been
related to the greater potency of cortisol (approximately threefold higher) than of BCM. In
the BCM–GPR97–Go system, S1′ and S2′, which accounted for 78% of the conformational
clusters, exhibited active conformations, while S3 (22%) exhibited a fully active state. In the
cortisol–GPR97–palmitoylated Go system, all three substates (S1′′, S2′′, and S3′′) displayed
the active conformation, characterized by the outward movement of the intracellular end
of TM5 and TM6, and an inward shift of TM7.

Collectively, the conformational landscape analyses using MSMs revealed that Go
binding stabilized the GPR97 active conformation, which could be enhanced by the palmi-
toylation of Go.
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Figure 5. Projection of dominant metastates extracted from MSMs onto the GPR97 conformational
landscape of BCM–GPR97 (A), BCM–GPR97–Go (B), BCM–GPR97–palmitoylated Go (C), cortisol–
GPR97 (D), cortisol–GPR97–Go (E), and cortisol–GPR97–palmitoylated Go (F) systems generated
using PCA. The representative GPR97 structure substates in BCM–GPR97 (M1, M2, and M3), BCM–
GPR97–Go (M1′, M2′, and M3′), BCM–GPR97–palmitoylated Go (M1”, M2”, and M3”), cortisol–
GPR97 (S1, S2, and S3), cortisol–GPR97–Go (S1′, S2′, and S3′), and cortisol–GPR97–palmitoylated Go

(S1′′, S2′′, and S3′′), along with their probabilities, are shown, with the TM5, TM6, and TM7 regions
colored red, green, and purple, respectively.

3.3. The Palmitoylation of Go Strengthens the Interaction between GPR97 and Its Agonists

To investigate the mechanism by which the palmitoylation of Go stabilizes and en-
hances the active conformation of GPR97, we investigated the interaction between GPR97
and its agonists in the presence and absence of palmitoylation (Figure 6). In the BCM–
GPR97–Go system, there was one hydrogen bond and three weak hydrogen bonds be-
tween BCM and GPR97 (Figure 6A), while in the BCM–GPR97–palmitoylated Go system,
there were two hydrogen bonds and six weak hydrogen bonds between BCM and GPR97
(Figure 6B). Furthermore, in the BCM–GPR97–palmitoylated Go system, BCM and GPR97
formed 39 hydrophobic contacts, as opposed to the 31 hydrophobic contacts in the BCM–
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GPR97–Go system. Likewise, cortisol and GPR97 formed 1 hydrogen bond, 1 weak hydro-
gen bond, and 33 hydrophobic interactions in the cortisol–GPR97–Go system (Figure 6C),
but formed 1 hydrogen bond, 3 weak hydrogen bonds, and 45 hydrophobic contacts in the
cortisol–GPR97–palmitoylated Go system (Figure 6D). Taken together, the palmitoylation
of Go can promote the binding of agonist ligands to GPR97 and, thus, improve the activity
of GPR97.
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Figure 6. The detailed interactions of BCM (slate blue) and cortisol (pink) with GPR97 within BCM–
GPR97–Go (A), BCM–GPR97–palmitoylated Go (B), cortisol–GPR97–Go (C), and cortisol–GPR97–
palmitoylated Go (D) systems. The residues involved in the interactions with GPR97 are indicated by
light-blue stick models. The hydrogen bonds are depicted as yellow lines.

As GPCRs are classic allosteric proteins [46], we further explored the coupling be-
tween the palmitoylated Go and the BCM/cortisol ligand sites using energetic dynamics
calculations. The allosteric free energy—i.e., the work exerted on residue i in the presence
of the palmitoylation of Go—was analyzed using AlloSigMA [47–51] (Figure 7). GPR97 was
colored based on the allosteric free energy values (∆gi). The color map on the right is taken
to show the energy values: blue (positive ∆gi) represents enhanced conformational changes,
while red (negative ∆gi) reflects suppressed conformational changes upon effector binding.
The dynamics of white-colored residues were mostly unaffected by effector binding. It
was observed that the allosteric free energy of residues in the ligand-binding pocket was
negative. Such phenomena indicate that the palmitoylation chain has a stabilizing effect on
residues around the ligands [52]. The stability of the ligand-binding pocket may contribute
to the increased affinity of the ligands for GPR97.



Pharmaceutics 2022, 14, 1856 11 of 16
Pharmaceutics 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 7. The allosteric effects of palmitoylation at the Go C-tail on GPR97, calculated by AlloSig-
MA. GPR97 is colored according to per-residue allosteric free energy values (Δgi). The unit of free 
energy values is kcal/mol on the right-hand side of the color map. 

3.4. Palmitoylation at the Go C-Tail Reprograms the Structural Community and Allosteric Signal 
Network 

The propagation pathways of the allosteric signal within GPR97 were analyzed 
based on the Girvan–Newman algorithm. The variational coupling among the commu-
nities was quantitatively estimated. During the trajectory, residues within a cutoff dis-
tance of 4.5 Å for at least 75% of the simulation time were classified as part of the same 
communities, which were recognized as synergistic functional units within the overall 
protein. The visualized community network graphs provide clear depictions of the allo-
steric crosstalk paths and the corresponding intensities within GPR97 in different sys-
tems (Figure 8). 

Figure 7. The allosteric effects of palmitoylation at the Go C-tail on GPR97, calculated by AlloSigMA.
GPR97 is colored according to per-residue allosteric free energy values (∆gi). The unit of free energy
values is kcal/mol on the right-hand side of the color map.

3.4. Palmitoylation at the Go C-Tail Reprograms the Structural Community and Allosteric
Signal Network

The propagation pathways of the allosteric signal within GPR97 were analyzed based
on the Girvan–Newman algorithm. The variational coupling among the communities was
quantitatively estimated. During the trajectory, residues within a cutoff distance of 4.5 Å for
at least 75% of the simulation time were classified as part of the same communities, which
were recognized as synergistic functional units within the overall protein. The visualized
community network graphs provide clear depictions of the allosteric crosstalk paths and
the corresponding intensities within GPR97 in different systems (Figure 8).

Distinct alterations in the topological characteristics and the intercommunity commu-
nications within the GPR97–Go allosteric network were observed with and without the
palmitoylation of Go. In the BCM–GPR97–Go system, GPR97 mainly consists of Communi-
ties 3, 5, and 9. Gαo contains Communities 1, 2, 10, and 12 while Gβγ contains Communities
6, 7, 8, 11, and 12. Community 12, serving as the intersection of Gαo and Gβγ, is involved
in the composition of both Gαo and Gβγ. In the BCM–GPR97–palmitoylated Go system,
the intracellular ends of TM5 and TM6 within GPR97 are incorporated into Community 2,
and the linkage between Communities 2 and 9 is thickened relative to that in the BCM–
GPR97–Go system, indicating the strengthened interaction between Gαo and GPR97. For
Community 12, the overall interaction with Communities 6, 8, and 11 of Gβγ is enhanced,
suggesting an improved signal linkage between Gαo and Gβγ due to the palmitoylation.

Moreover, Community 9′, representing the extracellular loop (ECL), which is split
out of Community 9 in the cortisol–GPR97–Go system, is incorporated into Community 9
in the cortisol–GPR97–palmitoylated Go system. This implies that the palmitoylation of
Go promotes the association of ECL with GPR97. In addition, in the cortisol–GPR97–Go
system, residues at the interface of Gαo and Gβγ are present in Community 2, whereas a
new Community 12 is independent and responsible for the interaction between Gαo and
Gβγ after the palmitoylation of Gα. Community 2 has a strong interaction with Community
6 and weak interaction with Communities 4 and 8 in the cortisol–GPR97–Go system. For



Pharmaceutics 2022, 14, 1856 12 of 16

Community 12, the allosteric pathways with Communities 4 and 8 are enhanced, indicating
that there exist extensive and balanced interactions between Gαo and Gβy.
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individual community with an area proportional to the number of residues it contains. The lines
connecting different spheres visualize the intercommunity connections, while the thickness of the
lines is proportional to the corresponding edge connectivity.

Collectively, the mechanism by which palmitoylation of Go increases GPR97 activity
lies in the enhancement of the internal stability of GPR97’s orthosteric site, as well as the
promotion of signal flows within the Go protein.

4. Discussion

GPCRs are the largest family of membrane proteins, and serve as leading targets of
currently marketed drugs [49]. GPCRs comprise five main families in mammals [53]. The
largest is the rhodopsin family, i.e., class A, with about 284 members in humans, followed
by the aGPCR family, with 33 members, and then the glutamate family (class C), secretin
family (class B), and frizzled family, with 22, 15, and 11 members, respectively [54]. GPR97
is a member of the aGPCR family, expressed in human granulocytes and endothelial cells
of the vasculature. GPR97 triggers cyclic adenosine monophosphate (cAMP) by coupling
with Gαo, and actives the cAMP response element-binding protein (CREB), NF-κB, and
small GTPases to modulate biological functions. A recent report has revealed that a
palmitoylation presents at the C-tail end of Go within the active GPR97–Go complex, which
has not yet been observed in other GPCRs [18]. The palmitoylation of the C-terminus of Go
contributes to its specific coupling to GPR97, leading to the high basal activity of GPR97. To
elucidate the underlying mechanism, we carried out a comparative MD simulation study
and computational analysis to obtain a dynamic conformational view [55–58].

RMSD and RMSF data revealed that the GPR97–palmitoylated G0 complex had more
stable conformational dynamics than the unpalmitoylated G0 complex. DCCM analysis
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showed that the residue interactions within GPR97 in the GPR97–palmitoylated Go system
were the most stable, implying that the palmitoylation of Go could limit the correlated mo-
tions between domains within GPR97. Based on PCA data, the conformational landscapes
were analyzed using MSM. The dominant MSM metastable state indicated that GPR97 was
preferred to be active when interacting with the palmitoylated Go. The interaction between
ligands and GPR97 with and without palmitoylation of Go was investigated, indicating that
palmitoylation of Go could improve the affinity of the ligands for GPR97. Furthermore, we
found that the palmitoylation of Go allosterically strengthened internal interactions with
Go, enhanced the coupling between Go and GPR97, and stabilized the ligand-binding cavity
within GPR97. The loss-of-function mutation of residue 503 in GPR56—which belongs to
the same aGPCR family as GPR97—was detected in bilateral frontoparietal polymicrogyria
(BFPP) [59–61]. Given that Go palmitoylation can stabilize the active conformation of
GPR97, we speculate that this mutation may disrupt the interaction of Go palmitoylation
with GPCR, as the residue is located around the Go palmitoylation site.

Taken together, our findings provide the first dynamic conformational insights into
the palmitoylation of Go interacting with GPR97—a poorly characterized aGPCR. In future
studies, this may open new possibilities for exploring the regulation of GPCRs’ functions
through PTMs of G proteins.
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Figure S2: The results of the Chapman-Kolmogorov test of metastable states for BCM-GPR97 (A),
BCM–GPR97–GO (B), BCM–GPR97–Palmitoylated GO (C), Cortisol–GPR97 (D), Cortisol–GPR97–GO
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