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Abstract: Dendritic cells (DCs) are attractive antigen-presenting cells to be targeted for vaccinations.
However, the systemic delivery of mRNA to DCs is hampered by technical challenges. We recently
reported that it is possible to regulate the size of RNA-loaded lipid nanoparticles (LNPs) to over
200 nm with the addition of salt during their formation when a microfluidic device is used and that
larger LNPs delivered RNA more efficiently and in greater numbers to splenic DCs compared to the
smaller counterparts. In this study, we report on the in vivo optimization of mRNA-loaded LNPs
for use in vaccines. The screening included a wide range of methods for controlling particle size
in addition to the selection of an appropriate lipid type and its composition. The results showed
a clear correlation between particle size, uptake and gene expression activity in splenic DCs and
indicated that a size range from 200 to 500 nm is appropriate for use in targeting splenic DCs. It
was also found that it was difficult to predict the transgene expression activity and the potency of
mRNA vaccines in splenic DCs using the whole spleen. A-11-LNP, which was found to be the optimal
formulation, induced better transgene expression activity and maturation in DCs and induced clear
therapeutic antitumor effects in an E.G7-OVA tumor model compared to two clinically relevant
LNP formulations.

Keywords: lipid nanoparticles; particle size; dendritic cells; mRNA; delivery; cancer immunotherapy

1. Introduction

Nucleic acid vaccines are being evaluated for use in a number of clinical applica-
tions, including cancer, allergy, and infectious diseases [1–5]. It is particularly noteworthy
that mRNA was first commercialized as a vaccine against the coronavirus disease 2019
(COVID-19) for the treatment of infections caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [6–8], and its application to a wide variety of diseases is
now being investigated. The mRNA molecule, unlike DNA, has no risk of unintentional
insertion into genomic DNA [9]. In addition, mRNA does not require nuclear delivery and
can efficiently express the encoded gene(s) if it is properly introduced into the cytoplasm.
Recent developments in mRNA engineering, such as capping technology, sequence de-
sign technology, and chemically modified bases, as well as relatively simple synthesis by
in vitro transcription, have greatly contributed to the development of this technology [10].
In addition, mRNA can express any peptide and protein structures depending on the
sequence design, making it possible to present a variety of antigen peptides to major his-
tocompatibility complex (MHC) classes I and II [11]. In addition, since mRNAs exhibit
immunostimulatory properties through recognition by pattern recognition receptors (PPRs),
including Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptor
(RLR) families [12], which recognize pathogen-associated molecular patterns (PAMPs), they
can activate innate immunity efficiently without the need for additional adjuvants [2,13].
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While the above-mentioned advantages of mRNA and the progress in mRNA engi-
neering technologies are encouraging the realization of its clinical applications, properties
of the mRNA, including instability in an in vivo environment and cell membrane imperme-
ability, prevent it from reaching the cytoplasm efficiently, where it functions. Therefore, it is
essential to develop a technology to efficiently deliver mRNA to the cytoplasm of target
cells. mRNA delivery systems include lipoplex and lipid nanoparticles (LNPs) [2,14–18].
A Comirnaty (Pfizer (New York, NY, USA)/BionTech (Mainz, Germany)) and Spikevax
(Moderna (Cambrige, MA, USA)) are examples of LNP-based mRNA vaccines against
COVID-19 [8].

LNPs are composed of pH-sensitive cationic lipids (CLs), phospholipids, cholesterol
(Chol), and polyethylene glycol (PEG)-modified lipids. Chol contributes to the stability
of LNPs [19,20]. Phospholipids mainly contribute to the formation and stabilization of
the lipid membrane [21]. PEG lipids contribute to the regulation of particle size, disper-
sion stability, and blood retention [22–24]. pH-sensitive cationic lipids contain tertiary
amino group(s) and are positively charged in a weakly acidic environment [25,26]. This
is important for efficient mRNA encapsulation through electrostatic interactions. It is
also important for delivering mRNA to the cytoplasm by escape via membrane fusion
from acidified endosomes after the LNPs have been internalized into cells through en-
docytosis [27,28]. Therefore, the lipid composition of the LNPs has significant effects on
physicochemical properties as well as potency for drug delivery and, therefore, should
be carefully optimized for each specific application and payload due to differences in the
properties needed for the specific targeting of cell types or applications [29–31].

Dendritic cells (DCs) are able to initiate antigen-specific immune responses in lym-
phoid tissues after infectious pathogens are sensed and are among the most powerful
antigen-presenting cells (APCs) [32,33]. Therefore, DCs are attractive APCs to be targeted
for vaccination. However, the systemic delivery of mRNA to DCs faces a number of techni-
cal challenges. Although an ex vivo pulsed DC vaccine would have great potential because
of its specificity, flexibility, and efficiency [34,35], it requires a complicated process that
involves collecting a sample from the patient to re-administer to the patient. The direct
targeting of DCs in vivo would be a good strategy for overcoming that drawback. Several
studies have reported on DC targeting by modifying ligand molecules on the surface of
the nanoparticles [36,37]. While this approach is widely used to achieve specific targeting,
the formulation process is very complex and often poses challenges in terms of cost, repro-
ducibility, and difficulty in characterization. On the other hand, Kranz, et al. reported on
an RNA-lipoplex (LPX) that was prepared by mixing mRNA and ligand-unmodified lipo-
somes composed of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA) and
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) [2]. Focusing on charge balance,
specific gene expression in the spleen was achieved by designing a formulation with a neg-
ative charge ratio, which resulted in inducing a relatively selective gene expression in DCs.
Antigen-specific antitumor immunity was induced in several cancer models by using an
mRNA encoding a cancer antigen. Currently, BioNTech is conducting phase II clinical trials
on an mRNA cancer vaccine formulation containing a fixed set of cancer-associated anti-
gens (referred to as the FixVac platform) against advanced melanomas (ClinicalTrials.gov
Identifier: NCT04526899) and human papillomavirus 16-positive head and neck squamous
cell carcinomas (AHEAD-MERIT study, ClinicalTrials.gov Identifier: NCT04534205) as of
the writing this manuscript. However, there are still few reports of LNPs that enable effi-
cient mRNA delivery to DCs after systemic administration, and there is clearly substantial
room for improvement regarding efficiency. In this study, we optimized mRNA-loaded
LNPs targeting DCs using our originally developed CLs and the recently reported broad
particle size control technology of LNPs synthesized using a microfluidic device [38,39]
and compared the optimized LNPs with clinically-relevant LNP formulations.
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2. Materials and Methods
2.1. Materials

The pH-sensitive cationic lipid, 7-(4-(dipropylamino)butyl)-7-hydroxytridecane-1,13-
diyl dioleate (CL4H6), was synthesized as described previously [38]. 7-Hydroxy-7-(4-
morpholinobutyl)tridecane-1,13-diyl dioleate (CL7H6) was synthesized as described in the
Supplementary Method. Chol was purchased from SIGMA Aldrich (St. Louis, MO, USA).
DOTMA, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), DOPE, 1,2-dimirystoyl-rac-
glycero, methoxyethyleneglycol 2000 ether (PEG-DMG), and 1,2-distearoyl-rac-glycero,
methoxyethyleneglycol 2000 ether (PEG-DSG) were obtained from the NOF Corporation
(Tokyo, Japan). DLin-MC3-DMA was purchased from Selleck Biotech (Houston, TX, USA).
3,3′-Dioctadecyloxacarbocyanine perchlorate (DiO) and Ribogreen were purchased from
ThermoFisher Scientific (Waltham, MA, USA). Purified anti-mouse CD16/32 antibody
(clone 93), PE Anti-mouse CD40 antibody (clone FGK45), FITC anti-mouse CD80 anti-
body (clone 16-10A1), phycoerythrin (PE) anti-mouse CD86 antibody (clone A17199A),
allophycocyanin (APC) anti-mouse CD69 antibody (clone H1.2F3), PE anti-mouse CD3
antibody (clone 17A2), peridinin-chlorophyll-protein (PerCP)/Cyanine 7 anti-mouse CD19
antibody (clone 6D5), FITC anti-mouse NK1.1 antibody (clone PK136), APC anti-mouse
CD11c antibody (clone N418), PerCP/Cyanine 5.5 anti-mouse I-A/I-E antibody (clone
M5/114.15.2), and propidium iodide (PI) were purchased from BioLegend (San Diego,
CA, USA). Anti-human polo-like kinase 1 (hPLK1) siRNA (siPLK1, sense: 5′-AGA uCA
CCC uCC UUA AAu AUU-3′; antisense; 5′-UAU UUA AGG AGG GUG AuC UUU-3′,
2′-OMe-modified nucleotides are in lower case) was purchased from Hokkaido System Sci-
ence Co., Ltd. (Sapporo, Japan). The ovalbumin (OVA)-encoding mRNA (cat# L-7610) and
enhanced green fluorescent protein (EGFP)-encoding mRNA (cat# L-7601) were purchased
from Trilink BioTechnologies (San Diego, CA, USA). A microfluidic device, an invasive
lipid nanoparticle production (iLiNP) device, was fabricated as described previously [40].

2.2. Mice and Cell Cultures

E.G7-OVA cells, generated by transducing the chicken OVA gene into the murine lym-
phoma cell line EL4, were obtained from the American Type Culture Collection (Manassas,
VA, USA). E.G7-OVA cells were grown in Roswell Park Memorial Institute (RPMI) 1640
(Sigma Aldrich, St. Louis, MO, USA) supplemented with 50 µM of β-mercaptoethanol, 10%
fetal calf serum, 10 mM 2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES),
1 mM sodium pyruvate and 100 units/mL of penicillin/streptomycin. Cells were cultured
at 37 ◦C in a 5% CO2 incubator.

C57BL/6N mice (female, 6 weeks of age) were purchased from Japan SLC (Shizuoka,
Japan).

2.3. In Vitro Transcription of mRNA

Nanoluciferase (Nluc)-encoding mRNA was synthesized from linearized pDNA
by in vitro transcription using an mMESSAGE mMACHINE T7 Transcription Kit (Ther-
moFisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s protocol.
The in vitro transcribed mRNA was purified using a MEGAclear Transcription Clean-Up
Kit (ThermoFisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s
protocol. The purified mRNA was qualified by denatured agarose gel electrophoresis, was
quantified by absorbance, and was then stored at −80 ◦C until used.

2.4. Preparation of RNA-Loaded LNPs

An ethanol solution containing a pH-sensitive cationic lipid, a phospholipid, chol, and
PEG-lipid at the indicated molar ratios was prepared at a total lipid concentration of 16 mM.
The RNA was dissolved in 25 mM acetate buffer (pH 4.0) containing NaCl (0 to 400 mM).
For MC3-LNPs, a fixed lipid composition of MC3:DSPC:chol:PEG-DMG = 50:10:40:1.5
(molar ratio) and acetate buffer without NaCl were used. LNPs were prepared by mixing
the lipids in ethanol and an aqueous solution of mRNA using an iLiNP device at a total
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flow rate (TFR) of 0.5 mL/min and RNA-to-lipid flow rate ratio (FRR) of 3. RNA-to-lipid
ratio was adjusted to 26.6 µg of RNA/µmol total lipid. Syringe pumps (Harvard apparatus,
MA, USA or YMC Co., Ltd., Kyoto, Japan) were used to control the flow rate. The resulting
LNP solution was then dialyzed for 2 h or more at 4 ◦C against 20 mM MES buffer (pH 6.0),
followed by phosphate-buffered saline without Ca2+ and Mg2+ (PBS(-)) using Spectra/Por
4 dialysis membranes (molecular weight cut-off 12,000–14,000 Da, Spectrum Laboratories,
Rancho Dominguez, CA, USA) to remove ethanol and adjust pH to neutral. For screening
A and B, 0.1 mol% of DiO was added to the lipid solution, and a mixture of siPLK1 and
mNluc at 19:1 (weight ratio) was used.

2.5. Preparation of RNA-Lipoplexes (RNA-LPX)

A lipid film was formed by the evaporation of an ethanolic solution containing
DOTMA and DOPE at a molar ratio of 1:1 (10 mM, 400 µL). PBS(-) (800 µL) was then
added to the lipid film, followed by incubation for 7 min at room temperature to hydrate
the lipids. To form empty liposomes, the lipid film was then sonicated for approximately
30 s in a bath-type sonicator. After dilution with PBS(-) 5.92 times (final lipid concentra-
tion of 0.845 mM), equal volumes of the liposome suspension and the mRNA solution
(0.2 mg/mL in PBS(-)) were mixed to form RNA-LPX with a nitrogen per phosphate ratio of
1.3/2. The resulting sample was used in in vivo experiments without further purification.

2.6. Characterization of RNA-Loaded LNPs

The ζ-average size, polydispersity index (PdI), and ζ-potential of the LNPs were
measured by means of a Zetasizer Nano ZS ZEN3600 instrument (Malvern Instruments,
Worchestershire, UK). The encapsulation efficiency and total concentration of RNA were
measured by a Ribogreen assay, as described previously [41].

2.7. In Vivo Screening of RNA-Loaded LNPs

C57BL/6N mice were intravenously injected with the RNA-loaded LNPs at a dose of
1 mg RNA/kg (0.05 mg Nluc mRNA/kg). At twenty-four hours after the injection, the liver
and half of the spleen tissues were harvested, frozen in liquid nitrogen, and stored at−80 ◦C
for use in Nluc assays. Splenocytes were dissociated from the remaining spleen tissues and
were then passed through a cell strainer (40 µm pore, BD Falcon, CA, USA). The recovered
cells were spun down (400× g, 4 ◦C, 5 min) to remove the supernatant, resuspended in
red blood cell (RBC) Lysis buffer (1 mL, BioLegend) and incubated for 5 min at room
temperature. The resulting treated cells were washed with Hanks’ balanced salt solution
(HBSS(-)) by spinning (400× g, 4 ◦C, 5 min). The concentration of cells was adjusted to
1 × 107 cells/mL with fluorescence-activated cell sorting (FACS) buffer, and the resulting
cells were treated with a 10 µg/mL solution of an anti-mouse CD16/32 antibody followed
by incubation at 4 ◦C for 10 min. The resulting sample was then treated with fluorophore-
conjugated anti-mouse antibodies at 4 ◦C for 30 min. Cells were washed with FACS buffer
twice, filtered via a nylon filter, stained with propidium iodide (PI) (BioLegend), and
analyzed for cellular uptake and cell sorting (SONY SH800 cell sorter, SONY, Tokyo, Japan).
Three thousand living B cells (defined as PI−CD19+ cells), macrophages (Mac, defined as
PI−F4/80 +CD11c+ cells), and DCs (defined as PI−I-A/I-E+CD19− cells) were collected in
a sample tube containing 20 µL of 2 × passive lysis buffer.

Nluc activity was measured using the Nano-Glo Luciferase Assay Kit (Promega
Corporation, Madison, WI, USA) according to the manufacturer’s protocol. Luminescence
was measured using a luminometer (Luminescencer-PSN, ATTO, Tokyo, Japan). For
tissues, Nluc activity was corrected for protein quantity using a Pierce BCA Protein Assay
Kit (ThermoFisher, Waltham, MA, USA) and expressed as relative light units (RLU) per mg
protein. Cellular Nluc activity was expressed as RLU per 3000 cells.
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2.8. Comparison of Transgene Expression Activity

At the tissue level, C57BL/6N mice were intravenously injected with Nluc mRNA-
loaded A-11-LNPs, MC3-LNPs or RNA-LPX at a dose of 0.5 mg mRNA/kg. Twenty-four
hours after the injection, liver, spleen, and inguinal lymph node (LN) were harvested,
frozen in liquid nitrogen, and stored at −80 ◦C for use in a Nluc assay, as described in
Section 2.7.

For splenic DC level, C57BL/6N mice were intravenously injected with EGFP mRNA-
loaded A-11-LNPs, MC3-LNPs or RNA-LPX at a dose of 0.5 mg mRNA/kg. Twenty-four
hours after the injection, the spleen was harvested. Splenocytes were dissociated from
the remaining spleen tissues and were passed through a cell strainer (40 µm pore). The
recovered cells were spun down (400× g, 4 ◦C, 5 min), and the supernatant was discarded.
The resulting cells were resuspended in RBC Lysis buffer (1 mL) and incubated for 5 min
at room temperature. These treated cells were washed with HBSS(-) by spinning (400× g,
4 ◦C, 5 min). The concentration of cells was adjusted to 1 × 107 cells/mL with FACS buffer,
and the resulting cells were treated with a 10 µg/mL solution of an anti-mouse CD16/32
antibody and then incubated at 4 ◦C for 10 min. The resulting material was then treated
with an APC anti-mouse CD11c antibody and a PerCP/Cyanine 5.5 anti-mouse I-A/I-E
antibody at 4 ◦C for 30 min. The resulting cells were washed with FACS buffer twice,
filtered via a nylon filter, and stained with PI, and the DCs were then analyzed for EGFP
and I-A/I-E expression using CytoFLEX (Beckman Coulter, Inc., Brea, CA, USA).

2.9. Measurement of Activation Markers in Splenocytes

C57BL/6N mice were intravenously injected with OVA mRNA-loaded A-11-LNPs,
MC3-LNPs or RNA-LPX at a dose of 0.03 mg mRNA/kg. Spleen tissues were harvested,
and the resulting dissociated splenocytes were passed through a cell strainer (40 µm pore)
24 h after the injection. The recovered cells were spun down (400× g, 4 ◦C, 5 min), the
supernatant discarded, and the resulting cells were resuspended in RBC Lysis buffer (1 mL)
and incubated for 5 min at room temperature. These treated cells were washed with
HBSS(-) by spinning (400× g, 4 ◦C, 5 min). The concentration of cells was adjusted to
1 × 107 cells/mL with FACS buffer, and the resulting cells were treated with a 10 µg/mL
solution of an anti-mouse CD16/32 antibody, followed by incubation at 4 ◦C for 10 min.
This preparation was then treated with fluorophore-conjugated antibodies at 4 ◦C for
30 min. Cells were washed with FACS buffer twice, filtered via nylon filter, stained with
PI, and applied for flowcytometric analysis (CytoFLEX). DCs, T cells, B cells, and NK cells
were defined as PI−I-A/I-E+CD11c+ cells, PI−CD3+CD19− cells, PI−CD3−CD19+ cells,
and PI−CD3−CD19−NK1.1+ cells, respectively. Relative expression of CD40, CD80, CD86
in DCs and CD69 in B cells, T cells, and NK cells were measured.

2.10. Prophylactic and Therapeutic Antitumor Effect of mRNA-Loaded LNPs on Mice

For the prophylactic antitumor experiment, C57BL6/N mice (6 weeks old) were
intravenously injected with OVA mRNA-loaded A-11-LNPs at the indicated doses on day
−14 and −7. On day 0, E.G7-OVA cells (8 × 106 cells/50 µL/mouse) were inoculated
to the immunized mice subcutaneously in the right flank under isoflurane anesthesia.
Tumor volumes were calculated using the equation shown below (tumor volume = major
axis ×minor axis2 × 0.52) from day 6 to 21.

For therapeutic antitumor experiments, C57BL6/N mice (6 weeks old) were anes-
thetized with isoflurane. E.G7-OVA cells (8 × 106 cells/40 µL/mouse) were inoculated
subcutaneously in the right flank. The tumor-bearing mice were intravenously injected
with EGFP mRNA or OVA mRNA-loaded A-11-LNPs, OVA mRNA-loaded MC3-LNPs or
OVA mRNA-loaded RNA-LPX at doses of 0.03 mg mRNA/kg on days 8 and 11. Tumor
volumes were calculated by the above method from day 6 to 21.
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2.11. Toxicity Test

C57BL6/N mice (6 weeks old) were intravenously injected with OVA mRNA-loaded
A-11-LNPs at two doses of 0.03 mg mRNA/kg on days 0 and 3. Blood was obtained 24 h
after the last dose and processed into plasma using heparin. Alanine transferase (ALT),
aspartate transferase (AST), total bilirubin (T-BIL), lactate dehydrogenase (LDH), blood
urea nitrogen (BUN), and creatinine (CRE) levels in plasma were measured at Oriental
yeast Co., Ltd. (Shiga, Japan).

2.12. Statistical Analyses

Statistical data obtained by the design of the experiment (DOE) were analyzed using
the JMP 14 software (SAS, Cary, NC, USA). Statistical significance was defined as p-values
less than 0.05. Two independent experiments were performed for the DOE. To identify
significant factors for each physicochemical property of the LNPs in a relatively vast
experimental design space, a 34 × 22 definitive screening design (DSD) was used for
screening A. Effective design-based model selection for DSD or the forward stepwise
regression method with Akaike’s information criterion and finite correction (c-AIC) was
applied to each response. The forward stepwise regression method with c-AIC was applied
only in cases where the number of both statistically significant main factors and interactions
between 2 factors were less than 3. Responses with ranges of several digits (i.e., gene
expression, cellular uptake) were converted to logarithms in order to ensure linearity. For
screening B, a 24 fractional factorial design (FFD) was used. A standard least squares linear
regression model was applied to each response.

Results are expressed as the mean + standard deviation (SD) or mean ± SD of inde-
pendent repeats. For comparisons between the means of two variables, we used unpaired
Student’s t-tests. For comparisons between multiple groups, we used one-way analysis of
variance (ANOVA) with the Tukey–Kramer posthoc tests. These statistical analyses were
done using the JMP 14 software.

3. Results
3.1. Optimization Strategy for Splenic DCs

Microfluidic technology has made it possible to reproducibly produce relatively small
and uniform LNPs and has recently been adopted as a major production method [42].
The rapid and reproducible mixing of two liquids (an alcohol solution of lipids and a
buffer solution containing RNAs) is achieved by introducing them at a high flow rate into
a microfluidic device equipped with a micromixer. While most RNA-loaded LNPs that
are formed by microfluidic technology are less than 100 nm in size [43–46], we recently
reported that the addition of a salt (e.g., NaCl) to the RNA-containing buffer significantly
contributed to the formation of LNPs with sizes in excess of 100 nm based on the Derjaguin–
Landau–Verwey–Overbeek (DLVO) theory [39]. The addition of a salt reduces electrostatic
repulsion and promotes fusion between the initially produced liposome-like cationic parti-
cles, resulting in the formation of larger LNPs in a salt concentration-dependent manner.
Both cellular uptake and the functional delivery of siRNA and mRNA in splenic DCs were
significantly higher when larger LNPs were used compared to the smaller counterparts
with a consistent lipid composition. This can be explained by the fact that macropinocy-
tosis, which is a unique pathway characterized by the nonspecific internalization of large
amounts of extracellular fluid, is constitutively active in immature DCs and, therefore,
relatively larger-sized particles (e.g., 200 nm or higher) would be beneficial for targeting
DCs [47,48]. Although the finding suggests that an increase in LNP size is a significant
factor for the efficient delivery of RNAs to splenic DCs, the optimal ranges of the size and
other factors, including lipid composition, have not yet been clarified.

In this study, we first conducted 2 steps of DOE for screening and optimizing both
synthetic conditions (NaCl concentration) and the lipid composition of LNPs for the de-
livery of mRNA to splenic DCs. The experimental scheme is represented in Figure 1. The
physicochemical properties and cellular uptake of the LNPs, which would be mediator
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variables, were also measured in an attempt to understand how these factors contribute
to the functional delivery (final output). Nluc mRNA was used to quantify the transgene
expression level. The long intracellular half-life of the Nluc protein (>6 h) attenuates the
potential effects of protein degradation during the lengthy (at least several hours) experi-
mental process from sacrifice to cell sorting and would be suitable for the measurement
of enzymatic activity in the sorted cells. The bright signal from Nluc was also suitable for
quantitatively detecting transgene expression levels in the limited number of sorted cells.
DiO-labeled LNPs were used to assess cellular uptake. Three types of APCs, including
DCs, macrophages (Mϕ), and B cells, were used in the analysis.

Figure 1. Schematic illustration of the experimental method for DOE. (A) Parameters and responses
in manufacturing LNPs. Both parameters and responses examined in this study were expressed in
bold. (B) Method for screening of LNPs in vivo. Cellular uptake, NHC class II expression, and Nluc
expression in splenic DCs, Mϕ, and B cells after intravenous injection of DiO-labeled mNLuc-loaded
LNPs selected by DOE were measured to identify the optimal formulation.

Adjuvant effects associated with type I interferon (IFN) (IFN-I) stimulation have been
suggested to lead to superior acquired immune responses, and pathways that activate
IFN-I expression have been identified, including the TLRs, RLRs, and stimulator of inter-
feron genes (STING) pathways [12]. Mouse TLR7, which recognizes single-stranded RNA
(ssRNA) and activates the adaptor protein myeloid differentiation primary response 88
(MyD88), leads to the expression of a suite of inflammatory cytokines, including IFN-I [49].
It is generally thought that regular uridine-containing mRNA, which is an ssRNA, stim-
ulates the innate immune system via TLR7. The cytoplasmic RNA sensor RIG-I binds to
double-stranded RNA (dsRNA) and induces the expression of inflammatory cytokines such
as IFNβ through the activation of the adapter protein mitochondrial antiviral signaling
protein (MAVS) [50]. Trace amounts of dsRNA, a byproduct of the in vitro transcription
of mRNA, contribute to IFNβ production via the RIG-I/MAVS pathway [51,52]. In this
study, we used regular uridine-containing mRNAs, which were obtained from Trilink
BioTechnologies, which are thought to induce IFN-I expression through stimulation of the
innate immune system via the RIG-I/MAVS pathway and TLR7. IFN-I is known to drive a
distinctive DC maturation program, including the continuous upregulation of MHC-II and
antigen processing [53], and to be highly expressed by DCs (especially by plasmacytoid DCs
that highly and constitutively express IFN response factor-7) [54]. Therefore, the efficient
introduction of immunostimulatory mRNAs into DCs results in the efficient maturation
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of DCs and, for dendritic cells, the expression level of MHC class II (I-A/I-E), one of the
maturation markers, was also quantified in the screening.

3.2. DOE-Based Optimization of LNPs

In the 1st DOE (screening A), 6 independent factors, including the molar percentage
of CL (level: 40 to 60), PL (level: 10 to 40), PEG-lipid (level: 0.5 to 1.5), a type of CL (level:
CL4H6 or CL7H6), PEG-lipid (level: PEG-DMG or PEG-DSG), and NaCl concentration
(level: 0 to 400 mM), were systematically examined. Since TFR and FRR had only a limited
impact on the size of LNPs in our previous study and have substantial issues (reduced
reproducibility at lower levels and unintended dilution at higher levels, respectively),
these parameters were fixed at 500 µL/min and 3, respectively. DSD was adopted in
screening A to determine the significant contributing factor(s) for the responses (including
physicochemical properties, cellular uptake, and gene expression) and to narrow down
experimental space of the following 2nd DOE (screening B) (Table 1). The RNA-loaded
LNPs were synthesized under 14 different formulation conditions (coded as A-1 to A-14)
that were determined based on DSD. The diameter of the LNPs varied with a ζ-average
from 88 to 754 nm (Table 1). The LNPs were typically uniform (PdI of 0.2 or less) except
for A-4 and A-5. The encapsulation efficiency and ζ-potential of the LNPs were typically
high (85% or over) and near neutral (within ± 5 mV), respectively, except for A-14 (72.4%
encapsulation and −10.3 mV). The reproducibility of the synthesis of the LNPs between
2 technically independent experiments were confirmed (Figure S1). Statistical analysis
revealed that an increase in NaCl concentration had the most significant effect on increasing
the size of the LNP, an observation that is consistent with our previous study (Figure S2).
A decrease in both %DOPE and %PEG also had a significant effect on the increase in size
(Figure S2). This was also consistent with our previous study [39] and can be explained by
the fact that the relatively bulky hydrophilic moieties of both DOPE and PEG-lipid resist
the decrease in total surface area of the LNP with increasing particle size. Both CL4H6 and
a higher %DOPE significantly contributed to a higher encapsulation efficiency (Figure S3).
It is possible that an oxygen atom in the morpholino ring at the hydrophilic head of CL7H6
attracts electrons from the tertiary amine, thereby lowering the acid-dissociation constant
and reducing the RNA encapsulation efficiency, especially under competitive conditions
in the presence of NaCl. DOPE can facilitate encapsulation of RNA due to the fact that a
primary amino group of DOPE, which is a proton donor, can form direct hydrogen bonds
with phosphate groups of RNAs [30].

Table 1. Physicochemical properties of the LNPs examined in screening A.

Entry %CL %DOPE %PEG NaCl Conc.
(mM) CL PEG ζ-Average

(nm) PdI ζ-Potential
(mV)

%RNA
Encapsulation

A-1 40 40 0.5 0 CL7H6 PEG-DMG 112 0.20 −3.2 90.3
A-2 50 10 0.5 0 CL4H6 PEG-DMG 121 0.19 −2.3 99.2
A-3 60 10 1 0 CL7H6 PEG-DSG 104 0.15 −2.3 91.0
A-4 60 40 1.5 0 CL7H6 PEG-DMG 128 0.41 −0.6 89.8
A-5 40 25 1.5 0 CL4H6 PEG-DSG 88 0.30 −1.5 99.2
A-6 60 40 0.5 200 CL4H6 PEG-DSG 155 0.13 1.9 98.8
A-7 50 25 1 200 CL4H6 PEG-DMG 138 0.12 −1.1 99.0
A-8 40 10 1.5 200 CL7H6 PEG-DMG 128 0.20 −2.6 85.0
A-9 50 25 1 200 CL7H6 PEG-DSG 171 0.15 −2.7 88.0
A-10 40 40 1 400 CL4H6 PEG-DMG 216 0.08 2.5 99.0
A-11 60 10 1.5 400 CL4H6 PEG-DSG 547 0.19 −1.4 89.2
A-12 50 40 1.5 400 CL7H6 PEG-DSG 108 0.07 −1.7 88.3
A-13 60 25 0.5 400 CL7H6 PEG-DMG 501 0.12 −1.2 91.2
A-14 40 10 0.5 400 CL4H6 PEG-DSG 754 0.17 −10.3 72.4
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Cellular uptake and Nluc activity in 3 types of splenic APCs and whole spleens for the
14 types of LNPs are summarized in Table S1. The reproducibility of Nluc activity in the
whole spleen, cellular uptake and Nluc activity in splenic DCs were confirmed (Figure S4).
Scatter plots revealed that the cellular uptake in the 3 types of splenic APCs was well
correlated (Figure 2A,B), suggesting that factors and their levels examined in screening
A have moderate effects on cell specificity between the 3 types of splenic APCs. On the
other hand, the amount of cellular uptake differed significantly (1 to 2 orders of magnitude)
among the LNPs, and the order was Mϕ > DCs >> B cells. Scatter plots of Nluc expression
versus cellular uptake in DCs and Mϕ showed a trend toward higher activity in DCs
(Figure 2C). An analysis of covariance was performed to reveal statistical differences in
the Nluc expression level between DCs and Mϕ without the effect of cellular uptake level,
and the findings revealed that Nluc expression in the DCs was significantly higher than
that in Mϕ, which is consistent with observations obtained in a previous report [2]. The
slope of Nluc activity to cellular uptake was obviously higher than 1 for DCs, suggesting
that more LNPs are taken up per cell or LNPs with characteristics that allow them to be
more easily taken up lead to higher transgene expression in DCs. The maximum Nluc
expression in B cells was less than 100 RLU/3000 cells, which was over 100-fold lower than
that in both DCs and Mϕ (Table S1). Scatter plots of Nluc expression in the whole spleen
vs. splenic DCs showed a moderate correlation (R2 = 0.3919) (Figure 2D). Although the
transgene expression level in the whole spleen has been extensively measured in many
studies on mRNA vaccine-oriented formulation development due to its simplicity [55–57],
the data indicate that transgene expression level in the whole spleen would not be a good
indicator of the corresponding process in DCs, even if the transgene expression level in
DCs was high. This can be attributed to the fact that the population of splenic DCs is only
~1% of all splenocytes. Therefore, much lower Nluc signals derived from B cells (~50% of
splenocytes) and other cell types that were not examined in this study would account for a
non-negligible proportion.

Figure 2. Correlations between outputs of in vivo experiments in screening A. (A) A dot-plot of
cellular uptake in Mϕ versus that in DCs. (B) A dot-plot of cellular uptake in B cells versus that in
DCs. (C) A dot-plot of Nluc expression versus cellular uptake in both Mϕ and DCs. (D) A dot-plot of
Nluc expression in spleen versus in DCs.
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Concerning Nluc activity in splenic DCs, a well-fitted regression model was obtained
by the effective design-based model selection for DSD process (Figure 3A). The Nluc
expression (RLU/3000 cells) was converted to logarithms before regression because the
range of the Nluc activity spans 3 orders of magnitude. A total of 5 out of all 6 factors that
were examined in screening A were found to significantly contribute to Nluc expression
in splenic DCs (Figure 3B). CL showed the highest impact on the Nluc expression level,
and the use of CL4H6 was preferable to CL7H6. A higher %CL was also important in
terms of improving the Nluc expression level. In addition, lower %PEG and higher NaCl
concentration were also significant in improving the Nluc activity. The cellular uptake and
Nluc expression in splenic DCs were plotted against ζ-average because the two factors are
also significant determinants of LNP size. The plot clearly indicated that cellular uptake
sharply increases by the ζ-average for sizes of up to ~200 nm (Figure 3C), but the upward
trend was less pronounced in the range above 200 nm. On the other hand, the cellular
uptake of extremely large LNPs (>700 nm) by DCs tended to be decreased. The plot for
Nluc expression also showed a similar trend to cellular uptake (Figure 3D). Particles that
are too large have the potential to induce toxicity and cause the obstruction of pulmonary
microvessels. Therefore, an optimal LNP diameter for splenic DCs would be in the range of
200 to 500 nm. These observations suggest that the ζ-average is an intermediate factor that
links the examined factors and cellular uptake or transgene expression level. To confirm the
validity of the above regression model, the worst 5 and the top 5 LNPs were selected from
14 LNPs that were tested in screening A, and the occupancy of each level in each factor was
then visualized. Nluc activity, cellular uptake, and ζ-average between the 2 groups were
significantly different (Figure 3E–G). For %PEG, NaCl concentration, and CL, the levels
of occupancy were clearly reversed between the two groups (Figure 3H–J). For example,
80% CL7H6 and 80% CL4H6 were occupied in the worst 5 and the top 5, respectively, for
CL (Figure 3J). These results are consistent with the regression model. For the remaining
factors, including %CL, %PL, and PEG, differences between the 2 groups were not clear,
while both %CL and PEG were significant in the regression model (Figure 3K–M). Given
the above findings, PEG was again examined in the next DOE. The level of %CL was
increased from 40–60 to 50–60%. The level of %PL was narrowed down to 10–20% to reduce
its impact on the size of LNPs. The level of %PEG was narrowed down from 0.5–1.5 to
0.75–1.5% to avoid the production of extremely large LNPs. CL was fixed with CL4H6.
NaCl concentration was determined to be 300 mM for producing LNPs with an appropriate
size based on simulations using the regression model.

In screening B, 8 different LNPs were synthesized based on the FFD (Table S2) and
evaluated in vivo (Table S3). The diameters of the LNPs were in the range of approximately
110 to 420 nm with a narrow distribution (PdI < 0.15) and high encapsulation (>80%).
In vivo screening indicated positive correlations between LNP size and cellular uptake or
transgene expression in splenic DCs (R2 = 0.8186 or 0.9173, respectively) (Figure S5A,B),
a trend similar to that observed in screening A. Substantial correlations were observed
when data from screening A and B were combined (Figure S5C,D). On the other hand,
correlations between LNP size and transgene expression in the whole spleen were clearly
lower (R2 = 0.1148) (Figure S6A). The correlation between transgene activity in splenic DCs
and the whole spleen was also low when data from screening A and B were combined
(R2 = 0.3582) (Figure S6B). These results suggest that transgene activity in the whole spleen
is not a good indicator of the same process in splenic DCs, and that evaluation at the cell
type level is essential for selecting the optimal formulation.

Based on the screenings, the A-11-LNPs showed the highest transgene activity in
splenic DCs (Tables S1 and S3). The A-11-LNPs showed the most enhanced I-A/I-E
expression in splenic DCs among all of the LNPs that were tested (Figure S7). The size and
RNA encapsulation of the A-11-LNPs remained constant at 4 ◦C for at least 24 days after
their preparation, indicating a stable formulation (Figure S8). Considering the above data,
we conclude that the A-11-LNPs were the optimal formulation for targeting splenic DCs as
mRNA vaccines.
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Figure 3. Analysis of significant factors for outputs in in vivo experiment in screening A. (A) A
plot of predicted and actual values for Nluc expression in splenic DCs obtained by a regression
model. (B) Statistically significant main factors and interactions for Nluc expression in splenic
DCs. (C,D) Plots of cellular uptake (C) or Nluc expression (D) in splenic DCs versus ζ-average.
Two independent experiments with one mouse in each preparation were performed. The plots are
expressed as the average of the two experiments. (E–G) Comparison of Nluc expression (E), cellular
uptake (F), and ζ-average (G) between top 5 and worst 5 LNPs on Nluc expression in splenic DCs.
n = 5, * p < 0.05, ** p < 0.01. (H–M) Occupancy of each level of %PEG (H), NaCl conc. (I), CL (J), %CL
(K), %DOPE (L), and PEG (M).
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3.3. Comparison with Clinically Relevant Formulations

We next tested the A-11-LNPs against two clinically relevant RNA-loaded LNP for-
mulations to determine their potential as an mRNA vaccine formulation. The first was
the MC3-LNP, also known as Onpattro, a first-ever siRNA therapeutic developed by Al-
nylam pharmaceuticals for the treatment of transthyretin (TTR) amyloidosis [58,59]. The
MC3-LNP was developed as a siRNA formulation targeting liver tissue. The MC3-LNP is
considered to be the gold standard LNP formulation and is also widely used as a formu-
lation for mRNA delivery [17,57,60,61]. For these reasons, it was used as a comparative
formulation in this study. The second is RNA-LPX, which was reported by Kranz, et al.
as a formulation that shows excellent cancer vaccine efficacy by selectively introducing
mRNA into splenic DCs [2]. We selected this formulation because it is oriented for the
same application as the A-11-LNP, and, because of this, we considered it to be the most
suitable control. The MC3-LNP was 59 nm in diameter and showed a 97% mRNA encap-
sulation. The RNA-LPX was 319 nm in diameter and negatively charged (ζ-potential of
−17 mV), consistent with previous reports [2]. The transgene expression level in secondary
lymphoid tissues, the spleen and inguinal LN, was next evaluated using Nluc mRNA. The
A-11-LNPs showed significantly higher transgene expression levels in both tissues over
the two control formulations (Figure 4A). The RNA-LPX showed a superior transgene
expression in the spleen compared to MC3-LNPs, which would be reasonable because
of the fact that the RNA-LPX was reported as a spleen-selective mRNA delivery system.
However, and interestingly, the MC3-LNPs showed a much higher transgene expression in
inguinal LN over the RNA-LPX. The transgene expression level in splenic DCs was then
measured using EGFP mRNA. The A-11-LNPs achieved approximately 9% of EGFP+ DCs,
which was significantly higher than the two control formulations, indicating the superior
transgene expression potency of the A-11-LNPs (Figure 4B). The highest I-A/I-E expression
in splenic DCs was also observed for the A-11-LNPs (Figure 4C). These results suggest that
the A-11-LNP would have a superior mRNA vaccine effect.

Figure 4. Comparison of the A-11-LNPs with clinically relevant formulations. (A) Nluc expression in
spleen and inguinal LN 24 h after intravenous administration of Nluc-mRNA-loaded formulations
at a dose of 0.5 mg mRNA/kg. (B) Percentage of EGFP+ splenic DCs 24 h after the intravenous
administration of EGFP-mRNA-loaded formulations at a dose of 0.5 mg mRNA/kg. (C) I-A/I-E
expression in splenic DCs 24 h after intravenous administration of EGFP-mRNA-loaded formulations
at a dose of 0.5 mg mRNA/kg. n = 3. ** p < 0.01.
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Motivated by the above results, a prophylactic antitumor experiment in E.G7-OVA
tumor-bearing mouse model was conducted. Two sequential administrations of OVA
mRNA-loaded A-11-LNPs completely rejected the tumor establishment at all doses tested
(Figure 5A). We next examined the therapeutic antitumor effect of OVA mRNA-loaded
A-11-LNPs in the same tumor-bearing mouse model. Since a clear shrinkage of tumor
tissues was observed at doses of 0.015 mg mRNA/kg or higher in the dose-dependent
study (Figure S9), the dose in subsequent experiments was set at 0.03 mg mRNA/kg. A
comparative study of the therapeutic antitumor effects of the A-11-LNP and two control
formulations (MC3-LNP and RNA-LPX) showed that only the A-11-LNP exhibited signifi-
cant antitumor activity (Figure 5B). Increased serum IFNβ levels were observed only after
the administration of the A-11-LNPs (Figure S10). The A-11-LNPs induced the maturation
of splenic DCs, which resulted in the upregulation of the activation markers CD40, CD80,
and CD86 (Figure 5C–E). The A-11-LNPs also activated splenic B, T, and natural killer
cells, which upregulated the activation marker CD69 (Figure 5F–H). No antitumor activity
was observed in the case of the EGFP mRNA-loaded A-11-LNP (Figure 5B), indicating
that the antitumor effect depends on the development of an OVA antigen-specific im-
mune response. In addition, B-8-LNPs, which showed significantly lower activity (2.1%)
in splenic DCs but exhibited comparable activity (73%) in the whole spleen compared
to the A-11-LNPs (Tables S1 and S3), showed no significant antitumor effect (Figure 5B),
suggesting that mRNA was efficiently delivered to DCs rather than to the whole spleen,
thus leading to antitumor activity. The limited induction of I-A/I-E expression in splenic
DCs by the B-8-LNPs also supports this suggestion (Figure S7). Although clear antitumor
effects were observed for two doses (0.03 mg mRNA/kg × 2) of the A-11-LNPs, the tu-
mors tended to re-grow after day18 without having completely disappeared (Figure 5B).
Based on this observation, the number of doses and dosages were increased (0.125 to
0.5 mg mRNA/kg × 3) to examine the therapeutic antitumor effect. Although there was
one individual that experienced a complete response at doses of 0.25 and 0.5 mg mRNA/kg,
the results showed a limited increase in the overall antitumor effect (Figure S11). This sug-
gests that the immunosuppressive pathways are enhanced in association with the induction
of antitumor immunity by the A-11-LNPs. In fact, E.G7-OVA cells express programmed
cell death ligand-1 (PD-L1) [62], one of the major immune checkpoint molecules, and the
combination of an adjuvant and an anti-PD-L1 antibody, an immune checkpoint inhibitor
(ICI), appears to promote E.G7-OVA tumor shrinkage compared to the use of the adjuvant
alone [63,64]. Therefore, the combination of the A-11-LNPs and ICIs would be a reasonable
strategy for enhancing an antitumor effect in this tumor model. In addition, when the
same tumor cells were re-challenged at 68 days after the initial tumor transplantation in
the two individuals that completely responded, they completely rejected tumor engraft-
ment (Figure S12), suggesting that treatment with the A-11-LNPs induced the formation of
memory cells, which was also observed for the RNA-LPX in the previous study [2].

Finally, a hematological test was performed after two doses of the OVA mRNA-loaded
LNPs at 0.03 mg mRNA/kg had been administered, and no significant alteration in any of
the serum chemistry parameters tested was observed, suggesting that the A-11-LNPs are
well tolerated under therapeutically relevant doses (Figure 6).
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Figure 5. Prophylactic and therapeutic antitumor activity. (A) Prophylactic antitumor activity of the A-
11-LNPs in E.G7-OVA tumor-bearing mice. The OVA mRNA-loaded A-11-LNPs were intravenously
injected at the indicated doses twice on 14 and 7 days before tumor inoculation. n = 3–4. (B) The
therapeutic antitumor activity of the A-11-LNPs, MC3-LNP, RNA-LPX, and B-8-LNPs. E.G7-OVA
tumor-bearing mice were intravenously injected with OVA mRNA-loaded formulations at two doses
of 0.03 mg mRNA/kg on day 8 and 11. n = 5. * p < 0.05, ** p < 0.01. (C–E) Expression of activation
markers CD40 (C), CD80 (D), and CD86 (E) in splenic DCs 24 h after an intravenous injection of
OVA mRNA-loaded formulations at a dose of 0.03 mg mRNA/kg. n = 3. * p < 0.05, ** p < 0.01.
(F–H) Expression of an activation marker CD69 in splenic B cells (F), T cells (G), and NK cells (H) 24 h
after an intravenous injection of OVA mRNA-loaded formulations at a dose of 0.03 mg mRNA/kg.
n = 3. ** p < 0.01.
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Figure 6. Safety of the A-11-LNPs. Serum chemistry parameters, ALT (A), AST (B), T-BIL (C),
LDH (D), BUN (E), and CRE (F) were measured 24 h after the last injection of OVA mRNA-loaded
A-11-LNPs at two doses of 0.03 mg mRNA/kg. n = 3.

4. Conclusions

In the present study, the DOE-based in vivo optimization of mRNA-loaded LNPs
for mRNA vaccines was studied. The screening included a wide range of particle sizes
that were controlled by the addition of NaCl in addition to the lipid type used and its
composition. The results showed a clear correlation between particle size and uptake
and gene expression activity in splenic DCs and indicated that a size range from 200 to
500 nm is appropriate for use in conjunction with splenic DCs. It was also found that
transgene expression activity in the whole spleen, which can be easily evaluated, was not
a valid predictor of transgene expression activity in splenic DCs and potency as mRNA
vaccines. The A-11-LNP, which was found to have the optimal formulation, induced better
transgene expression activity and maturation in DCs compared to two clinically relevant
LNP formulations and induced clear therapeutic antitumor effects in an E.G7-OVA tumor
model. The findings reported herein are expected to contribute to the development of
future mRNA vaccines.

5. Patents

K. Sasaki, Y. Sato, and H. Harashima have filed intellectual property patents related to
this publication.
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producibility of physicochemical properties of the 14 LNPs (A-1 to A-14) examined in screening
A, Figure S2: Statistical information for the effective design-based model selection for definitive
screening design to predict the ζ-average of the LNPs (A-1 to A-14), Figure S3: Statistical information
for the effective design-based model selection for definitive screening design to predict the percentage
of RNA encapsulation of the LNPs (A-1 to A-14), Figure S4: Reproducibility of outputs of in vivo
experiments in screening A, Figure S5: Correlation between ζ-average and cellular uptake or Nluc
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expression in splenic DCs, Figure S6: Correlation between ζ-average and Nluc expression, Figure S7:
I-A/I-E expression in splenic DCs after intravenous injection of LNPs examined in screening A and
B, Figure S8: Stability of the A-11-LNPs, Figure S9: Examination of dose of the OVA mRNA-loaded
A-11-LNPs for therapeutic antitumor experiment, Figure S10: Serum IFNβ level after an intravenous
injection of OVA mRNA-loaded formulations at a dose of 0.03 mg mRNA/kg, Figure S11: Therapeutic
antitumor effect of the A-11-LNPs on high dose conditions, Figure S12: Examination of formation of
memory cells, Table S1: Full data of outputs of in vivo experiment in screening A, Table S2: Formula-
tion conditions and physicochemical properties of the LNPs examined in screening B, Table S3: Full
data of outputs of in vivo experiment in screening B.
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