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Abstract: This study aimed to develop a solid dispersion (SD) of MT-102, a new anti-inflammatory
agent, to improve its oral bioavailability. The ternary SD formulations of MT-102 (a poorly soluble
extract of Isatis indigotica and Juglans mandshurica) were prepared using a solvent evaporation method
with various drug/excipient ratios. Following that, the effectiveness of various SDs as an oral
formulation of MT-102 was investigated using indirubin as a marker component. By forming SDs
with hydrophilic polymers, the aqueous solubility of indirubin was significantly increased. SD-F4,
containing drug, poloxamer 407 (P407), and povidone K30 (PVP K30) at a 1:2:2 weight ratio, exhibited
the optimal dissolution profiles in the acidic to neutral pH range. Compared to pure MT-102 and a
physical mixture, SD-F4 increased indirubin’s dissolution from MT-102 by approximately 9.86-fold
and 2.21-fold, respectively. Additionally, SD-F4 caused the sticky extract to solidify, resulting in
improved flowability and handling. As a result, compared to pure MT-102, the oral administration
of SD-F4 significantly improved the systemic exposure of MT-102 in rats. Overall, the ternary SD
formulation of MT-102 with a blended mixture of P407 and PVP K30 appeared to be effective at
improving the dissolution and oral absorption of MT-102.

Keywords: MT-102; solid dispersion; dissolution; indirubin; poloxamer 407; povidone K30

1. Introduction

Inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis,
are chronic recurrent intestinal disorders characterized by transmural granulomatous
inflammation or mucosa and submucosa inflammation [1]. Although the exact cause of
IBD is unknown, genetic factors, host intestinal flora, and the host immune system may
play a role in IBD pathogenesis [2]. Aminosalicylates, corticosteroids, anti-tumor necrosis
factor-α antibodies, and immunosuppressants are currently being used to treat IBD [3].
However, the long-term use of these drugs has been linked to low efficacy and unfavorable
side effects [4]. As a result, there is still an unmet need for more effective IBD drug therapy.

MT-102 is an herbal product extracted from Isatis indigotica and Juglans mandshurica
that have been used to treat various diseases such as hepatitis, encephalitis, gastric ul-
cers, and diarrhea [5,6]. While MT-102 has shown efficacy in a mouse IBD model, it
has low aqueous solubility, limiting its dissolution and oral bioavailability. Therefore,
the solubilization of MT-102 is critical to improving its therapeutic potential and clinical
application. Prodrugs, salt formation, micronization, solid dispersion, and lipid-based
formulations have all been developed to improve the oral bioavailability of poorly soluble
drugs [7–9]. Among them, solid dispersion (SD) is an effective method for increasing the
solubility and dissolution of hydrophobic herbal products [10]. Previous studies have
demonstrated that SDs significantly improved the dissolution and oral bioavailability of
poorly soluble phytochemicals, such as curcumin and biochanin A [11,12]. Chen et al. [13]

Pharmaceutics 2022, 14, 1510. https://doi.org/10.3390/pharmaceutics14071510 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14071510
https://doi.org/10.3390/pharmaceutics14071510
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-4929-1972
https://doi.org/10.3390/pharmaceutics14071510
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14071510?type=check_update&version=1


Pharmaceutics 2022, 14, 1510 2 of 12

also demonstrated that amorphous SDs could improve the oral bioavailability of the main
bioflavonoids from Selaginella doederleinii extract. Furthermore, Zhao et al. [14] compared
the effect of SDs and self-emulsifying formulations on the dissolution and oral absorption
of herbal extract from Hippophae rhamnoides L. The results indicated that SDs remarkably
increased the oral bioavailability of three active components (isorhamnetin, quercetin, and
kaempferol) in herbal extracts, but there was no significant increase in oral absorption via a
self-emulsifying formulation in rats [14]. Overall, considering a simple preparation process
and scale-up, cost-effectiveness, and drug loading capacity, an SD formulation should be
an effective approach to enhancing the oral bioavailability of herbal extracts containing
multiple insoluble components.

SD formulation comprises at least two different components, usually a hydrophilic
polymer matrix and a hydrophobic drug, and the drugs are homogeneously dispersed in
an amorphous or crystalline form into a polymer matrix, such as polyvinylpyrrolidone,
polyethylene glycol, hydroxypropyl methylcellulose, or poloxamers [15]. Since various
polymers available for SDs exhibit different physicochemical properties, functions, and
safety profiles, the selection of appropriate polymeric carriers plays a vital role in the
development of effective SD formulations. In general, polymeric carriers should be inert
and compatible with active pharmaceutical ingredients. In addition, the physicochemical
properties of polymers should be suitable for the preparation methods of SDs. From the
kinetic perspective, polymeric carriers should be able to prevent or retard recrystalliza-
tion of drugs in supersaturation conditions [15]. Furthermore, polymeric carriers with
a high glass transition temperature (Tg) may help improve the stability of SDs at room
temperature [15–19]. In the kinetic and thermodynamic aspects, amphiphilic polymers
(e.g., poloxamer 407 and Soluplus®) are advantageous for improving both the solubility
and stability of amorphous SDs. They act as a surface-active agent, decreasing interfacial
tension, increasing wettability, and effectively solubilizing the hydrophobic drugs via mi-
celle formation [15,20,21]. At the same time, their polymeric nature helps stabilize a drug
in an amorphous state [15].

Given that a single polymer has a limited effect on preventing crystal growth and
improving drug solubility, additional polymers or surfactants are often incorporated into
binary drug–polymer systems to produce ternary or quaternary SDs [22]. For example,
Prasad et al. [23] prepared the ternary SD of indomethacin with the combination of poly-
mers (Eudragit E100 and PVP K90) and demonstrated that the ternary SD achieved higher
stability and dissolution than the binary SD. Therefore, in this study, a ternary SD was
developed as an effective oral formulation for improving the dissolution and bioavailability
of MT-102. Different drug/excipient ratios were used to prepare ternary SDs of MT-102
using a solvent evaporation method. The effectiveness of various SDs as an oral formula-
tion of MT-102 was then investigated using indirubin (Figure 1) as a marker component,
since indirubin is a constituent of MT-102 and has anti-inflammatory properties [24]. The
pharmacokinetic characteristics of the optimized SD formulation were also evaluated in rats.
While Chen et al. [25] reported a self-micro-emulsifying drug delivery system (SMEDDS)
that improved the oral absorption of indirubin, a marker of MT-102, they used indirubin
as an isolated single compound. Therefore, this is the first report for an oral formulation
improving the dissolution and oral absorption of MT-102, an herbal extract containing
multiple components.

Figure 1. Structure of indirubin.
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2. Materials and Methods
2.1. Materials

MT-102 was provided by MTHERA PHARMA (Seoul, Korea). Indirubin, 6-methoxy
flavone, and (2-hydroxypropyl)-β-cyclodextrin were obtained from Sigma Aldrich (St.
Louis, MO, USA). Poloxamer 188 (Kolliphor®, P188), poloxamer 407 (Kolliphor®, P407),
povidone K30 (Kollidon®30, PVP K30), and copovidone K28 (Kollidon® VA 64, Co-PVP)
were provided by BASF-Korea (Seoul, Korea). Hydroxypropyl methyl cellulose E5 (Methocel®,
HPMC E5) was obtained from Colorcon Asia Pacific PTE LTD. (Korea Branch, Suwon,
Korea). Polyethylene glycol 6000 (PEG 6000) was obtained from the Daejung Chemical &
Metal Co., Ltd. (Shiheung, Korea). Low-substituted hydroxypropyl cellulose (L-HPC) was
purchased from Shin-Etsu (Tokyo, Japan). All the other chemicals were of analytical grade,
and all the solvents were of high-performance liquid chromatography (HPLC) grade.

2.2. Screening of Carriers and Preparation of SDs

For the selection of optimal carriers, the SDs were prepared with various hydrophilic
polymers at a drug–carrier ratio of 1:5 using the solvent evaporation method. Briefly,
MT-102 and each polymeric carrier were dissolved in 70% (v/v) ethanol. After vigorous
mixing at 2500 rpm for 2 min (Vortex-Genie 2, Cole-Parmer, Vernon Hills, IL, USA), all
the solvents were removed under vacuum at room temperature. The resulting product
was milled before being sieved through a 40-mesh screen. The carrier that increased the
indirubin solubility the most was chosen for preparing the ternary SD formulations of
MT-102. After selecting the suitable polymers, ternary SDs were prepared with various
weight ratios of each component.

2.3. Solubility Studies for Carrier Selection

Each formulation (equivalent to 100 mg of MT-102) was added into water (1 mL) and
equilibrated for 48 h at 37 ◦C with 100 rpm stirring. Samples were collected and filtered
through a syringe filter (0.45 µm). The concentration of indirubin (a standard marker) in
each sample was determined by HPLC assay.

2.4. In Vitro Drug Release Studies

For the selection of optimal SDs, the drug release profile of each formulation was
evaluated in water. Each formulation (equivalent to 50 mg of MT-102) was filled into an
empty hard gelatin capsule and spun at 100 rpm at 37 ± 0.5 ◦C in the dissolution medium
(150 mL). The samples were collected at predetermined intervals and filtered through
0.45 µm pore-sized cellulose filters. The concentration of indirubin in each filtrate was
determined by HPLC assay. For the characterization of the selected optimal formulation,
the dissolution studies of SD-F4 and pure extract were carried out in buffer solution at
different pH levels (1.2, 4.5, and 6.8) following the procedures described above.

2.5. Morphology

The morphological characteristics of the optimized SD (SD-F4) were examined using a
field emission scanning electron microscope (FE-SEM). The samples were spread out on a
specimen stub, coated with platinum, and examined using an SEM (SU-70, Hitachi, Tokyo,
Japan) at an acceleration voltage of 20 kV.

2.6. Stability Studies

The SD-F4 formulation was placed in airtight vials and stored at 4 ◦C or 25 ◦C to
test storage stability. After being stored for 1, 2, or 3 months, the samples were collected
and underwent dissolution studies in water for 8 h to examine whether the dissolution
characteristics of the SD-F4 formulation had changed. During storage, the solubility and
morphological characteristics of SD-F4 were also investigated.
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2.7. Pharmacokinetic Studies in Rats

The pharmacokinetic profile of SD-F4 was examined in rats. The study protocol for
animal studies was approved by the review committee of Dongguk University (IACUC-
2022-006-01). Male Sprague–Dawley rats (250–290 g) were supplied by Orient bio Co., Ltd.
(Seongnam, Korea). All rats were given free access to tap water and a standard chow diet
(Superfeed Company, Wonju, Korea) and were kept at a constant temperature of 21–22 ◦C
with a 12 h light/dark cycle. The rats were divided into two groups (n = 5 per group)
and fasted for 12 h prior to the experiments. They were given orally either an aqueous
dispersion of pure extract (MT-102) or SD-F4 (equivalent to 500 mg/kg of MT-102). Blood
samples were obtained from the femoral artery at the predetermined time points. The
blood samples were centrifuged at 13,000× g for 5 min, and the resulting plasma samples
were frozen at −20 ◦C until HPLC analysis.

2.8. Analytical Methods

In vitro samples: Indirubin concentrations were determined using an HPLC system
(Ultimate 3000 HPLC; Thermofisher, Waltham, MA, USA), which included a UV detec-
tor, a pump, and an automatic injector. A reversed-phase C18 column (Gemini C18,
4.6 mm × 150 mm, 5 µm; Phenomenex, Torrance, CA, USA) was eluted with a mobile
phase of methanol and water (70:30, v/v). At 30 ◦C, the flow rate was 1.0 mL/min, and the
UV wavelength was 289 nm. The internal standard (IS) was 6-methoxyflavone, and the
calibration curve was linear (r2 = 0.99) in the concentration range of 0.02–2 µg/mL.

In vivo samples: A plasma sample (100 µL) was mixed with 6-methoxyflavone
(IS: 20 µL, 25 µg/mL) and vortexed for 3 min. Then, 180 µL of methanol was added
and vigorously mixed, followed by centrifugation at 13,000× g for 5 min. The supernatant
was dried under vacuum. The residue was reconstituted with 80 µL of mobile phase and
subjected to HPLC analysis. Chromatographic separation was conducted using a gradient
elution of a mobile phase through a C18 column (Gemini C18, 4.6 mm × 150 mm, 5 µm;
Phenomenex, Torrance, CA, USA) at 30 ◦C and a flow rate of 1.0 mL/min. The mobile
phases comprised methanol (A) and water (B). The following were the gradient elutions:
0–1 min: 5% A and 95% B; 1–7 min: 30% A and 70% B; 7–12 min: 70% A and 30% B;
12–25 min: 70% A and 30% B; 25–30 min: 100% A; and 30–35 min: 5% A and 95% B. The
calibration curves were linear over a concentration range of 0.01–10 µg/mL (r2 = 0.99).

2.9. Pharmacokinetic and Statistical Analysis

The area under the plasma concentration–time curve (AUC) was calculated using
the linear trapezoidal method based on the non-compartmental analysis. The maximum
plasma concentration (Cmax) and the time to reach the maximum plasma concentration
(Tmax) were directly observed values from the experimental data.

The data are presented as the mean values with the standard deviation. Statis-
tical analysis was performed using one-way ANOVA, followed by Dunnett’s test. A
p-value < 0.05 was considered statistically significant.

3. Results and Discussions
3.1. Selection of Excipients

SD formulations of MT-102 were prepared with various polymeric carriers at a weight
ratio of 1:5 using the solvent evaporation method to examine the effects of polymers on the
solubilization of MT-102. Then, in each SD formulation, the aqueous solubility of indirubin
(a standard marker of MT-102) was determined and compared to that of pure MT-102. As
shown in Figure 2, all the polymer-based SDs enhanced the aqueous solubility of indirubin,
although to different extents. Among the tested carriers, povidone K30 (PVP K30) and
poloxamer 407 (P407) enhanced indirubin solubility the most, by about 15–18 fold compared
to pure MT-102 (Figure 2). This result may be explained by better wettability, reduced
particle size, and a change in drug crystallinity [8,26]. In general, adding a surfactant to
an SD formulation should lower the degree of supersaturation, preventing nucleation and
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thermodynamic crystal growth, and thus inhibiting drug precipitation while improving
drug dissolution [27]. Given that P407 has the dual function of an amphiphilic surfactant
and a polymeric carrier [28], P407 can form micelles and allocate hydrophobic drugs into
the micellar core [7,26,27], resulting in improved drug solubility. Next to P407, PVP K30
achieved the second highest enhancement in drug solubility (Figure 2), which may be due
to an increase in wettability, dispersion of drugs in amorphous forms, and inhibition of
recrystallization [27]. As a commonly used hydrophilic polymer, PVP K30 is soluble in
volatile solvents and suitable for the solvent evaporation method. Furthermore, it has
a high glass transition temperature (Tg = 163 ◦C), which aids in the physical stability of
amorphous SDs during storage [15,28]. Although P188 and PVP K30 showed solubility
enhancement to a similar extent, PVP K30-based SDs provided a solid powder with better
flowability, while P188-based SD was slightly viscous. Therefore, P407 and PVP K30 were
selected to prepare the ternary SDs for MT-102 in this study.

Figure 2. Effect of carriers on the aqueous solubility of indirubin in SD formulations of MT-102
(mean ± s.d., n = 3).

3.2. Optimization of SD Formulations

As summarized in Table 1, the ternary SD formulations (F1–F5) were prepared with
P407 and PVP K30 at various drug–polymer ratios. The SDs effectively improved the
solubility of indirubin compared to pure MT-102 (Figure 3). SD-F4-containing drug, P407,
and PVP K30 at a 1:2:2 weight ratio increased the solubility of indirubin by 20-fold compared
to pure MT-102.

Table 1. Composition of ternary solid dispersions of MT-102.

Formulation Composition (w/w/w)

SD-F1 Drug: P407: PVP K30 = 1:1:1
SD-F2 Drug: P407: PVP K30 = 1:1:2
SD-F3 Drug: P407: PVP K30 = 1:1:3
SD-F4 Drug: P407: PVP K30 = 1:2:2
SD-F5 Drug: P407: PVP K30 = 1:3:2
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Figure 3. The effects of drug–polymer ratios on the aqueous solubility of indirubin in SD formulations
of MT-102 (mean ± s.d., n = 3).

Additionally, the drug release profiles of the SD formulations were investigated in
water. Figure 4 shows that the SDs significantly improved the dissolution of indirubin
compared to pure extract. In particular, SD-F4 showed a rapid dissolution of indirubin
within 1 h and dramatically increased the extent of drug dissolution. When compared to
pure MT-102, SD-F4 increased the dissolution of indirubin by 9.86-fold. This could be due
to various factors, including improved particle wettability, micellar solubilization of drugs,
and the inhibition of recrystallization in the presence of hydrophilic carriers. However,
when compared to SD-F4, further increasing the drug–polymer ratio to 1:3:2 (SD-F5) had
no discernible effect on dissolution behavior. This phenomenon could be explained, at least
in part, by the reversible gelling properties of P407. Increasing the P407 concentration can
increase the viscosity via the complex physical entanglement, retarding drug diffusion and
release from the polymeric matrix [29]. Taken together, the SD-F4 formulation was selected
as the optimal SD formulation for MT-102.

Figure 4. Dissolution profiles of indirubin from various SD formulations and pure extract (pure
MT-102) in water (mean ± s.d., n = 3).
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From the acidic to the neutral pH range, the pH dependency on drug dissolution
from the optimal SD formulation (SD-F4) was investigated. As shown in Figure 5, SD-F4
significantly increased the rate and extent of drug dissolution, achieving a similarly high
and fast drug release at all tested pH levels from acidic to neutral. This finding suggests that
SD-F4 can maintain its dissolution properties as it travels through the gastrointestinal tract.
Furthermore, when compared to its physical mixture, SD-F4 showed 2.21-fold higher drug
dissolution, implying that drug crystallinity may be changed to an amorphous state in SD
formulation. SD-F4 is a solid powder with better flowability and handling properties than
the pure viscous extract (Figure 6). Additionally, it should be better suited to developing
solid dosage forms, such as tablets and capsules, resulting in improved patient compliance.

Figure 5. Dissolution profiles of indirubin from SD-F4, pure extract (pure MT-102), and physical
mixture (PM) at various pH levels (mean ± s.d., n = 3). (a) Water, (b) pH 1.2, (c) pH 4.5, and (d) pH 6.8.

Figure 6. Images of MT-102 (pure extract) and SD-F4. Each formulation equivalent to 25 mg/mL of
MT-102 was dissolved in water.
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3.3. Storage Stability

The solubility and dissolution characteristics of SD-F4 were assessed after three months
of storage at 4 ◦C and 25 ◦C. The enhanced solubility of indirubin was well maintained
after storage at both temperatures, as shown in Figure 7. Additionally, the dissolution
behavior of SD-F4 did not change during storage at 4 ◦C and 25 ◦C (Table 2 and Figure 8).
This result indicates that drugs were stably dispersed in SD-F4, retaining the improved
dissolution properties during storage.

Figure 7. Solubility of indirubin in SD-F4 after three months of storage at 4 ◦C and 25 ◦C
(mean ± s.d., n = 3).

Table 2. Dissolution of indirubin from SD-F4 after storage at 4 ◦C and 25 ◦C (mean ± s.d., n = 3).

Temp. (◦C)
Indirubin Concentration (ng/mL)

Day 0 1 Month 2 Months 3 Months

4 449 ± 16 436 ± 24 437 ± 22 441 ± 28
25 449 ± 16 438 ± 23 436 ± 26 438 ± 25

Figure 8. Dissolution profiles of indirubin from SD-F4 (mean ± s.d., n = 3). After three months of
storage at 4 ◦C and 25 ◦C, the dissolution profiles of SD-F4 were evaluated in water and compared to
those on Day 0.

The morphological characteristics of SD-F4 were also examined using scanning elec-
tron microscopy (SEM) after three months of storage. On Day 0, the SDs showed a homoge-
neous blend of all ternary components in irregular-shaped particles, as shown in Figure 9.
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The morphology of SD-F4 appeared to be well-maintained in the solid state after three
months of storage, without aggregation.

Figure 9. Morphology of SD-F4 on Day 0 (a) and after three months of storage at 4 ◦C (b) and
25 ◦C (c). The scale bar on the left panel is 1 mm, and the scale bar on the right panel is 100 µm.

3.4. Pharmacokinetic Study

The oral pharmacokinetic profiles of SD-F4 and pure MT-102 were examined in rats.
After the oral administration of MT-102 (pure extract), the plasma concentration of indiru-
bin was so low that the pharmacokinetic parameters could not be determined. This result
is consistent with the pharmacokinetic profile of indirubin reported by Chen et al. [25]. In
contrast, the SD-F4 formulation improved the oral absorption of MT-102 and resulted in
significantly higher systemic exposure of indirubin than pure MT-102 (Figure 10). SD-F4
also had a fast drug absorption, with a Tmax of less than 1 h (Table 3). These results could be
due to the improved solubility and rapid dissolution of indirubin via the SD-F4 formulation.
The amorphous drug dispersion in SD-F4 facilitated the rapid drug dissolution in the GI
tract and increased luminal drug concentration, leading to the fast and enhanced drug
absorption. In addition, P407, an amphiphilic polymeric carrier in SD-F4, increased the
interface wetting and micellar solubilization of drugs, promoting intestinal drug absorption.
Furthermore, the polymeric carriers in SD-F4 may increase the mucosal permeability of the
intestinal epithelium, contributing to improved drug absorption [30–32]. Chen et al. [25]
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developed SMEDDS formulations using an isolated indirubin (single component) to im-
prove oral bioavailability. In their study, following an oral administration of SMEDDS in
rats, the Cmax and AUC of indirubin were 46.58–60.32 ng/mL and 499.64–681.69 µg·h/L,
respectively. Considering that the indirubin content in MT-102 extract is approximately
0.16%, SD-F4 showed much higher oral exposure to indirubin than the SMEDDS in the
literature when the pharmacokinetic data are normalized by the indirubin amount dosed
to rats. However, due to the many variables in the experimental conditions, the direct
comparison of pharmacokinetic data obtained from an isolated single compound and
natural extract may not be appropriate. MT-102 is an herbal extract containing multiple
active components, and SD-F4 can dissolve all of them, providing a clear aqueous solution
of MT-102. Therefore, in addition to indirubin, SD-F4 may improve the oral absorption of
other poorly soluble active components in MT-102, maximizing the synergistic effect in the
therapeutic outcome. Taken together, SD-F4 was effective at improving the oral absorption
of MT-102 in rats.

Figure 10. Plasma concentration–time profiles of indirubin after oral administration of SD-F4 or pure
MT-102 to rats (mean ± s.d, n = 5). The dose was equivalent to 500 mg/kg of MT-102.

Table 3. Pharmacokinetic parameters of indirubin after oral administration of SD-F4 or pure MT-102
(pure extract) to rats (mean ± s.d., n = 5). The dose was equivalent to 500 mg/kg of MT-102.

Formulation AUC (ng × h/mL) Cmax (ng/mL) Tmax (h)

SD-F4 448.5 ± 156.8 49.28 ± 15.43 0.9 ± 0.2
Pure MT-102 ND ND ND

ND: Not determined.

4. Conclusions

A ternary SD formulation of MT-102 (SD-F4) was prepared with PVP K30 and P407.
In vitro and in vivo studies using indirubin as a marker component suggest that SD-F4 ef-
fectively improved the dissolution and oral absorption of poorly soluble MT-102. Given that
herbal extract contains multiple active and insoluble components, the complete dissolution
of MT-102 extract via SD-F4 may maximize the synergistic effect of multiple components in
therapeutic efficacy. Furthermore, SD-F4 is a solid powder with better flowability and han-
dling properties than pure viscous extract and may be more suitable for solid dosage forms,
such as tablets and capsules, for improving patient compliance. Overall, the results suggest
that SD formulation should be an effective approach to enhancing the oral bioavailability
of herbal extracts containing multiple insoluble components.
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