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Abstract: This work was aimed to develop levodopa (L-dopa) nasal powder to achieve controllable
drug release and high nasal deposition efficiency. A series of uniform microparticles, composed of
amorphous L-dopa and excipients of hydroxypropyl methyl cellulose (HPMC), polyvinylpyrrolidone
(PVP), or hydroxypropyl-β-cyclodextrin (CD), were fabricated by a self-designed micro-fluidic spray
dryer. The effects of excipient type and drug/excipient mass ratio on the particle size, morphology,
density, and crystal property, as well as the in vitro performance of drug release, mucoadhesion,
and nasal deposition, were investigated. Increased amounts of added excipient, regardless of its
type, could accelerate the L-dopa release to different extent. The addition of CD showed the most
obvious effect, i.e., ~83% of L-dopa released in 60 min for SD-L1CD2, compared to 37% for raw
L-dopa. HPMC could more apparently improve the particle mucoadhesion than PVP and CD, with
respective adhesive forces of ~269, 111, and 26 nN for SD-L1H2, -L1P2, and -L1CD2. Nevertheless, the
deposition fractions in the olfactory region for such samples were almost the same (~14%), probably
ascribable to their quite similar particle aerodynamic diameter (~30 µm). This work demonstrates a
feasible methodology for the development of nasal powder.

Keywords: levodopa-doped nasal powder; spray drying; controlled drug release; strong mucoadhe-
sive force; high deposition efficiency

1. Introduction

Nasal administration offers a non-invasive pathway to delivery drugs for treating
both local and systemic diseases, with several advantages of bypassing the blood-brain
barrier, avoiding hepatic first-pass elimination, and reducing side effects [1–3]. Particularly
aiming at central nervous system (CNS) diseases, including schizophrenia, migraines,
Parkinson’s, etc., intranasal drug delivery via the olfactory and trigeminal routes directly
to the brain is capable of providing much more effective drug concentration at lower doses
and reduced risk for adverse reactions [4–7]. For instance, levodopa (L-dopa), as the most
effective antiparkinsonian agent, is usually administrated orally, but its bioavailability is
extremely low (~1%), such that over nearly half of Parkinson’s disease patients experience
the OFF episode, during which the symptoms of tremor, stiffness, or slowness of movement
dramatically increase [8–10]. Nasal delivery of L-dopa has the potential to solve such
problems by enhanced local drug concentration in the brain [11–13].
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At present, most of the commercially available nasal drugs are in liquid form. However,
the liquid form is not appropriate for L-dopa, as its dissolved molecule is unstable and
tends to be oxidized [14,15]. It was reported that, after storage for 9 days at 30 ◦C, the
L-dopa concentration in the solution of maleic acid (pH = 2.7) decreased to 81.2 ± 0.2%,
which highly jeopardized the treatment effect [16]. By contrast, the powder form of
L-dopa can be of superior stability, both physically and chemically, and more favorable for
achieving controllable drug release to maximize the therapeutic efficacy [13,17]. However,
difficulties still arise from the complicated physiological structure of the nasal cavity,
including the complex geometry hindering the delivery of the drug to the targeted area,
cilia clearance mechanism shortening the residence time of powders, and tightly connected
nasal mucosa limiting the drug permeability [2,18], which have to be fully considered
for nasal powder development. To tackle such challenges, different powders have been
developed by co-micronization of L-dopa with functional excipients via various particle
engineering technologies. For instance, Bartos et al. [19] manufactured L-dopa powders
co-milled with chitosan or sodium hyaluronate as the mucosal adhesion enhancer, which
showed the prolonged residence time in the nasal cavity. Another type of L-dopa powder
was fabricated by freeze drying co-dissolved L-dopa with maleic acid and hydroxypropyl-
β-cyclodextrin (CD) as the excipients, which was proven to have good physical stability
and improved distribution and absorption of L-dopa in the nasal cavity [16]. In addition,
other techniques, such as spray drying [13], supercritical fluid techniques [20–22], and
ionic gel methods [11,23], have been utilized to prepare L-dopa powders. Nevertheless,
the L-dopa nasal powders reported in previous relevant studies generally had wide size
distribution and/or were severely agglomerated, resulting in large variations in the powder
property and performance, even in the same sample batch, which largely impeded the
development of high-quality nasal powder formulations. The fabrication of powders with
uniform particle size and morphology is necessitated, in order to precisely investigate the
structure–performance relationship, i.e., correlating the particle structure attributes with
the nasal deposition efficiency and drug release behaviors.

This study was aimed at fabricating L-dopa-doped powders, potentially for nasal
administration with controllable drug release, high nasal delivery, and deposition efficiency.
A self-designed micro-fluidic spray dryer (MFSD) capable of manufacturing uniform
microparticles with tailorable characteristics and functionalities was utilized [24–26]. Hy-
droxypropyl methyl cellulose (HPMC), polyvinylpyrrolidone (PVP), and CD were selected
as excipients, which were used as the crystal inhibitor to fabricate the amorphous solid
dispersions. For nasal administration, HPMC and PVP were also used as the mucoadhe-
sive agent, while CD was used as the absorption enhancer [15]. The effects of excipient
type and drug/excipient mass ratio on particle physico-chemical properties, including the
size, morphology, crystalline, and thermal properties, were characterized using scanning
electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrom-
etry (FT-IR), and differential scanning calorimetry (DSC). In vitro particle adhesion and
L-dopa release behaviors were analyzed using atomic force microscopy (AFM) and a Franz
diffusion cell apparatus with simulated nasal fluid, respectively. The nasal delivery and
deposition performance of the obtained L-dopa-doped powders were evaluated using a
3D-printed quasi-real human nasal cast.

2. Materials and Methods
2.1. Materials

Levodopa (L-dopa, 3,4-dihydroxy-L-phenylalanine), hydroxypropyl-β-cyclodextrin
(CD, purity > 99%, Mw = 1541.54 g/mol), and hydroxypropyl methyl cellulose (HPMC, pu-
rity ≥ USP 2910, 2% viscosity: 3 mPa·s, methoxy: 28–30%, hydroxypropyl: 7.0–12%) were
purchased from Yuanye Bio-Technology Co., Ltd. (Shanghai, China) and Aladdin Biochem-
ical Technology Co., Ltd. (Shanghai, China), respectively. Polyvinylpyrrolidone K30 (PVP)
was purchased from Solarbio Science and Technology Co., Ltd. (Beijing, China). Porcine
gastric mucin was supplied by Kechuang Biotechnology Co., Ltd. (Suzhou, China). Simu-
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lated nasal fluid (SNF) was prepared as an aqueous solution containing NaCl (150.0 mM;
Macklin, Shanghai, China), KCl (40.0 mM; Macklin, Shanghai, China), and CaCl2·2H2O
(5.3 mM; Macklin, Shanghai, China) [27,28]. Deionized water (~18.2 MΩ/cm) from a
Milli-Q apparatus (Merck, Darmstadt, Germany) was used throughout the experiments.

2.2. Preparation of Feed Solution

Various feed solutions were prepared according to the formulation listed in Table 1.
In a typical procedure, 0.3 g of HPMC and 0.3 g of L-dopa were dissolved in 99.4 g of
deionized water, under stirring (600 rpm) at 40 ◦C, to obtain a clear solution without
any visible substance being present. The obtained feed solution with a mass ratio of
L-dopa/excipient = 1:1, namely L1H1, was used for spray drying. The same procedure
was employed for other feed solutions, in which the total solid content was kept at 0.6 wt%,
while the mass ratios of L-dopa for each excipient were 2:1, 1:1, and 1:2, respectively. In
addition, a pure L-dopa feed solution with a mass fraction of 0.3 wt% was also prepared
for spray drying.

Table 1. Formulation of feed solutions for spray drying.

Sample L-Dopa
(g/100 g Solution)

HPMC
(g/100 g Solution)

PVP
(g/100 g Solution)

CD
(g/100 g Solution)

Total Solid Content
(wt%)

L-dopa 0.3 / / / 0.3
L2H1 0.4 0.2 / / 0.6
L1H1 0.3 0.3 / / 0.6
L1H2 0.2 0.4 / / 0.6
L2P1 0.4 / 0.2 / 0.6
L1P1 0.3 / 0.3 / 0.6
L1P2 0.2 / 0.4 / 0.6

L2CD1 0.4 / / 0.2 0.6
L1CD1 0.3 / / 0.3 0.6
L1CD2 0.2 / / 0.4 0.6

2.3. Fabrication of Spray Dried (SD) L-Dopa Powders

SD L-dopa powders were prepared using the micro-fluidic spray dryer (MFSD), as
described in the previous work [29]. Briefly, the feed solution (400 mL) was kept in the
reservoir connected to the nozzle (orifice diameter = 75 µm), before being atomized into
small droplets to the drying chamber, with inlet and outlet temperatures of 185 ± 3 ◦C
and 88 ± 3 ◦C, respectively. The hot air flow rate was 280 ± 5 L/min. The obtained
powders, with yields of approximately 85%, were stored in desiccator at 25 ± 2 ◦C for
further characterization. The sample was named by SD-LxHy, SD-LxPy, or SD-LxCDy,
where x:y was the mass ratio of L-dopa to excipient.

2.4. Particle Characterization
2.4.1. Particle Size and Morphology

The particle morphology was characterized by scanning electron microscope (SEM,
SU1510, Hitachi High Technologies Corporation, Tokyo, Japan). The particle size and
distribution were acquired by analyzing SEM images containing over 500 particles using
ImageJ. The equivalent particle geometric diameter (Dg) was characterized as the minimum
diameter of the circumscribed circle of projection surface of individual particles. The
particle aerodynamic diameter (Da) was calculated by Equation (1):

Da = Dv

√
ρ

γρ0
(1)

where DV is the particle volumetric diameter, ρ is the particle density, ρ0 is the unit particle
density, and γ is the particle dynamic shape factor. For quasi-spherical particles, it was
assumed that DV ≈ Dg and γ ≈ 1 [24].
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2.4.2. Moisture Content, Powder Density and Flowability

The moisture content of the as-prepared powders was measured gravimetrically.
Approximately 0.1 g of sample was placed in an air oven at 105 ◦C for 3 h. The moisture
content was calculated by Equation (2):

Moisture =
[

W0 − W1

W0

]
× 100% (2)

where W0 and W1 represent the original and treated samples, respectively.
The bulk density (ρb) was determined by loosely filling a weighed amount of powder

(0.1–0.8 g) into a 5 mL measuring cylinder; the tapped density (ρt) was the ultimate
(equilibrium) density that would not change with the further increase of tap numbers [30].
The average density of samples was recorded based on three repeat measurements. The
powder flowability was characterized by Carr’s index (CI), based on Equation (3):

CI =
[

ρt − ρb
ρt

]
× 100% (3)

where ρb and ρt represent the bulk and tapped densities, respectively. Generally, CI < 25%
indicates an acceptable particle flowability, while CI > 25% means poor flowability [31].

2.4.3. Powder X-ray Diffraction (XRD)

Powder X-ray diffraction (XRD) characterization was performed with a desktop diffrac-
tometer (Cu-Kα, D2 PHASER, Bruker, Germany), which operated at 30 kV and 10 mA. The
scanning range was 5◦–90◦ (2θ basis), with a step size of 0.02◦ and 0.3 s for each step. Each
experiment was repeated three times.

2.4.4. Thermal Analysis

Differential scanning calorimetry (DSC) analyses were performed with a Mettler
Toledo DSC 3+ instrument. Samples (~5 mg) were loaded onto an Al pan (40 µL, Cat.
00027331, Mettler Toledo) with a one-hole lid and analyzed in a temperature range of
5–350 ◦C at a heating rate of 10 ◦C/min under a nitrogen flow (50 mL/min).

2.4.5. Fourier Transform Infrared (FT-IR)

Fourier transform infrared (FT-IR) spectra were obtained by using a Bruker tensor
27 spectrometer (Bruker, Germany) with a resolution of 4 cm−1 and wavenumber range of
400 to 4000 cm−1 using KBr pellets at room temperature.

2.5. In Vitro L-Dopa Release Study

In vitro L-dopa release study was performed using a Franz diffusion cell (12 mm,
15 mL volume, TP-6P, Tianjin Pharmacopoeia Standard Instrument Factory, China). The
SNF was filled into receptor cell and stirred (200 rpm) at 34 ◦C. Accurately weighed 10 mg
of L-dopa-doped powders was uniformly dispersed on the cellulose acetate membrane
(0.45 µm, Xingya Purification Material Factory, Shanghai, China) inserted between the
donor and receptor cells, followed by the addition of 0.5 mL SNF to the donor cell, in
order to facilitate uniform spreading of the powder over the whole membrane surface
and wetting [32]. At scheduled time intervals, 200 µL of samples were withdrawn from
the receptor cell and replaced with the fresh SNF of same volume. Ultraviolet–visible
spectrophotometer (DR6000, HACH, Washington, DC, USA) was used to quantitative
analysis the L-dopa content at λ = 280 nm, and the calibration curve of L-dopa was linear
over the concentration range of 1–50 µg·mL−1 (R2 > 0.999). Each sample was measured
three times.
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2.6. In Vitro Mucoadhesion Test

Evaluation of mucoadhesive properties was carried out by measuring the particle–
mucin adhesive force using an atomic force microscope (AFM, Dimension Icon, Bruker,
Billerica, MA, USA), as previously reported [24]. Briefly, the Si3N4 probes (nominal spring
constant = 0.58 nN/m, BudgetSensors, Innovative Solutions Bulgaria Ltd., Bulgaria) were
covered by the simulated nasal mucus (95% water, 3% mucins, and 2% NaCl) [33]. The
mucus-covered probe was then contacted with the microparticles for 10 s under 25% RH at
25 ◦C. Based on the force–distance curves, the particle–mucin adhesive force was calculated
through the software of NanoScope Analysis 1.7 (Bruker, USA). A total of 300 randomly
tests were performed for each sample.

2.7. In Vitro Nasal Delivery and Deposition Performance of L-Dopa Powders

A self-developed 3D-printed cast of nasal cavity, based on CT tomography of a male
adult’s nose, was applied to evaluate the nasal delivery and deposition performance of
L-dopa powders. The model is assembled virtually by five detachable compartments
as nasal vestibule, lower turbinate, middle turbinate, olfactory region, and nasopharynx
(Figure 5). The internal wall of each compartment was coated with 1% (v/v) Tween 20 in
methanol, allowing for particle deposition [34,35]. During the deposition assessment, 20 mg
of powder was administered into the cast using a simplified 3D-printed nasal powder
delivery device (Figure S1) through a breathing simulator that enabled driving flow rates
up to 50 L/min within 3 s [36,37]. The administration angle was set at 60◦ from horizontal,
and the tip of the device was inserted at a distance of 5 mm. The delivery device was
weighed before and after actuation to determine the actual emitted sample amounts. After
administration, the nasal cavity model was disassembled, and all the compartments were
rinsed with deionized water to dissolve deposited powders. The L-dopa content was
determined spectrophotometrically at λ = 280 nm. Accordingly, the deposition profiles at
different positions were acquired. All measurements were performed in triplicate.

2.8. Statistical Analysis

The model-independent similarity factor of f 2 was calculated according to Equation (4)
and employed to evaluate the drug release profiles of different samples.

f2 = 50 × log


[

1 + (1/n)
n

∑
t=1

(Rt − Tt)
2

]−0.5

× 100

 (4)

where Rt and Tt are the dissolution value at time point t of the reference and test product,
respectively. The release profiles of different samples could be considered to be similar
when f 2 > 50 [28,38].

3. Results and Discussion
3.1. Particle Size, Morphology, Density, and Moisture Content

Uniform L-dopa/excipient powders were successfully prepared by spray drying the
feed solution (Table 1) via MFSD. Unlike commercial L-dopa exhibiting irregular shapes,
with polydisperse sizes ranging from several micrometers to hundreds of micrometers
(Figure 1a), SD-L-dopa microparticles presented a spherical morphology with a smooth
surface (Figure 1b) and extremely narrow size distribution (25.61 ± 0.46 µm) (Table 2). The
addition of HPMC, PVP, or CD generated wrinkled microparticles with different sizes and
surface textural structures, depending on the excipient type (Figure 1d–f). HPMC tended
to produce microparticles with the highest degree of surface depression than the PVP- and
CD-involved microparticles, whereas the CD-involved microparticles were endowed with
the best sphericity. During drying process, the viscoelastic shell of the droplet formed by the
precipitation of the precursor ingredients was subjected to buckling under capillary force,
induced by the continuous drying, thus leading to wrinkled microparticles [26,39]. The



Pharmaceutics 2022, 14, 1384 6 of 16

SD microparticles containing excipient also showed an extremely narrow size distribution
(Table 2). It was noted that the drug/excipient mass ratio had a very limited influence
on the particle geometric size when using the same kind of excipient, e.g., 43.39 ± 1.41,
44.40 ± 1.43, and 45.70 ± 1.68 µm for SD-L2H1, -L1H1, and -L1H2, respectively, whereas
the effect of the excipient type on the particle geometric size was more apparent and
changed, in the order of HPMC > PVP > CD, at the same excipient content (Table 2), e.g.,
40.81 ± 1.43 µm for SD-L1P2 and 38.91 ± 1.07 µm for SD-L1CD2, possibly due to the
different time for shell formation of droplet containing various types of excipient [40]. The
polymeric molecule of HPMC and PVP tended to precipitate within a shorter time than that
of CD, resulted from their relatively large hydrodynamic size and low solubility [40–42],
thus accelerating the formation of the shell and, consequently, the larger SD microparticle.

The particle bulk density and tapped density gradually decreased as the excipient
content increased for each kind of excipient (Table 2), mainly due to the fact that the density
of L-dopa (~1.5 g/cm3) is greater than that of HPMC (~1.39 g/cm3), PVP (~1.144 g/cm3),
and CD (~1.4 g/cm3). Compared to HPMC- (CI = 29.34 ± 2.70% ~ 37.32 ± 2.51%) and PVP-
involved (CI = 26.31 ± 2.10% ~ 34.51 ± 2.74%) microparticles, the lower CI value (varied
between 12.10 ± 1.86% and 17.91 ± 1.06%) of CD-involved microparticles revealed its better
flowability (Table 2). Moreover, SD particles containing HPMC and PVP exhibited higher
moisture contents (i.e., between 5.26 ± 0.17 wt% and 6.33 ± 0.20 wt%) than CD-involved mi-
croparticles of 4.33 ± 0.28 wt% and 4.57 ± 0.43 wt%, e.g., 5.38 ± 0.65 wt%, 6.33 ± 0.20 wt%
and 4.33 ± 0.28 wt% for SD-L1H2, -L1P2 and -L1CD2, respectively. During drying, the
HPMC and PVP of higher molecular weights migrated more slowly toward the inside of
droplet than CD, and they tended to precipitate to form a shell on the droplet surface. The
formed shell jeopardized water evaporation and led to a higher moisture content [40].
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Figure 1. SEM images of raw L-dopa (a), SD-L-dopa (b), and SD-L-dopa after storage (c); SD-L2H1
(d1), SD-L1H1 (d2), and SD-L1H2 (d3); SD-L2P1 (e1), SD-L1P1 (e2), and SD-L1P2 (e3); SD-L2CD1
(f1), SD-L1CD1 (f2), and SD-L1CD2 (f3).
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Table 2. Summary of the physical properties of the various SD powders.

Sample

Particle
Geometric
Diameter
(Dg, µm)

Moisture
Content
(wt%)

Bulk Density
(ρb, g/cm3)

Tapped
Density

(ρt, g/cm3)

Carr’s Index
(CI, %)

Calculated Particle
Aerodynamic

Diameter (Da, µm)

SD-L-dopa 25.61 ± 0.46 / / / / /
SD-L2H1 43.39 ± 1.41 5.68 ± 0.25 0.34 ± 0.01 0.49 ± 0.01 30.03 ± 1.94 30.38 ± 0.99
SD-L1H1 44.40 ± 1.43 5.73 ± 2.07 0.29 ± 0.01 0.47 ± 0.01 37.32 ± 2.51 30.44 ± 0.98
SD-L1H2 45.70 ± 1.68 5.38 ± 0.65 0.25 ± 0.02 0.35 ± 0.02 29.34 ± 2.70 27.04 ± 1.00
SD-L2P1 40.27 ± 1.06 5.26 ± 0.17 0.50 ± 0.01 0.75 ± 0.02 32.61 ± 1.00 34.88 ± 0.92
SD-L1P1 40.99 ± 1.35 6.01 ± 0.63 0.45 ± 0.02 0.68 ± 0.02 34.51 ± 2.74 33.81 ± 1.11
SD-L1P2 40.81 ± 1.43 6.33 ± 0.20 0.43 ± 0.02 0.58 ± 0.02 26.31 ± 2.10 31.08 ± 1.09

SD-L2CD1 36.92 ± 0.88 4.57 ± 0.43 0.57 ± 0.02 0.65 ± 0.02 12.10 ± 1.86 29.77 ± 0.71
SD-L1CD1 38.83 ± 0.95 4.33 ± 0.32 0.47 ± 0.01 0.54 ± 0.02 12.68 ± 2.52 28.54 ± 0.70
SD-L1CD2 38.91 ± 1.07 4.33 ± 0.28 0.42 ± 0.02 0.52 ± 0.02 17.91 ± 1.06 28.06 ± 0.77

3.2. Particle Crystal Property and Storage Stability

The particle’s crystal properties were characterized by XRD (Figure 2A) and DSC
(Figure 2B). The as-supplied L-dopa showed sharp peaks between 18.89◦ and 29.12◦, due to
its crystalline nature (Figure 2A (a)). In addition, the as-supplied L-dopa showed only one
endothermic peak at 297 ◦C, corresponding to its melting point (Figure 2B (a)). Compared
to the as-supplied L-dopa, the sharp crystalline peaks disappeared in the XRD pattern
of SD-L-dopa (Figure 2A (e)), indicating its amorphous state. Meanwhile, the recrystal-
lization peak at 180.83 ◦C and melting peak at 291 ◦C in the DSC curve (Figure 2B (e))
also confirmed its amorphous state [43]. This amorphous state of L-dopa could have re-
sulted from the extremely fast evaporation rate of the droplet during spray drying, which
allowed insufficient time for L-dopa crystal formation [44,45]. All three raw excipients
were amorphous (Figure 2A (b–d)), due to their high glass transition temperature (Tg), i.e.,
155.86 ◦C for HPMC (Figure 2B (b)), 160.0 ◦C for PVP (Figure 2B (c)), and 213 ◦C for CD
(Figure 2B (d)) [46]. After co-spray drying L-dopa with excipients, no XRD (Figure 2A (f–n))
or apparent exothermic (Figure 2B (f–n)) peaks were observed, indicating the formation
of L-dopa-doped amorphous solid dispersions [44]. Compared to the SD-L-dopa, the
shift of recrystallization and melting peaks in co-spray dried sample (Figure 2B (f–n)) con-
firmed the intermolecular interactions between the L-dopa and excipients, which is further
discussed in the FT-IR section. Such a considerable effect of these excipients on the anti-
crystallization of L-dopa could be explained with two aspects. On the one hand, according
to the Williams–Landel–Ferry theory, the crystallization rate is a function of the difference
between the Tg of the materials and process temperature (Tp) (Tp-Tg) [47]. Excipients of
high Tg intended to accelerate the drying rate of the droplet, thereby restricting the time for
L-dopa nucleation. On the other hand, the cross-linked chains of HPMC and PVP, as well
as the interior cavity of CD, could act as physical barriers to reduce the molecular mobility
of L-dopa nucleation, thus inhibiting its crystallization.

It was reported that amorphous substances possessed high energy and were inclined to
transform to a more stable crystalline state during storage, which would likely compromise
the re-dissolubility and bioavailability of the drugs [48]. After storage at 22 ◦C under
18% RH in a Ziplock bag for 24 h, few tiny crystals appeared on the surface of SD-L-dopa
(Figure 1c); accordingly, the diffraction peaks appeared in the XRD spectrum (Figure S2),
indicating the crystallization of amorphous L-dopa (Figure 1b). By contrast, there were
no changes in the particle morphology (Figure S3) and crystal properties (Figure S4) of
the SD samples, with a relatively small proportion (1/3) of the excipients after storage at
22 ◦C under 18% RH for one month. This suggests that the excipients continuously play
a critical role in preventing the crystallization of L-dopa during storage. Apart from the
possible reasons mentioned above, such an excellent anti-crystallization effect might be
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due to the specific interactions of the excipients with L-dopa, upon which the chemical
potential necessary for nucleation of L-dopa was highly reduced [44].
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To verify the possible interactions between the L-dopa and excipients, FT-IR charac-
terization of typical samples was carried out. As shown in Figure 2C (a), raw L-dopa
showed feature peaks centered at 3211.10 cm−1 assigned to the stretching vibrations of -
NH2 groups and 1655.80 cm−1 for stretching vibrations of C=O. Pure HPMC and CD showed
prominent absorption bands at 3471.18 (Figure 2C (b)) and 3422.75 cm−1 (Figure 2C (d)),
respectively, which are mainly attributed to the stretching vibrations of the -OH groups.
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For pure PVP (Figure 2C (c)), peaks at 1662.81 cm−1, attributed to the stretching vibrations
of C=O, were observed; meanwhile, the broad band at 3453.07 cm−1, corresponding to
-OH groups, indicated the presence of water, which is in good agreement with the results
of DSC (Figure 2B (c)). Compared to raw L-dopa and HPMC, for SD-L2H1 (Figure 2C (f)),
SD-L1H1 (Figure 2C (g)), and SD-L1H2 (Figure 2C (h)), the stretching vibration peak of
the -OH group in HPMC downshifted from 3477.18 to 3451.30 (∆ν = 25.88 cm−1), 3444.72
(∆ν = 32.46 cm−1), and 3472.17 cm−1 (∆ν = 5.01 cm−1), respectively. Meanwhile the C=O of
L-dopa migrated to 1639.22 (∆ν = 16.58 cm−1), 1649.98 (∆ν = 5.82 cm−1), and 1640.60 cm−1

(∆ν = 15.2 cm−1), respectively, which evidenced the hydrogen bonds formed between L-dopa
and HPMC after spray drying [49]. For SD-L2P1 (Figure 2C (i)), SD-L1P1 (Figure 2C (j)), and
SD-L1P2 (Figure 2C (k)), the stretching vibration peak of the C=O groups in PVP downshifted
from 1662.81 to 1648.28 (∆ν = 14.53 cm−1), 1652.75 (∆ν = 10.06 cm−1), and 1657.15 cm−1

(∆ν = 5.66 cm−1), respectively, which also indicated the hydrogen bonds formed between
PVP and L-dopa through interactions with the -NH2 group of L-dopa [50]. With regard to
SD-L2CD1 (Figure 2C (l)), SD-L1CD1 (Figure 2C (m)), and SD-L1CD2 (Figure 2C (n)), the -OH
group migrated from 3422.75 to 3414.31 (∆ν = 8.44 cm−1), 3404.01 (∆ν = 18.74 cm−1), and
3407.24 cm−1 (∆ν = 15.51 cm−1), respectively; additionally, the C=O of L-dopa red-shifted,
which also demonstrate the hydrogen bonds between L-dopa and CD. Such obvious hydrogen
bonds formed between excipients and L-dopa could be another reason for the crystallization
inhibition.

3.3. In Vitro L-Dopa Release Behavior

The in vitro release profiles of L-dopa from the SD microparticles containing the
excipients were assessed using a vertical Franz diffusion cell. Although SD-L-dopa was
of the amorphous state, its dissolving rate was apparently lower than that of raw L-
dopa (Figure 3). This could be because SD-L-dopa was hygroscopic and tended to be
agglomerated into big lump, which impeded the wetting process of the sample, thus
decelerating its dissolution. By comparison with the raw L-dopa and SD-L-dopa, the
excipient-involved SD microparticles were generally of an increased release rate regarding
L-dopa, however, to different extent (Figure 3), which correlated well with the wetting
process facilitated by the hydrophilic excipient. Once dispersed in the release medium, a
hydration layer formed, covering the microparticle surface, due to the good wettability of
the excipient; meanwhile, the amorphous drug molecules dissolved and released to the
medium [28,51]. Using different amounts of HPMC as an excipient, the L-dopa release rates
were quite similar, as indicated by 58.92 < f 2 < 70.39, which was calculated according to
the Equation (4), suggesting the limited influence of HPMC content on the L-dopa release
rate. Increasing the PVP content induced a slightly faster L-dopa release, as revealed by the
f 2 = 47.75 of SD-L2P1 and -L1P1; however, further addition of PVP did not significantly
accelerate the L-dopa release rate, with f 2 = 64.24 of SD-L1P1 and -L1P2. As for the CD-
involved powders, a gradually elevated release rate of L-dopa was observed for powders
of higher CD content (23.75 < f 2 < 42.48), which could be ascribed to the fact that more CD
content accelerated the erosion of powder, thereby increasing the release rate of L-dopa [52].

With regard to the effect of the excipient type on the L-dopa release, it was found
that there was no significant difference in the release rate of L-dopa for the SD samples of
the drug/excipient ratios 2:1 and 1:1 (Figure 3A,B), as indicated by 51.51 < f 2 < 73.49. It
implies that the influence of the excipient type on the L-dopa release was limited when
the excipient content was relatively low. By contrast, with the drug/excipient ratios of
1:2, L-dopa was released more rapidly from the CD-involved microparticles than HPMC
and PVP. Particularly, more than ~83% of the total L-dopa dose was released in 60 min
for SD-L1CD2, much higher than SD-L1P2 (~71%) and SD-L1H2 (~64%) (Figure 3C). This
could be ascribed to the higher solubility of CD, as compared to that of HPMC and PVP,
i.e., ~65, 5, and 5 g/100 mL H2O, respectively.
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3.4. In Vitro Mucoadhesive Property

The in vitro mucoadhesion test was performed using AFM by fully covering the AFM
probe with the mucus, in order to adhere to the surface of SD microparticles. Although
this method is still arguable, in terms of the correlation between in vitro and in vivo,
its feasibility for comparing the mucoadhesive property of various samples has been
validated [53–55]. Figure 4 displays the representative adhesion force–distance curves of
different SD powders. SD-L-dopa powder showed an adhesion force similar to that of the
raw L-dopa (23.16 ± 2.69 nN), thus indicating the neglectable influence from the crystalline
state of L-dopa. HPMC-involved microparticles showed adhesion forces of 63.54 ± 7.19 nN,
117.43 ± 12.32 nN, and 269.23 ± 7.91 nN for SD-L2H1, -L1H1, and -L1H2, respectively. By
using PVP as the excipient, the adhesion forces were 26.94 ± 9.28 nN, 69.81 ± 8.20 nN, and
110.66 ± 13.36 nN for SD-L2P1, -L1P1, and -L1P2, respectively. Obviously, the adhesion
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force increased with more HPMC or PVP content, probably due to the fact that hydrated
polymer chains of HPMC and PVP could interpenetrate with mucus glycoproteins [56],
thereby enhancing the interactions between the microparticles and nasal mucosa via van
der Waals forces, hydrogen bonds, hydrophobic forces, or/and electrostatic forces [56,57].
In particular, HPMC had a more considerable effect on the adhesion force than PVP with the
same drug/excipient ratio, mainly due to the longer polymeric chains and more hydrogen
bonds donor/acceptor of HPMC, which could facilitate its interaction with mucin to form
a strengthened network. CD had a very limited influence on the adhesion force of the
SD microparticles, as evidenced by the value of ~24.34 nN, regardless of the mass ratio
of L-dopa to CD, possibly due to the poor interaction of CD and mucus. These results
demonstrated that the SD microparticles’ mucoadhesion could be tuned by rationally
selecting different types and contents of excipient for achieving a prolonged residence time
in the nasal cavity.
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3.5. In Vitro Nasal Deposition Performance

Although there has been no comprehensive international consensus regarding the
relationship between aerosol characteristics and deposition sites of the nasal powders, the
deposition performance should be carefully evaluated, in conjunction with the particle
formulation, structural attributes, and administration parameters, etc., in the early phase of
the product development of nasal powders, in order to achieve the expected therapeutic
outcome [58]. To evaluate the in vitro deposition performance of nasal powders, a 3D-
printed nasal cast has been created, according to the CT scans of an adult human nose
(Figure 5A). The nasal valve (Figure 5B), with a minimum coronal cross-sectional area
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(Areamin) of approximately 20 mm2, is located beyond the nasal vestibule and at the anterior
aspect of the inferior turbinate, which is a natural obstruction for inhaled particles, resulting
from the narrowing and twisting of the airway in this region. The nasal cast (Figure 5C)
was divided into five representative parts, i.e., the nasopharynx, nasal vestibule, olfactory
region, and middle and inferior turbinate (Figure 5D (1–5)). Among them, the olfactory
region has the potential for direct nose-to-brain drug delivery, while the turbinate represents
the targeted area to achieve local drug effects or systemic drug bioavailability [59].
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Figure 5. CT-scan image of an adult human nose (A); the nasal valve with the minimum coronal
cross-section area (Areamin ~20 mm2) (B); a 3D-printed nasal cast based on the CT-scan (C); the
disassembled part of the nasal cast (D): 1, nasopharynx; 2, nasal vestibule; 3, olfactory region;
4, middle turbinate; 5, inferior turbinate.

SD-L1H2, SD-L1P2, and SD-L1CD2, with relatively rapid drug release and large
adhesion forces, were selected for the in vitro nasal deposition tests. Figure 6 shows
the deposition fractions in different regions of the nasal cast. Overall, all the samples
exhibited approximately 99% doses delivered to the nasal cavity under a mimic breath
flow of 50 L/min. The total dose recovery ratios calculated were 92.80 ± 6.01% for SD-
L1H2, 88.24 ± 2.04% for SD-L1P2, and 90.56 ± 5.43% for SD-L1CD2 (Table S1). More
importantly, these samples showed good deposition fractions, both for the turbinate and
olfactory regions, i.e., approximately 30% and 14%, respectively (Figure 6), rendering the
high potential for effective L-dopa delivery.
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Under the action of airflow, the powder movement, impaction, and adhesion behaviors
were the primary determinants of the deposition regions in the nasal cavity. It is noted that
the vastly different adhesion force of the tested samples had almost no influence on the
deposition fraction. As for the particle impaction that could occur whenever the air stream
carrying the particles changes its direction along the intranasal passage, the impaction
probability is proportional to Ud2 sin θ/R, where θ is the angle of the airway bend (Figure
S5), U is the airstream velocity, d is the particle aerodynamic diameter, and R is the airway
radius [60]. Since θ and U were kept constant in this study, d was the determinant factor
of the particle impaction. As the SD-L1H2, -L1P2, and -L1CD2 had similarly calculated
aerodynamic diameters (D50), according to Equation (1), i.e., 27.04 ± 1.00, 31.08 ± 1.09, and
28.06 ± 0.77 µm, respectively (Table 2), they likely moved in an analogous trajectory and
tended to impact similar areas of the nasal cavity. Based on their quite similar deposition
fractions, it was reasonably inferred that even the lowest adhesion force (~26 nN) of
the SD-L1CD2 could be sufficient for its deposition after impaction. More systematical
investigation on the effects of particle aerodynamic diameter and mucosal adhesion force
on the deposition performance of nasal powders is being conducted and will be reported
in future.

4. Conclusions

A series of L-dopa-doped powders, potentially for nasal delivery, were successfully
fabricated by co-spraying L-dopa with the excipients of HPMC, PVP, or CD via MFSD.
The excipient-involved powders were of particle sizes ranging from 36.92 to 45.70 µm and
showed extremely narrow size distribution. Compared with HPMC- and PVP-involved
powders, the CD-involved powders presented excellent flowability, as indicated by the
CI between 12.10% and 17.91%, mainly due to their size uniformity and much better
sphericity. Meanwhile, the doped L-dopa was amorphous, due to the high Tg of those
excipients acting as physical barriers, which not only reduced the molecular mobility of
L-dopa, but also restricted its nucleation. The addition of excipient, regardless of its type,
could accelerate the L-dopa release to a different extent, which correlated well with the
wetting process facilitated by the hydrophilic excipient. SD-L1CD2 showed the rapidest
release rate, i.e., ~83% of L-dopa released in 60 min, compared to 37% for raw L-dopa.
Moreover, HPMC could more apparently improve the particle mucoadhesion than PVP and
CD, with the respective adhesive forces of ~269, 111, and 26 nN for SD-L1H2, -L1P2, and
-L1CD2, mainly due to the relatively higher viscosity and cross-linked polymeric structure
of HPMC. Although these three samples had remarkable differences in adhesion force, the
deposition fractions in olfactory region were almost the same (~14%), probably ascribable
to their quite similar particle aerodynamic diameter (~30 µm), which played a crucial role
in the deposition efficiency. The formulation design and in vitro evaluation methods of
L-dopa-doped powder presented in this study provide guidance for the development of
nasal powder products.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14071384/s1, Figure S1: A 3D-printed nasal powder
delivery device to simulate the breath-powered Bi-Directional™ device; 1-air inlet, 2-capsule chamber,
3-nasal adaptor; Figure S2: XRD patterns of the SD-L-dopa after storage; Figure S3: SEM images of
SD samples after storage for different times: SD-L2H1 (a1-3), SD-L2P1 (b1-3), and SD-L2CD1 (c1-3),
under the storage condition of 22 ◦C/18% RH for one day (1D, a1, b1 and c1), one week (1W, a2, b2
and c2), and one month (1M, a3, b3 and c3), respectively; Figure S4: XRD patterns of SD samples after
storage for different times: SD-L2H1 (a), SD-L2P1 (b), and SD-L2CD1 (c), under the storage condition
of 22 ◦C/18% RH for one day (a1, b1 and c1), one week (a2, b2 and c2), and one month (a3, b3 and
c3), respectively; Figure S5: Schematic diagram of the inertial impaction process of particles; Table S1:
Emitted fraction and recovery fraction of SD-L1H2, -L1P2, and -L1CD2.
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