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Abstract: Parkinson’s disease (PD) is a serious neurodegenerative disease wherein the progressive
destruction of dopaminergic neurons results in a series of related movement disorders. Effective
oral delivery of anti-Parkinson’s drugs is challenging owing to the blood-brain barrier (BBB) and
the limited plasma exposure. However, polymeric nanoparticles possess great potential to enhance
oral bioavailability, thus improving drug accumulation within the brain. In this work, biodegrad-
able poly(ethylene glycol)-b-poly(trimethylene carbonate) (PEG-PTMC) nanoparticles (PPNPs) were
developed to deliver Ginkgolide B (GB) as a potent treatment for PD, aiming to enhance its accumu-
lation within both the blood and the brain. The resultant GB-PPNPs were able to facilitate sustained
GB release for 48 h and to protect against 1-methyl-4-phenylpyridine (MPP+)-induced neuronal
cytotoxicity without causing any toxic damage. Subsequent pharmacokinetic studies revealed that
GB-PPNPs accumulated at significantly higher concentrations in the plasma and brain relative to
free GB. Oral GB-PPNP treatment was also linked to desirable outcomes in an animal model of PD,
as evidenced by improvements in locomotor activity, levels of dopamine and its metabolites, and
tyrosine hydroxylase activity. Together, these data suggest that PPNPs may represent promising tools
for the effective remediation of PD and other central nervous system disorders.

Keywords: polymeric nanoparticles; blood-brain barrier; drug delivery; pharmacokinetics; brain
accumulation; parkinsonian therapy

1. Introduction

Parkinson’s disease (PD) is among the most prevalent forms of progressive neu-
rodegenerative disease, causing serious morbidity and adverse socioeconomic impacts,
particularly among elderly individuals [1]. Current treatments for PD include dopamine re-
ceptor agonists, the dopamine precursor levodopa, and monoamine oxidase B inhibitors [2].
However, these treatments only alleviate certain PD-related symptoms and fail to fully
arrest disease progression or to remediate extant disabilities. Therefore, it is crucial that
new and effective non-invasive treatments for PD are developed [3].

Ginkgolide B (GB) is a diterpene derived from the leaves of the Ginkgo biloba that is
commonly considered to be a valuable neuroprotective drug with potential utility for the
treatment of PD [4]. Notably, GB can interfere with the degeneration of the activity of
tyrosine hydroxylase (TH), which is the rate-limiting dopamine-producing enzyme [5]. As
such, GB treatment can protect against 6-hydroxydopamine-induced neurotoxic cell death
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among dopaminergic neurons. GB and Ginkgo biloba extract are also used clinically for
the treatment of dementia and ischemic stroke [6,7]. However, GB water solubility is very
poor and it exhibits very low bioavailability when administered orally, preventing it from
accumulating at high levels in the systemic circulation and brain, thereby impeding its
clinical anti-Parkinsonian utilization [8–10]. Polymeric nanoparticles are promising tools
for drug delivery because they are biocompatible, biodegradable, and exhibit prolonged
circulation [11,12]. Specifically, poly(ethylene glycol) (PEG) and poly(trimethylene carbon-
ate) (PTMC) polymers are well-known FDA-approved biodegradable materials that are
commonly utilized in a range of pharmaceutical and other medical contexts [13,14]. PEG-
PTMC copolymers are amphiphilic and can form structures of varying molecular weights
based upon the specific hydrophilic PEG and hydrophobic PTMC subunits employed [15].
Nanoparticles less than 100 nm in size have previously been reported to facilitate efficient
drug delivery across the BBB [10,16]. Endocytosis followed by transcytosis are the under-
lying mechanisms for the BBB transport of these small-sized nanoparticles. Nanoparticle
platforms possessing a prolonged, gradual drug release are of particular interest in the
treatment of chronic diseases such as PD [17]. We herein sought to develop small PPNPs
with gradual release characteristics capable of enhancing the oral bioavailability of GB
and its accumulation within the brain tissues. To that end, an antisolvent precipitation
approach was employed to encapsulate GB within PEG-PTMC, thus yielding GB-PPNPs.
D-tocopheryl polyethylene glycol succinate (TPGS)-coated nanoparticles have previously
been shown to be particularly effective tools for drug delivery across the BBB [18], since
TPGS acts as a P-glycoprotein (P-gp) inhibitor [19]. However, the specific mechanisms
governing the endocytic processing of these nanoparticles are not well understood. In this
study, we additionally utilized Madin–Darby canine kidney (MDCK) cells as an in vitro
model of the intestinal epithelium [20] because they are polarized cells that exhibit a thin
mucus layer and tight junctions, such as those found in vivo, enabling the more reliable
study of PPNPs endocytosis. We further used coumarin 6 (C6) to label PPNPs, a commonly
used fluorescent to study how PPNPs penetrate biological barriers in zebrafish [21].

The main goal of this work was to develop the potential application of GB-PPNPs
as mediators of sustained GB release and enhanced GB bioavailability, and to explore the
ability of these PPNPs to enhance disease-related outcomes in a model of PD. Therefore,
we characterized the endocytic processing of GB-PPNPs in cells and zebrafish, detected the
pharmacokinetics of these PPNPs in rats, and evaluated their neuroprotection in an in vivo
MPTP-induced PD model system. Through these analyses, we ultimately concluded that
GB-PPNPs improved the oral bioavailability, brain accumulation, and therapeutic efficacy
of GB.

2. Methods
2.1. Materials, Reagents, Cell Lines, and Animals

GB (purity ≥ 98%), C6 (purity ≥ 98%), and Levodopa (L-DOPA, purity ≥ 98%)
were obtained from J&K Scientific Ltd. (Beijing, China). MPTP-HCl was obtained from
MedChemExpress (South Brunswick Township, NJ, USA). 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT), 1-methyl-4-phenylpyridinium ion (MPP+) and
rabbit polyclonal anti-TH were obtained from Sigma-Aldrich (St. Louis, MO, USA). PEG-
PTMC was supplied by Jinan Daigang Biomaterial Co., Ltd. (Jinan, China). TPGS was
obtained from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China).

Two different cell models (MDCK and SH-SY5Y cells) were used in vitro. Both cultures
were regularly maintained in a 5% CO2 incubator at 37 ◦C in DMEM supplemented with
10% FBS and 1% penicillin/streptomycin [22].

Adult wild-type zebrafish (Danio rerio) were raised under a 14 h light/10 h dark cycle
to maturity, at which time male and female zebrafish were combined at a 1:2 ratio in a
1 L tank the night before breeding, separated by a mesh screen. Fertilized embryos were
collected during the following light cycle, and all subsequent analyses were conducted at
28.5 ◦C using E3 medium [23].
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Sprague–Dawley rats (male rats, 6–8 weeks) and C57BL/6 mice (male mice, 8 weeks)
were obtained from the Experimental Animal Center of Guangzhou University of Chinese
Medicine (Guangzhou, China), and were housed in a climate-controlled facility with free
food and water access. The research was conducted in accordance with all guidelines and
ethics of the Chinese Council on Animal Care.

2.2. GB-PPNP and C6-PPNP Preparation and Characterization

All PPNPs were prepared via antisolvent precipitation [24]. For GB-PPNPs, GB
(20 mg/mL) and PEG-PTMC (20 mg/mL) in acetone was rapidly injected into TPGS
(0.1 mg/mL in water) while stirring at 100× g. C6-PPNPs were prepared via an identical
approach, with C6 being substituted for GB and with all procedures being performed in
the dark. The resultant PPNPs were then characterized to assess the size distributions,
polydispersity index (PDI) values, and zeta potential via dynamic light scattering (DLS).
Each preparation was conducted in triplicate and each sample was detected in triplicate at
room temperature. While morphology was assessed via transmission electron microscopy
(TEM). Briefly, a droplet of the GB-PPNPs was carefully placed on a membrane-coated grid
surface with a filter paper. The samples were negatively stained with phosphotungstic acid
(2%, w/v) for 30 s. In addition, PPNP drug loading (DL) and encapsulation efficiency (EE)
were measured via high-performance liquid chromatography. Briefly, samples (20 µL) were
added to the high-performance liquid chromatography system (an auto-sampler, DAD
detector, and analytical column) containing methanol/water (50:50), and were measured at
220 nm. Drug loading (DL) and entrapment efficiency (EE) were calculated as follows [25]:

DL =
weight of GB in GB-PPNPs

weight of GB-PPNPs
×100%

EE =
weight of GB in GB-PPNPs

initial weight of GB
×100%

During the in vitro drug release, GB-PPNPs or GB were monitored in phosphate-
buffered saline (PBS, pH 7.4) by the dialysis method [9]. The system is maintained at a
constant temperature of 37 ◦C and 100 rpm while stirring. Samples were collected at 0.5, 1,
2, 4, 6, 8, 10, 12, 24, and 48 h for the determination of GB content.

2.3. Assessment of GB-PPNP Uptake and Transport

MDCK cells were chosen as an in vitro model to investigate the cellular uptake and
transport of GB-PPNPs. The cytotoxicity of GB-PPNPs or GB was assessed in vitro using
MDCK cells via MTT assay. The uptake of these nanoparticles and free GB by MDCK
cells was then assessed, and the apparent permeability coefficient (Papp) was calculated to
measure the permeability of GB, mixtures of GB and TPGS (GB-PM), and GB-PPNPs across
an MDCK cell monolayer. Transepithelial electrical resistance (TEER) was assessed before
and after such transformation to verify the integrity of the monolayer [26]. For further
details, see Supporting Information, Section S1.

2.4. Evaluation of the Neuroprotective Efficacy of GB-PPNPs

Nerve cells (SH-SY5Y cells) were used to investigate the neuroprotective efficacy of
GB-PPNPs. The ability of GB-PPNPs to improve nerve cell (SH-SY5Y) survival was assessed
via MTT assay. In this study, SH-SY5Y cells were cultured in 96-well plates (5 × 103/well)
for 24 h, followed by treatment for 4 h with a range of GB or GB-PPNP concentrations
and treatment for 24 h with MPP+ (2 mM, 10 µL per well), after which MTT (2 mM, 10 µL
per well) was added for an additional 4 h. Absorbance at 570 nm was then assessed via a
microplate reader to calculate the rate of cell survival [27].
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2.5. Assessment of GB-PPNP Toxicity Using Zebrafish Embryos

At 3 h post-fertilization (hpf), zebrafish embryos were treated with 50, 100, 200, and
400 µg/mL GB-PPNPs (n = 20 per well). At 96 hpf, embryo morphology was visualized via
microscopy, and survival rates, hatching rates, heart rates, and zebrafish body length were
calculated [28].

2.6. Zebrafish Embryo and Larvae Imaging

At 3 hpf, zebrafish embryos were incubated with C6-PPNPs (50, 100, 200, or 400 ng/mL).
After 5, 30, or 60 min, embryos were collected, rinsed with E3 medium, and assessed via
fluorescence microscopy. Fluorescence images were obtained using a fluorescence microscope
(Model DMi8, Leica, Germany). The microscope parameters were kept constant throughout
the imaging process. Zebrafish C6-PPNP uptake at 7 days post-fertilization (dpf) was assessed
via the same approach.

2.7. In Vivo Pharmacokinetic Analysis

To investigate the oral bioavailability and brain accumulation of GB-PPNPs, rats were
randomly divided into two groups (GB-PPNPs and GB, GB dose of 4 mg/kg) and were
then orally administered. Samples of serum were collected at appropriate time points
for 0–48 h post-treatment (n = 7/time point). At each time point, blood (300 µL) was
collected from the tail vein and centrifuged for 5 min at 2380× g, and supernatant serum
was analyzed. In addition, brain samples were collected from rats at indicated time points
post-treatment (n = 4/time point). Briefly, brains were perfused with physiological saline,
removed, weighed, and homogenized in chilled saline. Drug contents in the biosamples
were immediately measured via LC-MS/MS, as shown in the Supporting Information,
Section S2.

Terminal elimination half-life (T1/2), area under the concentration-time curve from
time zero to t (AUC0-t), time to maximum concentration (Tmax), peak concentration (Cmax),
and mean residence time (MRT0-t) for the brain and plasma compartments were estimated
using the Drug and Statistics (DAS, v 2.0, Shanghai Bojia Pharmaceutical Technology Co.,
Ltd., Shanghai, China) program with a non-compartmental model. Relative bioavailability
(F) for the GB-PPNPs was assessed as follows:

F =
AUC(GB-PPNPs)

AUCcontrol
×100%

2.8. In Vivo Pharmacodynamic Analysis

Mice were used to establish a PD model in this study due to the sensitivity of mice
to MPTP. Mice were randomly assigned into five groups: (1) saline, (2) MPTP, (3) L-
DOPA, (4) GB (5 mg/kg), and (5) GB-PPNP (5 mg/kg) groups. A murine PD model
was established by intraperitoneally injecting mice in all groups (other than the control
group) with 18 mg/kg of MPTP saline solution four times with 2 h between injections [29].
Groups (3) and (4) were orally administered GB or GB-PPNPs dispersion for two weeks
in total, including once per day for one week before MPTP treatment and twice per day
for one week thereafter. Group (1) was orally treated with saline, while animals in the L-
DOPA group received intraperitoneal injections of L-DOPA (25 mg/kg). Behavioral testing,
immunohistochemical staining for TH+ neurons, and levels of dopamine and metabolites
were examined to assess the neuroprotective properties of these different treatments [30,31].
For further details, see Supporting Information, Section S3.

2.9. Histological Staining

At appropriate time points, mice were euthanized and major organs (lungs, kidneys,
spleen, liver, heart) were fixed with 4% formalin, and then paraffin embedded sectioning was
conducted for hematoxylin and eosin (H&E) to examine cellular damage and inflammation.
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2.10. Statistical Analysis

Values were expressed as mean ± standard deviation (SD). The statistical differences
between two groups were analyzed via unpaired two-tailed Student’s t-test. A one-way
analysis of variance (ANOVA) was applied for more than two groups. For all tests, p < 0.05
was designated as the threshold for statistical significance.

3. Results and Discussion
3.1. GB-PPNP and C6-PPNP Preparation and Characterization

After preparation, GB-PPNPs exhibited an average particle size of 77.58 ± 0.77 nm,
an average PDI of 0.124 ± 0.018 (Figure 1A), and a surface charge of −10.37 ± 0.56 mV
(Figure 1B). These particles were spherical in morphology (Figure 1A), with a DL of 19.43%
and an EE of 92.08%. They remained of uniform size and distribution even following
a two-week incubation at room temperature (Figure S1). In this study, GB-PPNPs were
prepared via antisolvent precipitation because of its low price and simplicity of operation
with narrow particle size distribution and high drug loading [24]. In vitro drug release
analyses performed using these particles in PBS (pH 7.4) revealed that GB was released
from these particles in a biphasic manner (Figure 1C), with an initial rapid release over the
first 4 h and then a slower phase in which sustained gradual release was detected over the
remaining 48 h. This rapid burst release of GB at early time points is likely attributable to
the free drug and drug adsorbed to the surfaces of these nanoparticles, whereas subsequent
gradual release is more likely mediated via diffusion and dissolution. Compared to the free
drug, the encapsulation of GB in PPNPs significantly improved its water solubility.
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Figure 1. GB-PPNP and C6-PPNP characterization. (A) GB-PPNP size and TEM image. Scale bar:
50 nm. (B) GB-PPNP surface charge. (C) GB drug release from different formulations (means ± SD,
n = 3). (D) Assessment of C6 leakage from C6-PPNPs in PBS, HBSS, and E3 medium (means ± SD,
n = 4).
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C6-PPNPs were prepared via the same antisolvent technique used to synthesize GB-
PPNPs, and exhibited similar characteristics including a particle size of 75.91 ± 0.83 nm, a
PDI of 0.181 ± 0.037 (Figure S2), and a surface charge of −11.65 ± 0.89 mV (Figure S3). C6
leakage from these PPNPs was then assessed in PBS, HBSS, and E3 medium to evaluate
the utility of this compound as a marker for PPNP localization (Figure 1D). As under 3%
of the loaded C6 leaked from these particles over a 2 h period, this suggested that C6 was
effectively loaded so that it remained stably associated with the resultant PPNPs even
under conditions of gradual intracellular acidification.

3.2. Evaluation of GB-PPNP Uptake and Permeability Characteristics Using MDCK Cells

GB-PPNP treatment was not associated with any MDCK cell cytotoxicity within
the tested range (5–100 µM) in an MTT assay (Figure S4). Compared to the free drug
(0.97 ± 0.09 µg/mg protein) and a physical mixture of TPGS and GB treatment (GB-PM;
1.03 ± 0.14 µg/mg protein), GB-PPNP uptake by MDCK cells was significantly enhanced
(3.29 ± 0.97 µg/mg protein) without significant differences in uptake for the former two
treatments. According to a previous report, we speculated that GB-PPNPs might be
endocytosed via clathrin, and that the small particle size of GB-PPNPs made this process
more accessible [32]. The Papp value for the GB-PPNP group (3.59 ± 0.32 × 10−5 cm/s)
was also markedly higher than that for the GB group (1.14 ± 0.12 × 10−5 cm/s) or the
GB-PM group (1.2 ± 0.14 × 10−5 cm/s), indicating that GB-PPNPs are more readily able to
transit across the MCDK cell monolayer. TEER values did not significantly differ before or
after treatment in any of these three groups, indicating that monolayer integrity was not
adversely impacted.

3.3. GB-PPNPs Exhibit Neuroprotective Efficacy When Used to Treat SH-SY5Y Cells

GB-PPNP treatment was similarly not associated with any SH-SY5Y cell toxicity
within the tested range (1–200 µM) in an MTT assay (Figure S5). As an in vitro PD model
system, MPP+ was used to treat SH-SY5Y, with a 2 mM MPP+ dose resulting in the death
of 45.28% of the treated cells. When these cells were first pretreated with GB-PPNPs (1,
5, 10, or 20 µM), their viability was significantly improved following MPP+ exposure
(57.63%, 66.22%, 77.2%, and 93.73%, respectively) (Figure S6). Notably, this effect was
more pronounced than that observed for GB. The neuroprotective efficacy of GB-PPNPs
might be attributed to the antioxidative stress and the activation of the protein kinase B
(Akt)/glycogen synthase kinase-3β (Gsk3β) pathway of GB [5,33].

3.4. Analysis of GB-PPNP Toxicity in Zebrafish Embryos

As zebrafish exhibit whole-body transparency, they serve as an ideal vertebrate model
system for monitoring drug-related phenotypic and morphological changes [34,35]. Impor-
tantly, zebrafish also harbor biological barriers with significant structural and functional
similarity to those found in humans [36] and they were thus used to evaluate the bio-
compatibility of PPNP preparations. In this study, zebrafish embryos (3 hpf) were treated
with a range of GB-PPNP concentrations (50, 100, 200, and 400 µg/mL) and monitored for
changes in development, blood flow, and visible malformations at the indicated times. No
morphological abnormalities in zebrafish embryos or larvae were evident after GB-PPNP
treatment (Figure 2A), and there were similarly no treatment-related changes in survival
rates, hatching rates, heart rates, or body length at 96 hpf in any groups (Figure 2B–E).
Therefore, GB-PPNPs do not induce significant toxicity in vivo in zebrafish, consistent with
our in vitro cytotoxicity analyses.
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Figure 2. In vivo toxicity analysis. At 3 hpf, zebrafish embryos were treated with 50, 100, 200, and
400 µg/mL GB-PPNPs. At 96 hpf, embryo morphology was visualized via microscopy, and survival
rates, hatching rates, heart rates, and zebrafish body length were calculated. (A) The phenotypic
changes of GB-PPNP-treated zebrafish embryos at the indicated times. Scale bar: 500 µm. Survival
rate (B), hatching rate (C), heart rate (D), and body length (E) following incubation with different
GB-PPNP treatments (n = 3).

3.5. Imaging of Zebrafish Embryos and Larvae

To examine in vivo GB-PPNP uptake, zebrafish were utilized as a small vertebrate
model system, with C6 serving as a fluorescent dye to efficiently track PPNPs localiza-
tion [37]. Zebrafish embryos (3 hpf) were treated with C6-PPNPs for a range of time periods
in order to evaluate particle movement across the chorion [38]. The resultant fluorescence
intensity increased in a dose- and time-dependent fashion from 5–60 min (Figure 3), sug-
gesting that these small PPNPs were able to penetrate the chorion and accumulate in the
yolk sac. These data suggest that GB-PPNPs improve the ability of drugs to pass through
biological barriers.
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To further examine the ability of the prepared GB-PPNPs to cross the BBB and the
gastrointestinal barrier in vivo, zebrafish (7 dpf) were exposed to C6-PPNPs, which did not
induce significant toxicity as evidenced by the results shown in Figures S7–S11. Substantial
fluorescent uptake was detectable in the brains and digestive system of these zebrafish
(Figure 4), consistent with the ability of these orally absorbed C6-PPNPs to cross the gas-
trointestinal barrier and thereby enter the brain. A strong fluorescent signal was also evident
in the eyes (Figure 4), consistent with crossing the blood-retinal barrier. These data thus
provide further evidence that our PPNPs are able to readily pass through key physiological
barriers. However, the BBB transport mechanism is required for further investigation.
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3.6. In Vivo Pharmacokinetic Analysis

To understand the processing and trafficking of GB-PPNPs within a mammalian
system, rats were next used to conduct a series of pharmacokinetic analyses assessing
the plasma and brain levels of GB-PPNPs at various time points after administration. As
presented in Figure 5A and Table 1, GB-PPNPs exhibited a Cmax of 3.24 ± 0.34 µg/mL, with
this value being higher than that for the GB group (0.33 ± 0.05 µg/mL), suggesting that
GB-PPNPs are readily and rapidly absorbed in vivo. Such absorption is likely attributable
to the surface properties and particle sizes of these nanoparticles. In addition, these GB-
PPNPs were slowly eliminated from the serum, with a T1/2 of 7.26 ± 0.68 h. The Tmax
and AUC0-t values in the GB-PPNP group (6.67 ± 1.03 and 54.62 ± 4.82, respectively)
were higher than those in the GB group. Additionally, the AUC0-t of GB following PPNP
treatment was markedly higher than that reported by Liu et al. [9]. In line with these
findings, we observed the MRT0-t value for GB-PPNPs to be enhanced to 9.87 ± 1.11 h as
compared to 8.71 ± 0.75 h for the GB group.
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Table 1. Plasma and brain pharmacokinetic parameters of GB-PPNPs following oral administration
(n = 7 or 4). Significant differences between free GB and GB-PPNPs are marked with * for p < 0.05
and ** for p < 0.01.

Parameters GB GB-PPNPs

Plasma
T1/2 (h) 2.07 ± 0.16 7.26 ± 0.68 *
Tmax (h) 3.33 ± 1.63 6.67 ± 1.03 *

Cmax (µg/mL) 0.33 ± 0.05 3.24 ± 0.34 *
AUC0-t (µg·h/mL) 3.37 ± 0.34 54.62 ± 4.82 **

MRT0-t (h) 8.71 ± 0.75 9.87 ± 1.11 **
F 100% 1621%

Brain
T1/2 (h) 3.31 ± 0.36 13.67 ± 1.07 **
Tmax (h) 4.59 ± 1.04 7.53 ± 1.22 *

Cmax (µg/g) 0.08 ± 0.01 0.20 ± 0.02 *
AUC0-t (µg·h/g) 1.11 ± 0.15 5.66 ± 0.47 **

MRT0-t (h) 8.72 ± 0.81 18.90 ± 1.63 **

When the brain pharmacokinetics of GB-PPNPs were assessed (Figure 5B and Table 1),
the Cmax and AUC0-t in the GB-PPNP group (0.20 ± 0.02 µg/g and 5.66 ± 0.47 µg·h/g,
respectively) were markedly higher than those in the GB group (0.08 ± 0.01 µg/g and
1.11 ± 0.15 µg·h/g, respectively). The increase of Cmax and AUC0-t might be due to the
desirable brain accumulation of these nanoparticles. The brain T1/2 treated with GB-
PPNPs was evidently longer than that treated with GB nanocrystals (13.67 ± 1.07 h vs.
3.93 ± 0.29 h, respectively) [9]. The brain Tmax for GB-PPNPs was also somewhat higher
than the plasma value (7.53 ± 1.22 h vs. 6.67 ± 1.03 h, respectively), suggesting that GB
is eliminated from the brain more gradually than from systemic circulation. These results
thus support the value of the TPGS stabilizer in these GB-PPNPs as a means of enhancing
brain penetration following treatment, thus accounting for increased drug accumulation
within the brain. As such, these pharmacokinetic data indicate that the GB-PPNPs may
offer an effective approach to enhancing the absorption and intracerebral accumulation of
GB in vivo.

3.7. In Vivo Pharmacodynamic Analysis

In order to evaluate the efficacy of GB-PPNPs as a treatment for PD-related locomotor
disorders, we performed a pharmacodynamic analysis (Figure 6A). MPTP treatment was
used to establish a murine model of PD [39]. Pole and rotarod tests were used to assess
delayed movement recovery and muscle coordination in these mice, while an open-field



Pharmaceutics 2022, 14, 1731 10 of 15

test was employed to assess their exploratory behavior [40]. Following MPTP treatment,
model mice exhibited significant movement impairments, with significant reductions in
the time spent on the rod together with significant increases in the time to turn and the
total time (t-turn and t-total, respectively) (Figure 6B,C). However, GB-PPNP-treated mice
exhibited significant reductions in t-total and t-turn values. Similarly, GB-PPNP-treated
mice exhibited markedly increased fall latency and decreased numbers of falls relative to
MPTP-treated model mice (Figure 6D–F). In an open-field test, GB-PPNP treatment resulted
in increased speed and average travel distance relative to model mice (Figure 6F–H). These
results indicated that GB-PPNPs were able to reverse MPTP lesion-related impairments in
balance and coordination in vivo. However, the neuroprotection mechanism is required for
further investigation.
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Figure 6. GB-PPNPs alleviate MPTP-induced behavioral impairments in PD model mice. (A) Phar-
macodynamic study design. After MPTP injection, pole tests (B,C) and rotarod tests (D,E) were
performed (n = 6). (F) Representative paths (green) for mice activity in the indicated groups. The red
and blue dots represent the start and the end of the positions, respectively. Distance traveled (G) and
average travel speed (H) for animals in the indicated groups (n = 8). ** p < 0.01 vs. MPTP. ## p < 0.01
vs. GB-PPNPs.

MPTP treatment was associated with the induction of significant dopamine neuron
cell death so that few TH+ cells were detectable in the brains of treated mice [41]. However,
GB-PPNP treatment was linked to an increase in the number of surviving dopamine
neurons (Figure 7A,B), with this number rising significantly to 91.30% of the control
as compared to 41.94% of the control in the MPTP model group (Figure 7C,D). MPTP-
associated neurotoxicity was associated with altered dopamine metabolism, as evidenced
by the fact that mice in the GB-PPNP treatment group exhibited striatal dopamine, DOPAC,
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and HVA concentrations of 10.66 ± 1.12, 1.65 ± 0.18, and 5.17 ± 0.60 µg/g tissue weight,
respectively, with these values being significantly higher than those observed in the MPTP
group (5.14 ± 0.73, 0.88 ± 0.13, 3.58 ± 0.42 µg/g tissue weight, respectively) (Figure 8).
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sentative TH-stained murine brain sections. (B) Schematic illustration of the representative brain
sections. Scale bar: 500 µm. (C) Quantification of TH+ neurons by manual counting with ImageJ soft-
ware. (D) The number of TH+ neurons (both the right and the left substantia nigra) in the indicated
treatments (n = 6). ** p < 0.01 with respect to MPTP. ## p < 0.01 with respect to GB-PPNPs.
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Figure 8. The impact of GB-PPNPs on striatal. The levels of (A) MDA, (B) SOD, (C) GSH-Px
(means ± SD, n = 4), (D) dopamine, (E) DOPAC, and (F) HVA (n = 7). * p < 0.05 and ** p < 0.01
corresponds to different treatments vs. MPTP. # p < 0.05 and ## p < 0.01 corresponds to GB-PPNPs
vs. GB.



Pharmaceutics 2022, 14, 1731 12 of 15

Malondialdehyde (MDA) is an endogenous genotoxic substance produced by the lipid
peroxidation of unsaturated fatty acids in phospholipids, which means that the increase
of MDA is accompanied by oxidative stress [42]. Glutathione peroxidase (GSH-Px) and
superoxide dismutase (SOD) are the main antioxidant enzymes in the human antioxidant
system [43]. In this study, mice treated with GB-PPNPs also exhibited a striatal MDA
level of 7.37 ± 0.70 nmol/mg protein, with this being lower than that in MPTP-treated
mice (12.42 ± 1.48 nmol/mg) in the striatum (Figure 8). We further found that mice
treated with GB-PPNPs exhibited higher striatal SOD and GSH-Px levels (6.77 ± 0.63 and
94.86 ± 9.15 U/mg protein, respectively) relative to MPTP model mice (4.42 ± 0.48 and
63.92 ± 6.06 U/mg protein, respectively) (Figure 8).

No cellular damage or inflammation were observed in treated animals via H&E
staining, indicating that treatment with GB-PPNPs (5 mg/kg) is both safe and effective
(Figure 9).
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4. Conclusions

In summary, we report spherical nanoparticles (77.58 ± 0.77 nm in diameter) composed
of PEG-PTMC, TPGS, and GB as the carrier, stabilizer, and model drug, respectively. The
resultant particles were highly stable, exhibited a negative surface charge, and caused
negligible toxicity in a zebrafish model system. When C6 was utilized to track the in vivo
fate of these PPNPs, they were found to readily cross the BBB and chorionic barrier in
zebrafish. Pharmacokinetic studies performed in rats clearly revealed that GB-PPNPs
exhibited enhanced brain uptake efficiency, as evidenced by higher plasma and brain
GB concentrations in rats administered GB-PPNPs relative to animals dosed with free
GB. In a murine model of MPTP-induced PD, GB-PPNP treatment alleviated behavioral
deficits, attenuated dopaminergic neuron depletion, and enhanced the levels of dopamine,
DOPAC, and HVA in analyzed samples. Together, these results provide robust evidence
that GB-PPNPs can be utilized for the oral delivery of GB or other anti-Parkinson’s drugs
in order to efficiently treat PD, owing to their enhanced ability to deliver drugs with poor
oral bioavailability to the brain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14081731/s1, Figure S1: Stability of GB-PPNPs;
Figure S2: Particle size distribution of C6-PPNPs; Figure S3: Zeta potential of C6-PPNPs; Figure S4:
MDCK cell viability following treatment with the indicated GB and GB-PPNPs concentrations;
Figure S5: SH-SY5Y cell viability following treatment with the indicated GB and GB-PPNPs con-
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centrations; Figure S6: SH-SY5Y cell viability with the indicated GB and GB-PPNPs concentrations
following MPP+ treatment; Figure S7: There were no morphological changes in zebrafish after treat-
ment with different concentrations of C6-PPNPs; Figure S8: Body length of 96 hpf zebrafish treated
with different concentration of C6-PPNPs; Figure S9: Survival rate of 96 hpf zebrafish treated with
different concentration of C6-PPNPs; Figure S10: Heart rate of 96 hpf zebrafish treated with different
concentration of C6-PPNPs; Figure S11: Hatching rate of 96 hpf zebrafish treated with different
concentration of C6-PPNPs. References [22,44] are cited in the Supplementary Materials.
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