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Abstract: We perform coarse-grained molecular dynamics simulations of bilayers composed of
various lipids and cholesterol at their different ratios. Simulations show that cholesterol-lipid
interactions restrict the lateral dynamics of bilayers but also promote bilayer curvature, indicating
that these opposite effects simultaneously occur and thus cannot significantly influence bilayer
stability. In contrast, lyso-lipids effectively pack the vacancy in the bilayer composed of cone-shaped
lipids and thus reduce bilayer dynamics and curvature, showing that bilayers are more significantly
stabilized by lyso-lipids than by cholesterol, in agreement with experiments. In particular, the
bilayer composed of cone-shaped lipids shows higher dynamics and curvature than does the bilayer
composed of cylindrical-shaped lipids. To mimic ultrasound, a high external pressure was applied
in the direction of bilayer normal, showing the formation of small pores that are surrounded by
hydrophilic lipid headgroups, which can allow the release of drug molecules encapsulated into the
liposome. These findings help to explain experimental observations regarding that liposomes are
more significantly stabilized by lyso-lipids than by cholesterol, and that the liposome with cone-
shaped lipids more effectively releases drug molecules upon applying ultrasound than does the
liposome with cylindrical-shaped lipids.

Keywords: liposome; drug delivery; molecular dynamics simulation; ultrasound

1. Introduction

Liposomes, which are artificial vesicles mainly composed of natural or synthetic phos-
pholipids, have been widely used for drug delivery and antitumor therapeutics because
they are biocompatible, soluble, and easy to be controlled and modified with functional
groups [1–4]. Drug molecules can be encapsulated into the aqueous core of liposome
and delivered to specific cancer or targeted cells [5–9]. To achieve this, liposomes need to
remain stable for enough circulating lifetime in the bloodstream but also should become
unstable to release drug molecules upon applying external stimuli [10–12]. To optimize
these factors, liposomes composed of various lipid components with their different ratios
have been characterized, and external stimulus methodologies such as temperature change
(hyperthermia), light (photodynamic therapy), magnetic field, and pulse (ultrasound) have
been applied [13–20]. In particular, ultrasound wave is clinically safe, inexpensive, and
portable and thus has been considered a promising physical stimulus for drug delivery
applications [21,22].

Since Zasadzinski found that ultrasonication significantly influences the structure and
stability of liposomes [23], many experiments have shown that ultrasound can effectively
trigger the release of drug molecules from liposomes in vivo and in vitro [24–31]. To op-
timize lipid components and ratios, Needham and coworkers characterized the stability,
phase transition and drug-release rate of liposomes composed of various lipids, polymers,
and cholesterol at different ratios, showing the temperature-sensitive liposomes that are
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stable at 37 ◦C but become unstable at 42 ◦C, leading to a rapid release of drug [32–37].
These experiments have revealed great potential of ultrasound for drug delivery applica-
tions and the effects of lipid components and ratios on the temperature-dependent phase
behavior of liposomes, although the stability, phase transition, and drug-release rate of
ultrasound-responsive liposomes have not yet been systematically examined. Recently,
Kim et al. developed the ultrasound-responsive drug-loaded liposome by optimizing lipid
components and ratios [38], called “IMP301”, showing the higher stability than do other
commercial liposomes but also a sufficient release of drug molecules when applying ultra-
sound wave [39], which has been interpreted as the pore formation of liposome membrane
caused by the cone-shaped lipid-induced negative curvature, although the effect of different
lipids and the mechanism of drug release have not yet been well investigated because of
the limited resolution of experimental techniques. To explore this, the effects of lipid com-
ponents and ratios on the bilayer conformation, dynamics, and stability need to be studied
at nearly the atomic scale, as can be done using molecular dynamics (MD) simulations.

In this work, we therefore perform coarse-grained (CG) MD simulations of bilayers
composed of lipids and cholesterol at different ratios. To compare the conformation and
stability of different bilayers, mass densities, lateral dynamics and the extent of curvature of
bilayers were analyzed, which were favorably compared with experiments and rationalized
by the lipid shape and lipid-lipid (or cholesterol) interactions. To mimic ultrasound wave,
a high external pressure was applied in the direction of bilayer normal, showing the
formation of pores that allow water molecules across the bilayer. We will show that these
results help to explain in detail the experimental observations regarding the effects of
specific lipids on the stability and drug-release rate of liposomes.

2. Materials and Methods

All simulations and analyses were performed using the GROMACS-2018.6 simulation
package [40–42]. Potential parameters for lipids, cholesterol, and polyethylene glycol-
grafted lipid (PEGylated lipid) were taken directly from the “MARTINI” CG force field
(FF) [43,44], which lumps a few (three or four) heavy atoms into each CG bead. For PE-
Gylated lipid, CG models were previously parameterized within the framework of the
MARTINI CG FF by our group [45,46], which have successfully captured experimental re-
sults and polymer theories such as phase behaviors of self-assembled PEGylated lipids [47],
the adsorption of plasma proteins onto PEGylated bilayers [48], and the mushroom-brush
transition of PEG chains grafted to lipid bilayers and various nanoparticles [49,50]. A
temperature of 290 K and a pressure of 1 bar were maintained by applying the velocity-
rescale thermostat [51], and the Parrinello-Rahman barostat in an NPxyPzT ensemble (with
semi-isotropic pressure coupling) [52]. Note that here we used a temperature of 290 K
instead of the experimental temperature of 310 K [39] because the transition temperature
of the CG DPPC bilayer between the rippled gel phase and liquid-crystalline phase is
295 K [53], which is much lower than the experimental transition temperature of 315 K [54].
Although the DPPC bilayer was not simulated in this work, the experimental temperature
of 310 K is lower than the transition temperature of the DPPC bilayer (315 K), we used
290 K, which is lower than the transition temperature of the CG DPPC bilayer (295 K). To
mimic ultrasound pressure, an external pressure of 100 bar was applied to the xy-plane
of bilayer in the direction of bilayer normal. A real space cutoff of 1.2 nm was used for
Lennard-Jones and Coulomb potentials with a smooth shift to 0 between 0.9 and 1.2 nm and
between 0 and 1.2 nm, respectively. The LINCS algorithm was used to constrain the bond
lengths [55,56]. Simulations were performed for 20 µs with a time step of 20 fs on computa-
tional facilities supported by the National Supercomputing Center with supercomputing
resources including technical support (KSC-2021-RND-067).

2.1. Simulations of Bilayers at Different Lipid Ratios

Lipid bilayers, which consist of 1,2-distearoyl-sn-glycero-3-phosphorylcholine (DSPC),
1,2-distearoyl-sn-glycero-3-phosphoethanolamine with conjugated methoxyl poly(ethylene
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glycol2000) (DSPE-PEG), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE),
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-hydroxy-sn-glycero-3-
phosphocholine (MSPC), and cholesterol at different lipid ratios as also used in exper-
iments [38,39], were solvated with ~70,000 or ~280,000 water beads in a periodic box of size
27 × 27 × 16 nm3 or 54 × 54 × 16 nm3 (Table 1 and Figure 1). Since DSPE-PEG has a net
charge of -1 per chain, counterions (128 Na+) were added to achieve electro-neutrality of
bilayer systems.

Table 1. List of simulations. Lipid ratios are represented as DSPC: DSPE-PEG: Chol.: DOPE (or
DOPC): MSPC.

Simulation
System No.

No. of Membrane Components
Ratio

DSPC DSPE-PEG Chol. DOPE DOPC MSPC

1 256 128 - 1664 - 128 10:5:0:65:5
2 256 128 384 1664 - 128 10:5:15:65:5

3 (IMP301) 256 128 768 1664 - 128 10:5:30:65:5
4 256 128 1024 1664 - 128 10:5:40:65:5
5 256 128 768 1664 - - 10:5:30:65:0
6 256 128 768 1664 - 256 10:5:30:65:10
7 256 128 768 - 1664 128 10:5:30:65:5
8 1920 128 768 - - 128 75:5:30:0:5
9 1024 512 3072 6656 - 512 10:5:30:65:5
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Figure 1. A snapshot of a IMP301 bilayer. Phosphate and choline (or ethanolamine) headgroups,
hydrocarbon tails, PEG chains, and cholesterol are colored in pink, brown, light-blue, dark-blue, and
purple, respectively. For clarity, water and ions are omitted. The images were created with Visual
Molecular Dynamics [57].

2.2. Simulations of a DOXIL Bilayer

A lipid bilayer, which consists of hydro Soy PC (HSPC), cholesterol, and DSPE-PEG
at molar ratios of 56:38:5 as also used in experiments [39], was solvated with ~76,000 or
~304,000 water beads in a periodic box of size 28 × 28 × 16 nm3 or 56 × 56 × 16 nm3.
Counterions (196 Na+) were added to achieve electro-neutrality of the bilayer system.

2.3. Calculation of the Contour Bilayer-Surface Area

The bilayer surface plane (x,y-plane of the bilayer system) was equally divided into
256 voxels (16 × 16 grids), leading to an x,y area of approximately 1.7 × 1.7 nm2 for each
voxel with a voxel height (z component) of ~16 nm. For each voxel, the average x,y,z-
coordinate was determined from the center of mass of glycerol beads in the upper leaflet of
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the bilayer, leading to a total of 256 coordinates in the bilayer surface. Bilayer edges need to
be considered, and hence an additional 17th grid was generated using periodic boundary
conditions, leading to a total of 289 coordinates. From those 289 points, 512 triangles were
built, and their areas were calculated and summed up, which is the contour area of the
bilayer surface.

3. Results and Discussion
3.1. Effects of Cholesterol and MSPC on the Bilayer Conformation, Dynamics, and Curvature

Bilayers composed of DSPC, DSPE-PEG, DOPE (or DOPC), MSPC, and cholesterol
were simulated at different ratios of MSPC and cholesterol (Table 1). To quantify bilayer
conformations, mass densities for the phosphate groups of DSPC, DSPE-PEG, DOPE (or
DOPC), MSPC, and the hydroxyl group of cholesterol were calculated. Figure 2 shows that
headgroups of DSPC, DSPE-PEG, DOPE (or DOPC), and MSPC are positioned in the bilayer-
surface region, indicating stable bilayer formation. In particular, the hydroxyl group of
cholesterol are positioned between lipid headgroup and tail regions, while the headgroups
of MSPC, which is a lyso-lipid having a single hydrocarbon tail, are more slightly toward
the water region than are those of other lipids, indicating that large headgroups of the
inverted cone-shaped MSPC (lyso-lipid) tend to occupy the vacancy in the bilayer surface
consisting of small headgroups of the cone-shaped DOPE.
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To understand the effect of cholesterol and MSPC on the bilayer dynamics, lateral
diffusion coefficients of DSPC, DOPE, and MSPC lipids were calculated from the slopes of
the mean-square displacements of lipid-phosphate and cholesterol-hydroxyl groups in the
xy-plane (the direction perpendicular to the bilayer normal). In Figure 3, lateral diffusivities
of DSPC, DOPE, and MSPC decrease as the concentration of cholesterol increases, which
indicates that cholesterol-lipid interactions restrict the motion of lipids and thus reduce
lateral dynamics of bilayers, leading to an increase in the bilayer stability, in agreement with
previous simulations and experiments [58–61]. Although diversity of lipid components
and ratios in mixture membranes preclude any quantitative comparison (such as area
per lipid and lateral diffusion) between simulations and experiments, this packing effect
of cholesterol on membrane structure, dynamics, and phase behavior is qualitatively
consistent with the previous theoretical study [62], experiment [63] and simulation [64]. As
the concentration of MSPC increases, lateral diffusivities of DOPE decrease, whereas those
of DSPC increase, indicating that the inverted cone-shaped MSPC lipids tend to interact
with the cone-shaped DOPE lipids rather than with the cylindrical-shaped DSPC lipids
and thus reduce the lateral dynamics of DOPE.
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To further understand the effect of cholesterol and MSPC on the bilayer stability,
projected and contour areas of bilayer surfaces were calculated in the xy-dimension. In
Figure 4, surface areas reach steady-state values within 5 µs, showing that bilayers are well
equilibrated within the simulated timescale. For all bilayers, contour areas are slightly
larger than projected areas (system sizes), as expected, because of bilayer curvature. To
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compare the effects of cholesterol and MSPC on bilayer curvature, the ratios of contour areas
to projected areas were calculated. In Figure 5, the ratio values increase with increasing
the cholesterol concentration or decreasing the MSPC concentration, which indicate that
the bilayer curvature can be increased by cholesterol but decreased by MSPC, showing the
opposite effects of cholesterol and MSPC on the bilayer curvature. The ratio is higher for
the bilayer with DOPE than for the bilayer with DOPC, showing the higher curvature for
DOPE than for DOPC, apparently because a cone-shaped DOPE has a smaller head group
than does cylindrical-shaped DOPC and thus can induce negative curvature in the bilayer.
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To compare cholesterol-lipid and MSPC-lipid interactions, radial distribution functions
(RDFs) of DSPC, DSPE-PEG, and DOPE were calculated with respect to cholesterol and
MSPC. In Figure 6, there are sharp peaks for both cholesterol and MSPC, showing that both
cholesterol and MSPC interact with DSPC, DSPE-PEG, and DOPE. In particular, cholesterol
and MSPC show higher peaks for DOPE than for DSPE-PEG and DSPC, and this tendency
is more prominently observed for MSPC than for cholesterol, although these RDF peaks
do not significantly differ presumably because of an artificial effect of the simplification
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introduced by the CG model; this indicates that MSPC lipids tend to interact with DOPE
lipids rather than with DSPC and DSPE-PEG lipids, presumably because the inverted-cone
shaped MSPC can effectively pack the vacancy in the bilayer surface composed of DOPE
that has the cone shape with a small headgroup.
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These results, combined with Figures 2–5, show that cholesterol molecules strongly
interact with neighboring lipids and thus decrease lateral dynamics of bilayers and increase
bilayer stability, while they also promote bilayer curvature and thus decrease bilayer sta-
bility, which indicate the opposite effects of cholesterol on bilayer stability, implying that
cholesterol do not significantly influence bilayer stability. Likewise, MSPC strongly interact
with neighboring lipids and thus decrease lateral dynamics of bilayers and increase bilayer
stability, but also MSPC, which is an inverted-cone shaped lyso-lipid with a large head-
group, can effectively occupy the vacancy in the bilayer surface composed of DOPE that has
a cone shape with the small headgroup, which can suppress bilayer curvature and increase
bilayer stability. These simulation findings on the opposite effects of cholesterol and MSPC
on bilayer stability explain experimental observations regarding that liposomes are more
effectively stabilized by adding MSPC than by adding cholesterol [38]. Our simulations
also show that the bilayer with the cylindrical-shaped DOPC is more stable than the bilayer
with the cone-shaped DOPE, which supports experimental results showing that ultrasound
can promote little release of doxorubicin from liposomes composed of DOPC [38].
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3.2. Effect of Lipid Shape on the Bilayer Conformation, Dynamics, and Curvature

Experimentally, Kim et al. showed that the high concentration of MSPC does not
only increase liposome stability but also can prevent liposomes from releasing doxorubicin
because of the increased stability of liposome [38]. To resolve this, they found that the
optimal ratio of DSPC, DSPE-PEG, cholesterol, DOPE, and DOPC is 10:5:30:65:5, which
significantly stabilizes liposomes but also allows drug molecules to be released from
liposomes upon applying ultrasound [39]. The liposome with this specific ratio of lipids
and cholesterol has been named “IMP301” in experiments [39], which we will also use in
this work (system 3 in Table 1). Experiments showed the higher level of ultrasound-induced
doxorubicin leakage from IMP301 than from the commercial liposome “DOXIL” composed
of hydro Soy PC (HSPC), cholesterol, and DSPE-PEG at their ratios of 56:38:5, indicating
great potential of IMP301 for drug delivery applications [39]. To compare membrane
stability of IMP301 and DOXIL, DOXIL bilayer was also simulated at the same conditions
as IMP301.

Figure 7 compares mass densities of IMP301 and DOXIL bilayers, showing the thicker
bilayer for DOXIL than for IMP301. In Figure 8, lateral diffusivities of IMP301 and DOXIL
bilayers are respectively 1.36~1.48 and 0.11 ± 0.01 (×10−7 cm2/s), showing a much higher
diffusivity of IMP301. These results indicate that DOXIL bilayer is more ordered and
thicker than IMP301 bilayer and thus relatively more stable. Note that because HSPC (16:0,
18:0) includes a longer hydrocarbon tail than DPPC (16:0, 16:0) does, the phase-transition
temperature of HSPC should be higher than that of DPPC, indicating that HSPC bilayer
forms the ordered-gel phase at this simulated temperature.
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To compare the extents of curvature for IMP301 and DOXIL bilayers, contour and
projected bilayer-surface areas of DOXIL were calculated. In Figure 9, surface areas reach
steady-state values within 5 µs, showing that bilayers are well equilibrated. Contour
areas are slightly larger than projected areas, indicating the presence of bilayer curvature,
as also observed for IMP301 in Figure 4; however, Figure 10 shows that the ratio of the
contour area to the projected area is higher for IMP301 than for DOXIL, indicating the
higher curvature for IMP301 than for DOXIL. Recall from Figure 5 that curvature is lower
for the bilayer with DOPC than the bilayer with DOPE. In Figure 10, the curvature of
DOXIL bilayer is even lower than that of DOPC bilayer. These results imply that the
DOXIL bilayer mainly consists of cylindrical-shaped HSPC lipids and thus induce less
curvature and higher stability than do the bilayers with cone-shaped DOPE lipids (IMP301)
or DOPC lipids (IMP301*), which supports experimental results showing the higher extent
of ultrasound-responsive drug-release from IMP301 than from DOXIL [39].
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To confirm the formation of bilayer curvature, much larger (56 nm-sized) bilayers of
IMP301 and Doxil were also simulated for 2 µs. Figure 11 shows side-view snapshots of
bilayers and the bilayer height as a function of simulation time, indicating the formation of
bilayer curvature for IMP301 but not for Doxil. In particular, bilayer heights, defined as
the maximum distance between phosphates projected along the bilayer normal, are much
larger for IMP301 than for Doxil, clearly showing larger membrane curvature for IMP301
than for Doxil, consistent with results from Figures 9 and 10.
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Experimentally, Kim et al. optimized the concentration of MSPC [38] and developed
the ultrasound-responsive drug-loaded liposome, IMP301, that does not only retain its
membrane stability but also have the high drug-release efficacy upon applying ultrasound,
showing great potential for drug delivery applications [39]. Our simulation results show
that the presence of cholesterol can increase bilayer stability but also induce bilayer cur-
vature that reduces bilayer stability, indicating that two opposite effects of cholesterol
evenly occur and thus do not significantly influence bilayer stability. In contrast, the
presence of MSPC only decreases bilayer dynamics, leading to an increase in bilayer sta-
bility. Simulations also show that IMP301 bilayer has faster lateral dynamics and higher
curvature than DOXIL bilayer does, indicating the more disordered phase for IMP301
bilayer than for DOXIL bilayer as visualized in Figure 12, presumably because cone-shaped
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DOPE lipids (IMP301) can induce more bilayer curvature than do cylindrical-shaped HSPC
lipids (DOXIL).
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3.3. Pore Formation Induced by an External Pressure

Experimental studies have shown that ultrasound can be applied to trigger the drug
release from liposomes, which has been interpreted as an indication that the cone-shaped
DOPE lipids induce negative bilayer curvature, leading to the formation of small pores that
can release drug molecules [65]. To understand this, IMP301 bilayer was simulated with an
external pressure of 100 bar applied in the direction of the bilayer normal, which mimics
a pressure of ~100 bar produced by ultrasound in the experiment. Note that the extent
of ultrasound is controlled by many parameters such as pressure amplitude, frequency,
burst length, and pulse repetition frequency. These differ from the external pressure simply
applied in our simulations, which allows only qualitative comparison between experiment
and simulation.

Figure 13 shows that pore formation occurs upon applying an external pressure of
100 bar in the direction of bilayer normal. Water molecules can penetrate through these
pores that are surrounded by hydrophilic lipid headgroups. In particular, pores form the
hexagonal arrangement, similar to the experimental suggestion of a hexagonal phase in
the bilayer mainly composed of DOPE [65], although this hexagonal arrangement has an
irregular shape, presumably because of a mixture of various lipids.

To understand the pore structure, we calculated the numbers of lipids and cholesterol
near the pore edge. The xy-plane parallel to the bilayer surface was equally divided into
49 voxels by using a grid (7 × 7 grid). For each voxel, the z component (normal to the
bilayer) of the center of mass (COM) of lipid phosphates was averaged over both leaflets of
the bilayer, and the z coordinates of this was taken to be the bilayer center for that voxel.
Lipid-phosphate or cholesterol-hydroxyl beads “around the bilayer center” are taken to
be those that are within 0.5 nm in the z direction from the bilayer center from the voxel in
which the bead is located. Figure 14 shows that cholesterol molecules are close to the bilayer
center for whole simulation time, while other lipids become close to the bilayer center at
the simulation time of ~0.33 ns, at which pores begin to form, indicating an increase in
the amount of lipid headgroups near the pore edge. DOPE lipids, which are the major
component (65%) of the bilayer, are also predominantly distributed at the bilayer edge. In
Figure 15, the side view of the bilayer edge and pore shows that the bilayer edge does not
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only consist of DOPE but also include DSPC, DSPE-PEG, MSPC, and cholesterol, implying
that MSPC and cholesterol, which have the relatively large headgroup, are positioned in
the vacancy between small headgroups of cone-shaped DOPE lipids and thus help to retain
the curvature of the pore edge. Note that differences of mass transport conditions and
durations of the simulations compared to those in experiments preclude any quantitative
comparison between the two. Moreover, the ultrasound experiment must be controlled by
many parameters such as pressure amplitude, frequency, burst length, and pulse repetition
frequency, which cannot be mimicked by applying a constant external pressure; however,
we have clearly shown different effects of various lipids and cholesterol on membrane
conformation, dynamics, and curvature, which helps to explain experimental observations
showing that MSPC lipids more significantly influence liposome stability than cholesterol
does [38], and that IMP301 more effectively releases drug molecules by applying ultrasound
than DOXIL does [39].
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black, respectively.
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4. Conclusions

We performed CG MD simulations of bilayers composed of various lipids and choles-
terol at different ratios. The lateral dynamics and curvature of bilayers decrease as the
concentration of MSPC increases because inverted-cone shaped MSPC (lyso-lipids) tend
to pack the vacancy in the bilayer mainly composed of cone-shaped DOPE, leading to
an increase in bilayer stability. In contrast, as the cholesterol concentration increases,
cholesterol-lipid interactions restrict the lateral dynamics of bilayer but also promote bi-
layer curvature, showing that these opposite effects of cholesterol on bilayer stability
simultaneously occur. These indicate that MSPC lipids effectively increase bilayer stability,
while cholesterol molecules do not significantly influence bilayer stability, in agreement
with experiments. IMP301, which is the liposome experimentally optimized to achieve the
high stability as well as the high drug-release rate upon applying ultrasound, and DOXIL
(commercial liposome) bilayers were simulated and compared in terms of their dynam-
ics, curvature, and lipid order, showing that IMP301 bilayer composed of cone-shaped
DOPE has higher lateral dynamics and curvature than does DOXIL bilayer composed
of cylindrical-shaped HSPC. These indicate that IMP301 bilayer is more disordered than
DOXIL bilayer, which supports experiments showing the higher extent of drug-release
rate for IMP301 liposome than for DOXIL liposome. To mimic ultrasound, a high external
pressure was applied, leading to the formation of small pores that are surrounded by
hydrophilic lipid headgroups and hexagonally arranged. Our findings help to explain
experimental observations showing that liposomes are stabilized by MSPC rather than by
cholesterol, and that the liposome with DOPE more effectively releases drug molecules
upon applying ultrasound than does the liposome with HSPC.
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