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Abstract: Pharmacometabolomics in early phase clinical trials demonstrate the metabolic profiles of
a subject responding to a drug treatment in a controlled environment, whereas pharmacokinetics
measure the drug plasma concentration in human circulation. Application of the personalized peak
plasma concentration from pharmacokinetics in pharmacometabolomic studies provides insights
into drugs’ pharmacological effects through dysregulation of metabolic pathways or pharmaco-
dynamic biomarkers. This proof-of-concept study integrates personalized pharmacokinetic and
pharmacometabolomic approaches to determine the predictive pharmacodynamic response of hu-
man metabolic pathways for type 2 diabetes. In this study, we use metformin as a model drug.
Metformin is a first-line glucose-lowering agent; however, the variation of metabolites that potentially
affect the efficacy and safety profile remains inconclusive. Seventeen healthy subjects were given a
single dose of 1000 mg of metformin under fasting conditions. Fifteen sampling time-points were
collected and analyzed using the validated bioanalytical LCMS method for metformin quantification
in plasma. The individualized peak-concentration plasma samples determined from the pharmacoki-
netic parameters calculated using Matlab Simbiology were further analyzed with pre-dose plasma
samples using an untargeted metabolomic approach. Pharmacometabolomic data processing and
statistical analysis were performed using MetaboAnalyst with a functional meta-analysis peaks-to-
pathway approach to identify dysregulated human metabolic pathways. The validated metformin
calibration ranged from 80.4 to 2010 ng/mL for accuracy, precision, stability and others. The me-
dian and IQR for Cmax was 1248 (849–1391) ng/mL; AUC0-infinity was 9510 (7314–10,411) ng·h/mL,
and Tmax was 2.5 (2.5–3.0) h. The individualized Cmax pharmacokinetics guided the untargeted
pharmacometabolomics of metformin, suggesting a series of provisional predictive human metabolic
pathways, which include arginine and proline metabolism, branched-chain amino acid (BCAA)
metabolism, glutathione metabolism and others that are associated with metformin’s pharmacologi-
cal effects of increasing insulin sensitivity and lipid metabolism. Integration of pharmacokinetic and
pharmacometabolomic approaches in early-phase clinical trials may pave a pathway for developing
targeted therapy. This could further reduce variability in a controlled trial environment and aid in
identifying surrogates for drug response pathways, increasing the prediction of responders for dose
selection in phase II clinical trials.
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1. Introduction

Metabolites are the molecules that react in metabolic reactions in a living organism
and constantly change in a myriad of chemical reactions [1]. Metabolomics is the study
of endogenous and exogenous metabolites in a biological system using emerging tech-
nologies, such as liquid chromatography or gas chromatography–mass spectrometry and
NMR [2]. The application of metabolomics through measuring the metabolic profiles of
drug reactions and drug variation responses in the biological system is defined as phar-
macometabolomics [3,4]. The drug pharmacology effects interplay with the epigenetic
factors, environmental factors, demographic characteristics and disease-related factors [5].
Identifying the dysregulated human metabolic pathways in pharmacometabolomic study
helps to clarify the multifaceted pharmacological effects: mechanism of actions, safety
biomarkers and efficacy biomarkers.

Pharmacokinetic studies measured the rate and extent of a drug’s absorption, dis-
tribution and elimination in the body [6], which provides information on a drug’s Cmax
(maximum plasma concentration) and Tmax (time to reach Cmax) and other parameters.
The integration of pharmacometabolomic study with pharmacokinetics and pharmacody-
namics specifically studies the temporal changes in drug concentration, and endogenous
metabotypes were proposed to realize personalized medicine [5]. It is postulated that
the drug was bound to most of the target site at the peak plasma concentration to trigger
the highest pharmacodynamic changes in the therapeutic dose; therefore, the pharma-
cometabolomics analyzed the individual metabolic profiles between the baseline and the
treatment data’s potential, revealing the drug’s multifaceted pharmacological effects in
therapeutics and adverse drug reactions.

Metformin has been a first-line antidiabetic agent for decades, but the mechanism of
action remains unclear. The pharmacological effects of metformin include increasing insulin
sensitivity and glucose uptake into cells, inhibiting hepatic gluconeogenesis and improving
glucose update and utilization [7]. Besides its antidiabetic effects, metformin is also used
for weight reduction, lowering plasma lipid levels, prevention of vascular complications
and treatment of polycystic ovary syndrome [8]. Metformin treatment is linked to the
tricarboxylic acid (TCA) cycle, urea cycle, glucose metabolism, lipid metabolism or gut
metabolism. Pharmacometabolomic research on metformin is scarce, yet identification
of the metabolic changes that affect variation of the pharmacodynamics of metformin is
critical to achieving the desired therapeutic outcomes [9].

Many in vitro and in vivo non-clinical studies have investigated the pharmacological
effects of metformin associated with complex I inhibition, which leads to 5′ AMP-activated
protein kinase (AMPK) activation using a supra-pharmacological metformin concentra-
tion [10]. Several metformin pharmacometabolomic studies were performed on healthy
volunteers and patients to investigate type 2 diabetes [11], obesity [12], antitumor [13],
metabolic syndrome [14] and cardiovascular risk [15]; one study identified the metabolic
changes of metformin based on the pharmacokinetics for three time-points around Cmax
and 36 h in serum samples [11].

In the early-phase of clinical drug development, pharmacometabolomics could con-
tribute to identification of the mechanism of drug response variations, elucidate safety and
efficacy biomarkers, aid in patient selection and contribute to late-phase trial design. [16].
The United States Food and Drug Administration identified potential biomarkers that
can be submitted in the new drug applications process. The biomarker is categorized as
diagnostic, monitoring, predictive, prognostic, pharmacodynamic or response, safety and
susceptibility [17]. Pharmacometabolomics is a useful tool to investigate the baseline and
treatment metabotypes in early-phase clinical trials to identify the potential biomarkers [4].
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In this proof-of-concept study, metformin was selected as a model drug to explore the
pharmacokinetics and pharmacometabolomics in early-phase clinical trial settings to iden-
tify the perturbation of human metabolic pathways using a single dose of metformin in
healthy subjects.

2. Materials and Methods
2.1. Study Design

The study is a prospective, open-label, single-dose oral administration of metformin
1000-mg tablets in healthy subjects under fasting conditions (at least 10 h before dosing)
conducted at the Clinical Investigation Centre, University Malaya Medical Centre. The
study was approved by the Ethics Committee (MEC ID 2018112–6848) and registered with
clinicaltrials.gov (Identifier ID: NCT04161404).

Subjects were screened for a list of inclusion and exclusion criteria: non-smoking
males between 18 and 45 years old with body mass index of 18.5–20.5 kg·m2. Subjects
were excluded for a list of illnesses and clinically significant abnormal laboratory testing.
Subjects were restrained from taking over-the-counter medication 14 days before the
dosing and herbal remedies or caffeine drinks 7 days before the dosing. Seventeen eligible
volunteers were administered a single dose of metformin 1000 mg after 8 h of fasting. Fifteen
blood samples (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 24 h) and four urine samples
(U0: pre-dose, U1: 0–4 h, U2: 4–8 h and U3: 8–12 h) were collected from the subjects.

Three cohorts were planned to ensure sufficient clinical ward staff and space to monitor
every subject on the dosing day. Subjects were housed in a controlled environment, and
standardized meals were provided to each cohort. The blood samples were collected using
an ethylenediaminetetraacetic acid (EDTA) tube and centrifuged at 10,000 rpm for 10 min
at 4. The plasma samples together with the urine samples were kept in a −80 ◦C freezer in
cryovials for further analysis. The subjects were monitored for adverse events until seven
days post-dose. Pre-dose and peak-concentration plasma samples were used for untargeted
pharmacometabolomic analysis to determine the treatment metabotypes.

2.2. Bioanalytical

The reference-standard metformin (Batch 3267, purity 99.8%) was sourced from British
Pharmacopoeia, London, UK. Methanol, acetonitrile, acetone, acetic acid and LCMS-grade
water were purchased from Merk (Darmstadt, Germany). The column and guard column
were obtained from Agilent (Santa Clara, CA, USA): stainless steel guard column, Zorbax-
SB-C8 Rapid resolution cartridge (2.1 × 30 mm 3.5 µm) (873700-936), rapid resolution
cartridge holder and hardware kit (820555-901) and separation column Zorbax SB-Aq
1.8 µm 2.1 × 50 mm (827700-914). Nylon filters with a size of 0.22 µm were used for all the
samples in LCMS sample preparation.

All samples were analyzed with an ultrahigh performance liquid chromatography sys-
tem coupled with a high mass accuracy tandem quadrupole time-of-flight mass spectrome-
try (UPLC-QTOF-MS) (Agilent Technologies, Santa Clara, CA, USA) based on modified
METLIN methods [18] in electrospray ionization (ESI) positive mode and negative mode,
respectively. Chromatographic separation was performed using a Zorbax-SB-C8 guard
column (2.1 × 30 mm 3.5 µm) and separation column Zorbax SB-Aq 1.8 µm 2.1 × 50 mm
(Agilent Technologies, Santa Clara, CA, USA). The mobile phase was solvent A (water with
0.2% v/v acetic acid) and solvent B (methanol with 0.2% v/v acetic acid) with a gradient
system: 0–13 min, 98% to 2% A; 13–19 min, 2% A with 5-min post-run. The flow rate was
0.6 mL/min, and the injection volume was 10 µL for untargeted metabolomic analysis
in positive and negative modes. For pharmacokinetic analysis, a similar flow rate, injec-
tion volume and mobile phase were applied, and the gradient system was shortened to
0–0.5 min, 99% A; 0.5–3, 99% to 1% A; 3–5 min, 1% A with 2-min post-run.

The mass spectrometry parameters were set as gas temperature 290 ◦C, gas flow
11 L/min, nebulizer 45 psig, sheath gas temperature 350, sheath gas flow 11 L/min, frag-
mentor 140, skimmer 65 and octupole RF Peak 750; the mass range was set at 50–1100 m/z.

clinicaltrials.gov
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In positive ion mode, the VCap was set at 4000, and the Nozzle voltage was at 0 V. In
negative ion mode, the Vcap was 3500, and the Nozzle voltage was at 1000 V. Reference
masses used in the QTOF were 121.05087300 and 922.00979800 for positive ion mode and
68.99575800, 112.98558700 and 1033.98810900 for negative ion mode.

For pharmacokinetic analysis, the quantitative LCMS method was validated using
metformin spiked with the blank plasma. A series of metformin concentrations were spiked
into 200 µL of blank plasma. The plasma was spiked with 600 µL of acetonitrile, acetone
and methanol (1:1:1) and incubated at −20 ◦C freezer for one hour. The samples were
centrifuged at 10,000 rpm at 4 ◦C for 15 min and filtered with 0.2 µm nylon filter into
LCMS vials.

In the untargeted metabolomic sample processing, the plasma sample preparation
is similar to the above pharmacokinetic plasma sample preparation. For urine sample
preparation, 200 µL subject samples were added with 600 µL acetonitrile, acetone and
methanol (1:1:1) and centrifuged at 10,000 rpm at 4 ◦C for 15 min. The aliquot was mixed
with LCMS grade water (1:1 ratio) and filtered.

The plasma or urine sample processing batch was run for positive mode and negative
mode separately. The samples’ sequence arrangements started with a blank, blank with
internal standards, blank plasma and blank plasma with internal standards; six pool
quality control (PQC) samples were followed by the subject samples. The subject samples
were interspersed with PQC samples for every four subject samples until the end of the
batch run (Supplementary Table S1). The time-points’ samples were interspersed, but the
subject’s numbers were according to sequence throughout the analysis run. The sequence
arrangement for this untargeted metabolomic analysis was arranged according to the
subject’s number followed by time-points. The untargeted metabolomics could be improved
with randomization of the sequence to avoid instrumental or technical bias [19,20].

2.3. Method Validation and Statistical Analysis for Pharmacokinetics

The metformin quantitative analytical methods were validated based on bioanalytical
method validation guidelines [21] for between run and within run accuracy and precision,
selectivity, recovery, carryover and stability in the short term, autosampler, three freeze-
thaw cycle and long-term stability. Metformin was found in the positive mode only at
130.1086 m/z (Supplementary Figure S1). Seventeen subjects’ plasma samples (15 timepoints
each subject) were analyzed using the validated method to obtain the metformin concen-
tration at each time-point. In the pharmacokinetic analysis, metformin pharmacokinetic
parameters for maximum plasma concentration (Cmax), area under the plasma concentra-
tion time-curve (AUC), time to reach Cmax (Tmax), half-life and clearance were calculated
using Matlab SimBiology software with the non-compartmental model (Figure 1).

2.4. Data Processing and Statistical Method for Untargeted Metabolomics

The plasma metabolomics analysis was carefully designed by dividing the samples into
two batches for pharmacometabolomic exploration. The first batch (dataset A) investigated
the significant different metabolites for pre-dose (T0) versus times 2.5, 3 and 3.5 h for six
subjects to observe the number of significant compounds in LCMS positive mode and
negative mode (Figure 1). The median Tmax for metformin was established at 2.5 h, the
three plasma samples were selected with the assumption that the pharmacological effects of
metformin reached maximum dose effects within 2.5 to 3.5 h. This strategy could provide
alternative methods to reduce the sample size (n = 6, 18 paired analyzed samples) and
increase the coverage of metabolites in peak plasma duration. The second batch (dataset B)
utilized pharmacokinetic-guided maximum plasma time- point samples and pre-dose to
identify the significant metabolites. This method has the advantage of a high biological
sample size (n = 17, 17 paired analyzed samples) and an individualized peak plasma
concentration for the determination of human metabolic pathways. For the metabolomic
urine samples, six subjects for four time-points (U0, U1, U2 and U3) were analyzed in
positive mode and negative mode.
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Figure 1. Software and statistical analysis workflow for clinical part, pharmacokinetics and phar-
macometabolomics. + name the software used. 

  

Figure 1. Software and statistical analysis workflow for clinical part, pharmacokinetics and pharma-
cometabolomics. + name the software used.

The general statistical analysis and data processing for the pharmacometabolomic
was performed using MetaboAnalyst (Figure 1). First, the chromatograms were converted
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into mzXML file using Global Natural Product Social Molecular Networking (GNPS)
software. Zipped files were further processed using the MetaboAnalyst 5.0 software, which
provides end-to-end services from spectral processing to pathway prediction [22,23]. The
raw spectral datasets were then processed in the MS Spectra Processing module, followed
by normalization in the statistical module, continued with batch correction module and
back to the statistical module for multivariate analysis in positive mode and negative
mode. Unsupervised principal component analysis (PCA) was first applied to observe the
features’ separations among the time-points. Additional supervised partial least square
discriminant analysis was applied when the pattern of separation in PCA is not clear; cross
validation and permutation tests were performed to test for overfitting. There are two
common metabolomic analysis methods in the following steps: Individual peak annotation
focuses on a single compound or functional pathway prediction based on the mummichog
algorithm’s focus on individual pathways [22]. Functional pathway analysis bypassing the
identification of the compounds was performed in this study to identify the dysregulated
biological pathway.

In this untargeted metabolomic analysis, gliclazide and atenolol were used as the
internal standard in the LCMS analysis. Gliclazide was detected in both the positive
and negative modes, but atenolol was only found in positive mode. Gliclazide’s signal
consistency in six analysis batches was visually checked after MS Spectral Processing.
Supplementary Figure S2 shows representative boxplots (positive and negative mode)
for abundance in logarithm base 2 (log2) intensity of gliclazide. The log2 intensity in
positive mode at 324.1383 m/z is between 20 and 22 and the negative mode at 322.1239
m/z is between 17 and 20. The abundance has a slight variation in log2 intensity. In the
data normalization, gliclazide was selected for probabilistic quotient normalization, data
transformation using logarithm 10 and data scaling using range scaling and Pareto scaling.
Sample normalization (row-wise) using the internal standard aims to remove systematic
variation between experimental conditions unrelated to the biological differences and
feature normalization (column-wise), which includes log transformation and range scaling,
bringing variances of all features close to equal.

The PQC samples were initially visually inspected to ensure consistency before they
were subjected to sample analysis. After the analyses were completed, the quality control
features were checked for every chromatogram. The batch correction module in MetaboAn-
alyst 5.0 [24] provides several algorithms based on feature characteristics and data types.
Eigen MS batch correction was applied in dataset A and COMBAT batch correction was
applied in dataset B. Supplementary Figure S3 shows the PCA diagrams of the features
before adjustment and after adjustment and the bar chart comparison of the distance of
features between the original data and adjusted data. The features were dispersed evenly
in the matrix after adjustment in the PCA based on the algorithm with the shortest distance
among the original, Eigen MS [25] and Combat [26].

Further multivariate analysis was performed using the PCA for different time-points’
visualizations in each treatment group. After this, a functional meta-analysis module was
applied to time-points’ difference effects in the three treatments for putative identification
of metabolites based on the human Kyoto Encyclopedia of Gene and Genome (KEGG)
library. This functional meta-analysis pooled all MS peaks, bringing out the weaker signals
in selected datasets. Data heterogeneity was adjusted based on the MS ionization mode
and accuracy of the LC-MS instrument during the putative metabolite annotation in the
program. The phenotype effects from humans were identified through these robust meta-
signatures from multiple datasets at different time-points.

First, this module started with a dataset upload from MS spectral processing, normal-
ization with log transform, median and auto-scaling box plots and data analysis using a
t-test. The mass tolerance was set at 15 ppm for all datasets, and the p-value cutoff point
was adjusted between 0.001 and 0.005 based on the recommendation from the mummichog
algorithm to achieve 10–25% of significant features [27]. Second, the pooling peaks method
was chosen to improve the metabolome coverage by combining complementary measure-
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ments from the available datasets. Another reason for using pooling peaks was that the
same samples were analyzed in positive mode and negative mode. The positive and nega-
tive peaks were merged into a single dataset for compound annotation and predicted the
pathway activities. In this step, the mummichog algorithm was chosen, and version 1 was
applied (consideration of m/z features based on adducts, p-value and ionization mode) with
p-values cutoff at 0.001 using Homo sapiens KEGG library. Last, a list of perturbed human
metabolic pathways was generated from MetaboAnalyst. Supplementary Table S2 shows
the normalization parameters and the number of features in the data processing batch.

3. Results
3.1. Clinical Trial Results

A total of 30 subjects were screened for eligibility; ten subjects who did not meet the
inclusion criteria or met the exclusion criteria were excluded, and two subjects withdrew
their consent. Eighteen subjects were scheduled for metformin 1000 mg in three cohorts;
one subject did not attend the dosing day in the third cohort and withdrew from the study.
Seventeen subjects completed the follow-up, and the samples were analyzed (Figure 2).
Patient demographic data and clinical characteristics are presented in Table 1. One subject
experienced abdominal pain after the dosing. From the clinical laboratory characteristic,
the data were within normal range and considered no significant changes based on clinician
judgement. The glucose monitoring for pre-dose and the first four hours after dosing were
within normal range and demonstrated no hypoglycemic effects in healthy volunteers
(Supplementary Table S3). One adverse drug reaction occurred in one subject three hours
after the dosing, which is considered gastrointestinal intolerance by the investigator. A total
of 255 plasma samples were injected into LCMS for pharmacokinetic analysis; 58 plasma
samples and 24 urine samples were run in LCMS for pharmacometabolomic analysis.

Table 1. Demographic and clinical characteristics of the study population.

Clinical and Demographics, (n = 17) Screening Follow-Up

Ethnic, n (%)
Malay 9 (52.9)
Chinese 5 (29.4)
Indian 2 (11.8)
Bidayuh 1 (5.9)

Sex, n (%)
Male 17 (100.0)

Age, mean (range), years * 25 (22–27)
Weight, mean (range), kg * 63.9 (57.0–74.4)
Height, mean (range), cm * 166 (165–170)
BMI, mean (range), kg/m2 * 23.5 (22.1–25.0)
Virology test
Hepatitis Bs Ag (HbsAg) Not detected
Hepatitis C antibody (Anti0 HBs) Not detected
HIV Ag/Ab Combo Not detected
Biochemistry
Sodium (mmol/L) * 140.0 (138.0–142.0) 139.0 (138.0–139.0)
Potassium (mmol/L) * 4.4 (4.2–4.6) 4.0 (3.9–4.1)
Chloride (mmol/L) * 103.0 (102.0–105.0) 103.0 (103.0–104.0)
Total CO2 (mmol/L) * 30.0 (30.0–31.0) 29.0 (28.0–30.0)
Anion Gap (mmol/L) * 11.0 (10.0–12.0) 10.0 (9.0–11.0)
Urea (mmol/L) * 4.9 (3.6–5.4) 4.1 (4.0–4.8)
Creatinine (µmol/L) * 82.0 (75.0–85.0) 87.0 (83.0–93.0)
Liver function test
Albumin (g/L) * 44.0 (42.0–44.0) 39.0 (38.0–40.0)
Total bilirubin (µmol/L) * 18.0 (14.0–20.0) 11.0 (7.0–14.0)
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Table 1. Cont.

Clinical and Demographics, (n = 17) Screening Follow-Up

Alkaline phosphatase (u/L) * 72.0 (63.0–80.0) 71.0 (65.0–86.0)
Alanine aminotransferase (u/l) * 21.0 (17.0–26.0) 19.0 (16.0–32.0)
Gamma GT (u/L) * 19.0 (12.0–25.0) 17.0 (12.0–22.0)
Complete blood count *
Hemoglobin (g/L) * 160.0 (156.0–166.0) 143.0 (140.0–148.0)
Hematocrit (l/L) * 0.49 (0.47–0.49) 0.43 (0.42–0.44)
Red blood cell (1012/L) * 5.5 (5.4–5.9) 5.1 (5.0–5.2)
Mean corpuscular volume (fl) * 85.0 (82.0–88.0) 85.0 (84.0–87.0)
Mean corpuscular hemoglobin (pg) * 28.6 (27.2–29.7) 28.7 (27.7–29.1)
Mean corpuscular hemoglobin concentration
(g/L) * 333.0 (327.0–342.0) 335.0 (329.0–346.0)

Red cell distribution width (%) * 12.2 (12.1–13.4) 12.3 (12.2–12.5)
White blood cell (109/L) * 6.8 (5.7–7.1) 6.8 (6.2–8.2)
Platelet (109/L) * 275.0 (247.0–319.0) 273.0 (237.0–297.0)

* Median (interquartile range).

3.2. Metformin Analytical Method Validation

The LCMS bioanalytical method was validated based on several parameters according
to the bioanalytical method validation guidance [21]. A calibration curve was established
between 80.4 and 2010 ng/mL with low, medium and high-quality control samples at 100.5,
140.7 and 703.5 ng/mL (Supplementary Figure S4). The results of the method validation
parameters for accuracy, precision, carry over, recovery, selectivity and stability in bench top,
three freeze-thaw cycles, auto-sampler and long-term stability are presented in Table 2. The
method validation detail data for the parameters are shown in Supplementary Table S4.

Table 2. Bioanalytical validation parameters for metformin.

Parameter Results

Between run accuracy LLOQ 106.71%, LQC 96.05%, MQC 99.95%, HQC 93.97%
Between run precision LQC 3.88, MQC 5.56, HQC 7.67
Within run accuracy LLOQ LQC MQC HQC

Batch 1 111.17% 101.40% 102.67% 90.68%
Batch 2 99.82% 92.45% 96.23% 89.61%
Batch 3 109.15% 94.31% 100.95% 101.63%

Within run precision LLOQ LQC MQC HQC
Batch 1 0.74 0.68 3.31 2.89
Batch 2 1.82 2.87 1.62 1.94
Batch 3 5.47 3.42 2.85 3.47

Selectivity No peak was observed at the metformin retention time for six biological batches.
Recovery 88.58%, %CV9.85
Carryover No carry over is observed after 10 alternating injections of blank plasma and HQC.
Stability LQC CV HQC CV

Bench top room temperature
(6 h) −0.11 −0.09

Three freeze-thaw cycles −0.11 −0.23
Auto-sampler −0.15 −0.12
Long-term (3 months) 0.00 −0.18

LLOQ, lower limit of quantification; LQC, low quality control; MQC, middle quality control; HQC, high quality
control; %CV, coefficient variation.
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Figure 2. Subject disposition flow chart.

3.3. Pharmacokinetics Profiles

The above-validated method was applied to analyze subjects’ plasma samples. A total
of 255 plasma samples (n = 17) were analyzed and quantified for metformin concentra-
tion (Supplementary Table S5.1). Pharmacokinetic analyses were performed using non-
compartmental analysis in the Matlab R2021b – SimBiology version 6.2, The MathWorks,
(California, US). Individual pharmacokinetic parameters are presented in Supplementary
Table S5.2. Table 3 demonstrates the pharmacokinetic parameters for oral administra-
tion of metformin 1000 mg in healthy subjects. The median for Cmax was established at
1248.1 ng/mL; Tmax was 2.5 h, and the half-life was 6.8 h for the healthy subjects.
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Table 3. Non-compartmental pharmacokinetic parameters after single-dose administration of met-
formin 1000 mg (n = 17).

Parameter Median (Interquartile Range)

C_max (ng/mL) 1248 (849–1391)
T_max (h) 2.5 (2.5–3.0)

AUC0_infinity (ng*h/mL) 9510 (7313–10,411)
AUC_0–24 (ng*h/mL) 8955 (7099–10,020)

T_half (h) 6.8 (5.5–7.0)
CL (mL/min) * 1884 (32.3)

* Mean and percentage coefficient variation, Cmax, peak plasma concentration of metformin, Tmax, time to
reach Cmax; AUC0_infinity, total area under the plasma concentration-time curve from time zero to infinity;
CL, clearance.

The times to reach the peak plasma concentration were 2.5, 1.5, 2.5, 3, 2, 1.5, 2, 2.5, 3, 2.5,
2.5, 3, 2.5, 4, 2, 4 and 2.5 h, respectively (Figure 3). These individualized peak plasma concen-
tration samples guided the selection of samples for the pharmacometabolomic analysis.
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are 17 healthy volunteers, S3 was not present on dosing day.

3.4. Metabolomics Analysis of Metformin in Plasma and Urine Samples
3.4.1. Metabolomic Multivariate Analysis

The application of a multivariate analysis aims to reduce dimensionality. The PCA for
the first batch dataset A in positive mode and negative mode is shown in Figure 4. The
time-points for T0 and the groups of T2.5, 3 and 3.5 h have clear separation patterns in
positive mode PCA but not in negative mode PCA. Both PCAs show clear overlapping for
peak time-points T2.5, T3 and T3.5 (dark blue, light blue and pink) and separation with
time-point T0 (green); this could be different phenotypes of the metformin metabolism in
pre-dose and peak dose. The quality control samples (red) were scattered around the center
of the PCA. The negative mode data were further analyzed using a supervised partial
least square discriminant analysis (PLS-DA), which demonstrated significant separation
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for the above two groups. Cross-validation (Q2 = 0.540, R2 = 0.948) and a permutation test
(p < 0.05) were used to evaluate overfitting of the model.
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Similar multivariate analyses for urine samples in four time-points were visually
inspected. The PCA was based on the duration of urine collection in the positive and
negative modes to explore significant compounds and significant pathways. Figure 5
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demonstrated that most of the quality control (QC) samples were primarily scattered in the
center. At the same time, the other time-points were separated into different regions in this
unsupervised method.
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3.4.2. Metabolomic Functional Pathway Analyses

The human metabolic pathways with the number of metabolites in the Kyoto Encyclo-
pedia of Gene and Genome (KEGG), total metabolite hits, significant metabolite hits based
on mummichog algorithm for pre-dose versus T2.5, T3, T3.5 h (dataset A) and pre-dose ver-
sus peak-dose samples (dataset B) as well as pre-dose versus 0–4 h post-dose urine samples
were presented in Table 4. A total of 14 provisional dysregulated human metabolomic path-
ways were observed from the plasma samples in dataset B (n = 17, 17 pairs pre-dose versus
peak-dose data); a total of 11 out of 14 provisional dysregulated human metabolic pathways
were also found in the plasma sample dataset A (n = 6, 18 pairs pre-dose versus T2.5, 3,
3.5 h data) and urine sample dataset U1 (n = 6, pre-dose versus 0–4 h data). An increasing
number of metabolites hit the KEGG pathways when a higher number of subjects were
analyzed in dataset B compared to dataset A. However, analyses using a lower number
of subjects with three samples around the peak plasma concentration provides broader
insights for the number of human metabolic pathways. Three provisional dysregulated hu-
man metabolic pathways (riboflavin metabolism, retinol metabolism, glycerophospholipid
metabolism) were found significantly in dataset A and dataset B.

There were 37 metabolites for arginine and proline metabolisms in the KEGG library;
the mummichog analysis found an increasing trend in the number of metabolites to hit the
pathway from dataset A (24 metabolites) to dataset B (31 metabolites) when the number of
subjects increases from 6 subjects to 17 subjects. The urine dataset also found 28 metabolites
hit the pathway.

Table 5 demonstrated the predicted metabolic pathways found in the three time-
point groups in metformin 1000-mg dosing. Arginine and proline metabolism, butanoate
metabolism and arginine biosynthesis were found in time-point U0 versus U1 and U0
versus U2 groups. The total metabolite hits were slowly decreased over time for the above
metabolic pathway, suggesting that the effects of metformin peaks during the first four
hours (U0 versus U1), and it slowly decreases from four to eight hours (U0 versus U2). The
significant metabolite hits for the arginine and proline metabolisms’ metabolic pathways
were creatine, gamma-aminobutyric acid, 4-Aminobutyraldehyde, L-4-Hydroxyglutamate
semialdehyde and L-Glutamic acid.
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Table 4. The human metabolic pathways, total metabolite hits, significant metabolite hits for three datasets in positive mode and negative mode using pooling peaks
with mummichog algorithm.

Human Metabolic Pathways (Pathway
Total Metabolites in KEGG)

Dataset A, n = 6 Dataset B, n = 17 U0–U1, n = 6
Compound with Significant Hits (p-Value ≤ 0.05)

Total Hit (Significant Hit Number, p-Value ≤ 0.05)

Arginine and proline metabolism (37) 24 (4) 31 (3) 28 (5)

L-Proline A; D-Proline A; S-Adenosylmethioninamine AB;
N-Acetylputrescine AB; Creatine BU; Gamma-Aminobutyric acid U;
4-AminobutyraldehydeU; L-4-Hydroxyglutamate semialdehyde U;
L-Glutamic acidU

Glycine, serine and threonine
metabolism (30) 17 (2) 23 (1) 21 (2) Betaine aldehyde A; Glyceric acid A; Choline B; Creatine BU;

Dimethylglycine U

Steroid hormone biosynthesis (85) 83 (12) 84 (1) 84 (3)

Cholesterol A; 20a,22b-Dihydroxycholesterol A;
17alpha,20alpha-Dihydroxycholesterol A; Dehydroepiandrosterone A;
Cortisol; 17a,21-Dihydroxy-5b-pregnane-3,11,20-trione A; Testosterone A;
Etiocholanedione A; Androstanedione A; 18-Hydroxycorticosterone A;
11-Dehydrocorticosterone A; Tetrahydrocortisol A; Testosterone glucuronide
A; Estrone glucuronide A; Estriol-16-Glucuronide AB;
11b-HydroxyprogesteroneU; 11b-Hydroxyandrost-4-ene-3,17-dione U;
2-Methoxyestrone U; 2-Methoxyestradiol U;
19-Hydroxyandrost-4-ene-3,17-dione U; 19-Oxoandrost-4-ene-3,17-dione U;
19-Oxotestosterone U; Cholesterol sulfate U;
16a-Hydroxyandrost-4-ene-3,17-dione U; Adrenosterone U

Glutathione metabolism (19) 11 (2) 13 (1) 10 (1) Aminopropylcadaverine AB; Trypanothione disulfide A; L-Glutamic acid U

Galactose metabolism (27) 24 (2) 26 (1) 25 (1)
D-Gal alpha 1->6D-Gal alpha 1->6D-Glucose AB; Raffinose AB; D-Galactose
U; Alpha-D-Glucose U; D-Galactose U; D-Glucose U; D Fructose U;
D-Mannose U; myo-Inositol U

Starch and sucrose metabolism (13) 13 (1) 13 (1) 12(1) Dextrin AB; D-Fructose U; D-Glucose U

Metabolism of xenobiotics by
cytochrome P450 (68) 40 (5) 54 (1) 49 (3)

Glutathione episulfonium ion ABU; 2-(S-Glutathionyl)acetyl chloride A;
Trichloroethanol glucuronide A; S-(2-Chloroacetyl)glutathione A;
(1R)-Hydroxy-(2R)-glutathionyl-1,2-dihydronaphthalene A;
alpha-[3-[(Hydroxymethyl)nitrosoamino]propyl]-3-pyridinemethanol U;
1-(Methylnitrosoamino)-4-(3-pyridinyl)-1,4-butanediol U

Ubiquinone and other
terpenoid-quinone biosynthesis (9) 9 (4) 9 (1) 9 (1) Vitamin K1 AB; Vitamin K2 A; Menaquinol A; Vitamin K1 2,3-epoxide A;

2,3-Epoxymenaquinone U

Cysteine and methionine
metabolism (33) 22 (1) 28 (1) 25(1) S-Adenosylmethioninamine AB; L-Alpha-aminobutyric acid U

Tryptophan metabolism (41) 23 (1) 33 (1) 36(1) L-Tryptophan B; 5-Hydroxy-N-formylkynurenine A;
5-Hydroxy-L-tryptophanU
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Table 4. Cont.

Human Metabolic Pathways (Pathway
Total Metabolites in KEGG)

Dataset A, n = 6 Dataset B, n = 17 U0–U1, n = 6
Compound with Significant Hits (p-Value ≤ 0.05)

Total Hit (Significant Hit Number, p-Value ≤ 0.05)

Aminoacyl-tRNA biosynthesis (22) 14 (1) 19 (1) 16 (2) L-Proline A; L-Tryptophan B; L-Isoleucine U; L-Leucine U; L-Glutamic acid U

Riboflavin metabolism (4) 2 (1) 3 (1) - Riboflavin AB

Retinol metabolism (16) 16 (1) 16 (1) - B-Carotene B; Retinoyl b-glucuronide AB

Glycerophospholipid metabolism (13) 7 (1) 12 (1) - Acetylcholine A; Choline B

Note: dataset A = plasma samples for 18 pairs pre-dose versus T2.5, 3, 3.5 h data; dataset B = plasma samples from 17 pairs pre-dose versus peak-dose data; dataset U1 = urine samples 6
pairs pre-dose versus 0–4 h data; KEGG = Kyoto Encyclopedia of Gene and Genome. A = metabolites identified from dataset A, B = metabolites identified from dataset B, U = metabolites
identified from dataset U1.

Table 5. Predicted human metabolic pathways based on mummichog algorithm for metformin 1000 mg at time-point U0 versus U1, U0 versus U2 and U0 versus U3
with the number of pathway metabolites, total metabolite hits and significant metabolite hits (p-value ≤ 0.005).

Human Metabolic Pathways

Pathway Total Metabolites/Total Metabolites Hit
(Significant Metabolites Hit,

p ≤ 0.005)
Compound with Significant Hits (p-Value ≤ 0.05)

U0 vs. U1 U0 vs. U2 U0 vs. U3

Arginine and proline metabolism (37) 28 (5) 26 (2) - Creatine U1U2; Gamma-Aminobutyric acid U1; 4-Aminobutyraldehyde U1;
L-4-Hydroxyglutamate semialdehyde U1U2; L-Glutamic acid U1U2

Glycine, serine and threonine
metabolism (30) 21 (2) 22 (1) 22 (1) Creatine U1U2; Dimethylglycine U1; L-2-Amino-3-oxobutanoic acid U3

Glycosaminoglycan degradation (21) 9 (2) - - (GalNAc)2 (GlcA)1 (S)1 U1; (GlcA)2 (GlcNAc)1 (S)2 U1; DWA-2 U1

Drug metabolism—cytochrome P450 (43) 38 (4) - - Alcophosphamide U1; Codeine-6-glucuronide U1; Citalopram N-oxide U1;
L-alpha-Acetyl-N,N-dinormethadol U1

Butanoate metabolism (15) 9 (2) 9 (1) - 2-Hydroxyglutarate U1; Gamma-Aminobutyric acid U1; L-Glutamic acid U1U2

Arginine biosynthesis (14) 10 (1) 9 (1) - L-Glutamic acid U1U2

Note: dataset U0 vs. U1 = urine samples 6 pairs data (pre-dose versus 0–4 h); dataset U0 vs. U2 = urine samples 6 pairs data (pre-dose versus 4–8 h); dataset U0 vs. U3 = urine samples 6
pairs data (pre-dose versus 8–12 h), U1 = metabolites found in dataset U0vsU1, U2 = metabolites found in dataset U0 vs. U2, U3 = metabolites found in dataset U0 vs. U3.
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From the pharmacometabolomic analysis, the metformin metabolites obtained from
the boxplot of metformin plasma samples (dataset A) and metformin urine samples in
positive mode during MS spectral processing provided additional information about the
kinetics of metformin in healthy subjects (Supplementary Figure S5). In the metformin
plasma dataset A, metformin intensity was not observed at 0 h; the concentration increased
at time-points 2.5, 3 and 3.5 h, a reducing trend happened at 8 h and a return to zero at
12 h. The information was consistent with the pharmacokinetic data. In the urine samples,
metformin was not found at 0 h, achieved high concentration in the first 8 h and a slight
reduction during 8–12 h.

4. Discussion
4.1. Clinical Trial

This is a proof-of-concept study to explore the pharmacodynamic effect of metformin
through metabolomics based on the metformin maximum plasma time concentration of an
individual subject. The phase one pharmacological study in an early-phase clinical trial
normally employs six to nine subjects for each dose [28]. The 3 + 3 phase one trial design
is the gold standard [29], but 6 + 14 for dose expansion was recommended in the cancer
trial [30]. For metabolomic analysis without experimental pilot data, 12 subjects were
proposed based on a dynamic probabilistic principal component analysis or 18 subjects in
each group for probabilistic principal components and covariates analysis [31]. Metabolic
profiles obtained before, during and after drug administration could provide insights into
the mechanism of action and variation response to the drug treatment [4]. Therefore, a
single-arm strategy was applied in the study design to focus on the baseline and treatment
metabotypes to discover both inter-patient and intra-patient variations in drug response.
This study investigates the provisional dysregulated human metabolic pathways using
metabolomic analysis; eighteen subjects were planned, and seventeen subjects completed
the trial.

One subject (S12) recorded stomach cramps three hours after the dosing; the adverse
drug reaction occurred after metformin reached Tmax (3 h for subject 12) and a higher
range of Cmax (1423.4 ng/mL) based on a personalized pharmacokinetic profile. The
adverse drug reaction is consistent with common gastrointestinal intolerance side effects of
the metformin tablet [32].

4.2. Pharmacokinetics

The Cmax (1248 ng/mL or 9.662 µM) and AUC0-infinity (9510 ng·h/mL), Tmax (2.5 h)
and half-life (6.8 h) in this study are consistent with the pharmacokinetics and a bioe-
quivalence study using the same formulation [33]. The results demonstrated that the
pharmacokinetic profiles for metformin in Caucasians are similar to the Asian population.
These data may combine with other pharmacokinetic studies to determine bioequivalence
through a network meta-analysis [34], which could provide additional information about
the interchangeability of brand and generic products. The plasma concentration of met-
formin reached 25 µM within three hours of oral administration of 1000 mg of metformin
in non-diabetic subjects. Diabetic patients who were administered 1000 mg of metformin
twice daily chronically achieved peak plasma concentrations of approximately 40 µM. The
therapeutic range of plasma metformin concentration in humans is between 10 and 40 µM.
Most of the mitochondrial complex I inhibition leading to AMPK activation were using
the supra-pharmacological metformin concentration (>1000 µM), which does not occur
in clinical setting [10]. Here, the clinical therapeutic dose was focused on to explore the
pharmacometabolomic effects based on metformin plasma concentration.

4.3. Metabolomics in Plasma and Urine Samples

From the results, both untargeted metabolomic strategies using 6 subjects (dataset A)
and 17 subjects (dataset B) provided similarly significant dysregulated biological pathways;
the second strategy comprised slightly increased total metabolite hits than the first strategy.
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However, the first strategy could be the more useful pharmacometabolomic method for
the current pharmacokinetics profiled in phase one single-dose escalation or multiple-dose
escalation studies, which commonly recruit six to nine subjects for a single dose. The
urine dataset (6 subjects) consists of three paired sub-datasets (U0 versus U1, U0 versus U2
and U0 versus U3) for exploration of the pharmacodynamic-related metabolic pathways’
profiling based on the pharmacokinetics of metformin.

4.3.1. Arginine and Proline Metabolism

The highest significant compounds observed from all the datasets were arginine
and proline metabolism; significant compounds observed were L-proline, D-proline,
S-adenosylmethioninamine, N-acetylputrescine, creatine, gamma-aminobutyric acid, 4-
aminobutyraldehyde, L-4-hydroxyglutamate semialdehyde and L-glutamic acid (Table 4).
In the global urine metabolomic analysis according to different time-points, the metabolite
hits for the arginine and proline metabolism was highest in U1 (28 metabolites), slowly
decreased in U2 (26 metabolites) and not identified in U3 (Table 5). A similar metabolomic
study conducted on non-diabetic subjects demonstrated that the arginine and proline
metabolism was a significant pathway found using untargeted metabolomics for plasma
samples at 12.30 h after the first dose of metformin and 2 h after the second dose of
metformin [35]; the significant compounds identified were L-Aspartic acid, citrulline, L-
glutamic acid and ornithine. The down-regulation of arginine in type 2 diabetes patients
taking metformin was found. [12]. A negative correlation between some aliphatic amino
acids was associated with insulin sensitivity and type 2 diabetes [36]. Dysregulation of the
arginine and proline metabolism with metformin intervention might be associated with
insulin sensitivity.

4.3.2. Valine, Leucine and Isoleucine Biosynthesis

The branched-chain amino acid (BCAA) was also observed from the valine, leucine and
isoleucine biosynthesis in dataset A and dataset U1 with significant compounds 3-Methyl-
2-oxovaleric acid, L-Leucine and L-Isoleucine. The results are similar to a metabolomics
study that used single-dose metformin 500 mg, whereby valine, leucine and isoleucine
biosynthesis were the most significant changes in the biochemical pathways [11]. BCAA
is the potential biomarker of diseases, such as insulin resistance and type 2 diabetes; it
functions as a regulator of energy homeostasis, glucose and lipid metabolism, gut health
and immunity [37]. The aminolyacyl-tRNA biosynthesis with significant compounds of
L-Proline, L-Tryptophan, L-Isoleucine, L-Leucine and L-Glutamic acid was found in three
datasets. A non-clinical study using healthy mice focused on metformin’s effects on altered
gut microbiota also found that aminolyacyl-tRNA biosynthesis is significantly enriched [38].
In the Copenhagen Insulin and Metformin Therapy trial study, the effect of metformin’s
plasma metabolite profile found elevated leucine or isoleucine levels demonstrating the
possible metabolic changes after administration of metformin [39].

4.3.3. Glutathione Metabolism

Type 2 diabetes patients were demonstrated to have lower glutathione [40], specifically
with microvascular complication [41]. Oral metformin treatment changed the glutathione
level in diabetic rats [42]. A nonclinical study in rats showed metformin ameliorated
inflammation of the pancreas through modulation of the JAK/STAT pathway to restore
glutathione status and inhibit proinflammatory cytokines [43]. The perturbed glutathione
metabolism in the plasma and urine datasets could be linked to the JAK/STAT signaling
pathway in anti-diabetic effects.

4.3.4. Galactose Metabolism

The results showed that mannotriose and raffinose were the significant compounds
from the plasma samples, and D-Galactose, alpha-D-Glucose, D-Galactose, D-Glucose, D
Fructose, D-Mannose and Myo-inositol were the significant compounds from the urine
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samples in metformin dysregulation of galactose metabolism. Raffinose was found to
increase Glut4 translocation via phosphorylation of IRβ/PI3K/Akt in differentiated L6
myocytes and 3T3-L1 preadipocytes. It is potentially involved in glycogen synthesis by in-
hibiting the activation of GSK3β, which is associated with increased insulin sensitivity [44].
Raffinose also demonstrated induced lipid oxidation with a simultaneous reduction in the
lipid synthesis [45]. Increased sensitivity of insulin and lipid metabolism effects could be
the effects of dysregulation of raffinose in the galactose metabolism.

4.3.5. Tryptophan Metabolism

Dysregulation of tryptophan and kynurenine is associated with the mechanism of
insulin-resistance [46]. The three datasets above demonstrated that more than two-thirds of
the metabolites hit the tryptophan metabolism pathway in KEGG; the identified compounds
are L-Tryptophan, 5-Hydroxy-N-formylkynurenine and 5-Hydroxy-L-tryptophan. A study
has demonstrated that kynurenic acid was increased in the plasma of type 2 diabetes
patients [47]. Metformin was found to restore insulin sensitivity by down-regulation
of the kynurenine pathway metabolism [48]. The mechanism of action caused by the
kynurenine metabolites was the formation of chelate complexes with insulin that has a 50%
reduction in activity compared to the insulin [49]. Normalization of tryptophan metabolism
by metformin reduced the kynurenine metabolic pathway, which is associated with the
reduction in insulin resistance.

4.3.6. Retinol Metabolism

Retinol metabolism was observed in both plasma metabolomics datasets, with signifi-
cant compounds of β-Carotene and retinoyl b-glucuronide. Retinol and retinol-binding
protein 4 (RBP4) were associated with type 1 diabetes [50,51] and type 2 diabetes [52]. RBP4
is responsible for transporting retinol from the liver to the peripheral [53]. Elevation of
RBP4 is linked to multiple insulin-resistant mice models; RBP4 reacted by inducing the
expression of gluconeogenic enzyme phosphoenolpyruvate carboxykinase in the liver to
impair insulin signaling in the muscle [54]. A study conducted on type 2 diabetes pa-
tients also demonstrated that serum RBP4 levels were associated with insulin resistance
and severity of coronary artery disease [55]. Metformin intervention in an in vivo study
demonstrated a decrease in RBP4, thereby improving the insulin sensitivity [56].

4.3.7. Starch and Sucrose Metabolism

From both of the analysis strategies in dataset A and dataset B, the starch and su-
crose metabolism were observed with 13 metabolite hits, and dextrin was the significant
compound. It was found that the number of metabolites from both strategies hit all the
metabolites from the starch and sucrose metabolism in the KEGG pathway. The metformin
tablet contains excipients, such as sodium starch glycollate, maize starch, povidone, col-
loidal anhydrous silica and magnesium stearate; the starch and sucrose metabolism could
be the effects of consuming the excipients in the metformin tablet [57]. This explains the
holistic effects of the emerging metabolomics technologies, which can not only identify the
phenotypic effects of metformin’s active ingredient but also the effects of metformin’s tablet
dosage form. Additional study is required to differentiate the action between metformin
and the excipient in the tablet formulation.

4.3.8. Glycosaminoglycan Degradation

Glycosaminoglycan degradation was observed in the U0 versus U1 group only.
(GalNAc)2 (GlcA)1 (S)1, (GlcA)1 (GlcNAc)1 (S)1 and Chondroitin 4-sulfate were significant
metabolites hit in the glycosaminoglycan degradation metabolic pathways. The perturbed
glycosaminoglycan degradation metabolic pathways correspond to a study using a sul-
phated glycosaminoglycan assay kit in diabetes patients treated with metformin for six
months of urinary samples [58]. This effect was observed in the first four hours of urine
samples for single-dose oral administration of metformin in healthy volunteers and first-
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morning urine samples for six months of monotherapy of metformin in type 2 diabetes
patients. The clinical outcome was not observed in the single-dose administration of met-
formin. However, the perturbed biological changes were observed in the single-dose and
six-month treatment duration for the metformin therapy. Degradation of glycosaminogly-
can reduces the non-enzymatic degradation of the glycans, which contributes to prevention
of vascular diabetes-related complications.

4.4. Application of Pharmacometabolomics in Clinical Drug Development

In recent years, applications of pharmacometabolomics were broadly reviewed, specif-
ically in data processing and statistical analysis [59], biomarker discoveries and precision
medicine [4,60], early-phase clinical development [16] and pharmacology studies [3,61]. A
model was proposed to describe the potential framework of pharmacometabolomics in
clinical drug development (Figure 6).
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In the early drug development process, the context of use for biomarkers can be
submitted during investigational new drug applications. Pharmacometabolomics could be
initiated in a phase I clinical trial through the integration of a personalized pharmacokinetic
and pharmacometabolomic approach, which has the advantage of reducing the study
population’s variability in a controlled environment and aiding identification of surrogate
drug response pathways from the provisional dysregulated human metabolic pathways.
As the clinical drug’s development continues with single ascending dose and multiple
ascending dose studies, provisional dysregulated human metabolic pathways may lead
to the identification of a drug’s mechanism of action, while the provisional predictive
biomarkers help to reveal various drug response biomarkers.

Identification of the provisional diagnosis or treatment response associated with
biomarkers increases the prediction of responders for dose selection in phase II trials which
can lower the cost and shorten the drug development process. The provisional therapeutic
biomarkers associated with the clinical efficacy and safety of a drug can be validated
at this stage.

After marketing authorization, besides the therapeutic drug monitoring, the applica-
tion of pharmacometabolomics for efficacy biomarkers potentially optimized individual
patient’s treatment effects, and safety biomarkers monitoring could reduce the adverse
drug reactions in real-world clinical settings.
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4.5. Limitation and Future Analysis

The study associates pharmacokinetic profiles with the provisional dysregulated
human metabolic changes that are linked to pharmacodynamic effects. Metformin did not
exert glucose-lowering effects in healthy volunteers at the therapeutic dose, but one side
effect was observed in this study. More cases are needed to validate the provisional safety
biomarkers for adverse drug reactions. The application of a dose-dependent arm in type 2
diabetes patients and a targeted metabolomic analysis at a later phase of the clinical trial
potentially narrow down the huge metabolic pathways with intense metabolite hits for a
higher dose in the future investigation of metformin’s pharmacological effects.

5. Conclusions

In conclusion, the pharmacokinetic parameters for the single-dose oral administration
of 1000-mg metformin in healthy volunteers were Cmax (1248 ng/mL) and AUC0-infinity
(9510 ng·h/mL) and Tmax (2.5 h); the individualized pharmacokinetics guided untargeted
pharmacometabolomic of metformin, suggesting a series of human metabolic pathways,
which include arginine and proline metabolism, BCAA metabolism glutathione metabolism
and others that associate with metformin’s pharmacological effects of increasing insulin sen-
sitivity and lipid metabolism. Pharmacometabolomics in early-phase clinical trials help to
identify multifaceted biomarkers and understand the variation of the mechanism of action
and adverse effects of a drug, which is a novel strategy for revolutionizing conventional
clinical drug development toward a precision medicine approach in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics14061268/s1, Table S1: representative LCMS vials sequence,
Figure S1: chromatogram for metformin, Figure S2: internal standard boxplots, Figure S3: representa-
tive EigenMS batch correction principal component analysis diagram for metformin 1000-mg plasma
(dataset A) in positive mode, Table S2: number of features in the data processing flow, Table S3:
glucose monitoring at pre-dose and 4 h post-dose (before lunch), Figure S4: representative metformin
calibration curve, Table S4: method validation data, Table S5: individual subject metformin plasma
concentration and pharmacokinetic parameters, Figure S5: boxplot of metformin plasma and urine
samples in positive mode.

Author Contributions: Conceptualization, K.B.T. and H.Z.H.; methodology, K.B.T., H.Z.H., L.I. and
N.M.H.; software, K.B.T.; formal analysis, K.B.T.; investigation, L.I. and K.B.T.; resources, H.Z.H.,
L.I., N.M.H., M.Z.S. and Z.H.Z.; data curation, K.B.T.; writing—original draft preparation, K.B.T.;
writing—review and editing, H.Z.H., M.Z.S. and Z.H.Z.; visualization, K.B.T.; supervision, H.Z.H.,
L.I. and N.M.H.; project administration, K.B.T.; funding acquisition, H.Z.H., L.I., N.M.H., M.Z.S.,
Z.H.Z. and K.B.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Malaya, grant numbers IIRG005A-2019, IIRG005A-
2019(D), IIRG005B-2019 and IIRG005C-2019.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and the Malaysian Guideline for Good Clinical Practice and approved by the
Institutional Review Board (or Ethics Committee) of Medical Research Ethics Committee, Universiti
Malaya Medical Centre [MREC ID NO: 2018112-6848] (protocol number: P1PKPD-Metabolomic,
30 November 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: Authors would like to thank the Director General of Health Malaysia for his
permission to publish this article. They also acknowledge the contribution of the primary grade
reference standard by National Pharmaceutical Regulatory Agency, Ministry of Healthy Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/pharmaceutics14061268/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14061268/s1


Pharmaceutics 2022, 14, 1268 20 of 22

Abbreviations

LCMS liquid chromatography mass spectrometry;
Cmax maximum plasma concentration;
SD standard deviation;
AUC area under the curve;
Tmax time to reach maximum plasma concentration;
BCAA branched-chain amino acid

References
1. Schranner, D.; Kastenmüller, G.; Schönfelder, M.; Römisch-Margl, W.; Wackerhage, H. Metabolite Concentration Changes in

Humans After a Bout of Exercise: A Systematic Review of Exercise Metabolomics Studies. Sports Med.—Open 2020, 6, 11.
[CrossRef] [PubMed]

2. Tan, S.Z.; Begley, P.; Mullard, G.; Hollywood, K.A.; Bishop, P.N. Introduction to metabolomics and its applications in ophthalmol-
ogy. Eye 2016, 30, 773–783. [CrossRef] [PubMed]

3. Kaddurah-Daouk, R.; Weinshilboum, R.M. Pharmacometabolomics: Implications for clinical pharmacology and systems pharma-
cology. Clin. Pharmacol. Ther. 2014, 95, 154–167. [CrossRef] [PubMed]

4. Beger, R.D.; Schmidt, M.A.; Kaddurah-Daouk, R. Current Concepts in Pharmacometabolomics, Biomarker Discovery, and
Precision Medicine. Metabolites 2020, 10, 129. [CrossRef]

5. Kantae, V.; Krekels, E.H.J.; Esdonk, M.J.V.; Lindenburg, P.; Harms, A.C.; Knibbe, C.A.J.; Van der Graaf, P.H.; Hankemeier, T.
Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: Towards personalized drug therapy.
Metab. Off. J. Metab. Soc. 2016, 13, 9. [CrossRef]

6. Waller, D.G.; Sampson, A.P. 2-Pharmacokinetics. In Medical Pharmacology and Therapeutics, 5th ed.; Waller, D.G., Sampson, A.P.,
Eds.; Elsevier: Southampton, UK, 2018; pp. 33–62.

7. Brayfield, A. Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2017; Volume A.
8. Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways: Pharmacokinetics and pharmacodynam-

ics. Pharmacogenetics Genom. 2012, 22, 820–827. [CrossRef]
9. Kim, H.W. Metabolomic Approaches to Investigate the Effect of Metformin: An Overview. Int. J. Mol. Sci. 2021, 22, 10275.

[CrossRef]
10. LaMoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2020, 42, 77–96. [CrossRef]
11. Dahabiyeh, L.A.; Mujammami, M.; Arafat, T.; Benabdelkamel, H.; Alfadda, A.A.; Abdel Rahman, A.M. A Metabolic Pattern in

Healthy Subjects Given a Single Dose of Metformin: A Metabolomics Approach. Front. Pharmacol. 2021, 12, 705932. [CrossRef]
12. Aleidi, S.M.; Dahabiyeh, L.A.; Gu, X.; Al Dubayee, M.; Alshahrani, A.; Benabdelkamel, H.; Mujammami, M.; Li, L.; Aljada, A.;

Abdel Rahman, A.M. Obesity Connected Metabolic Changes in Type 2 Diabetic Patients Treated with Metformin. Front. Pharmacol.
2021, 11, 616157. [CrossRef]

13. Aljofan, M.; Riethmacher, D. Anticancer activity of metformin: A systematic review of the literature. Future Sci. OA 2019,
5, FSO410. [CrossRef]

14. Ladeiras-Lopes, R.; Fontes-Carvalho, R.; Bettencourt, N.; Sampaio, F.; Gama, V.; Leite-Moreira, A. Novel therapeutic targets of
metformin: Metabolic syndrome and cardiovascular disease. Expert. Opin. Ther. Targets 2015, 19, 869–877. [CrossRef] [PubMed]

15. Eppinga, R.N.; Kofink, D.; Dullaart, R.P.; Dalmeijer, G.W.; Lipsic, E.; van Veldhuisen, D.J.; van der Horst, I.C.; Asselbergs, F.W.;
van der Harst, P. Effect of Metformin on Metabolites and Relation with Myocardial Infarct Size and Left Ventricular Ejection
Fraction After Myocardial Infarction. Circ. Cardiovasc. Genet. 2017, 10, e001564. [CrossRef]

16. Burt, T.; Nandal, S. Pharmacometabolomics in Early-Phase Clinical Development. Clin. Transl. Sci. 2016, 9, 128–138. [CrossRef]
17. BEST (Biomarkers, EndpointS, and Other Tools) Resource. Available online: https://www.ncbi.nlm.nih.gov/books/NBK338448/

?report=reader (accessed on 28 April 2022).
18. Agilent Technologies. MassHunter METLIN Metabolite PCD/PCDL Quick Start Guide. Available online: https://www.agilent.

com/cs/library/usermanuals/Public/G6825-90008_MetlinPCDL_QuickStart.pdf (accessed on 1 July 2021).
19. Dunn, W.B.; Wilson, I.D.; Nicholls, A.W.; Broadhurst, D. The importance of experimental design and QC samples in large-scale

and MS-driven untargeted metabolomic studies of humans. Bioanalysis 2012, 4, 2249–2264. [CrossRef] [PubMed]
20. Steuer, A.E.; Brockbals, L.; Kraemer, T. Metabolomic Strategies in Biomarker Research–New Approach for Indirect Identification

of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front. Chem. 2019, 7, 319. [CrossRef]
[PubMed]

21. USFDA. Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/files/drugs/published/
Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 4 November 2021).

22. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr.
Protoc. Bioinform. 2019, 68, e86. [CrossRef]

23. Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst
5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [CrossRef]

http://doi.org/10.1186/s40798-020-0238-4
http://www.ncbi.nlm.nih.gov/pubmed/32040782
http://doi.org/10.1038/eye.2016.37
http://www.ncbi.nlm.nih.gov/pubmed/26987591
http://doi.org/10.1038/clpt.2013.217
http://www.ncbi.nlm.nih.gov/pubmed/24193171
http://doi.org/10.3390/metabo10040129
http://doi.org/10.1007/s11306-016-1143-1
http://doi.org/10.1097/FPC.0b013e3283559b22
http://doi.org/10.3390/ijms221910275
http://doi.org/10.1210/endrev/bnaa023
http://doi.org/10.3389/fphar.2021.705932
http://doi.org/10.3389/fphar.2020.616157
http://doi.org/10.2144/fsoa-2019-0053
http://doi.org/10.1517/14728222.2015.1025051
http://www.ncbi.nlm.nih.gov/pubmed/25762117
http://doi.org/10.1161/CIRCGENETICS.116.001564
http://doi.org/10.1111/cts.12396
https://www.ncbi.nlm.nih.gov/books/NBK338448/?report=reader
https://www.ncbi.nlm.nih.gov/books/NBK338448/?report=reader
https://www.agilent.com/cs/library/usermanuals/Public/G6825-90008_MetlinPCDL_QuickStart.pdf
https://www.agilent.com/cs/library/usermanuals/Public/G6825-90008_MetlinPCDL_QuickStart.pdf
http://doi.org/10.4155/bio.12.204
http://www.ncbi.nlm.nih.gov/pubmed/23046267
http://doi.org/10.3389/fchem.2019.00319
http://www.ncbi.nlm.nih.gov/pubmed/31134189
https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
http://doi.org/10.1002/cpbi.86
http://doi.org/10.1093/nar/gkab382


Pharmaceutics 2022, 14, 1268 21 of 22

24. Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 2020,
10, 186. [CrossRef]

25. Karpievitch, Y.V.; Nikolic, S.B.; Wilson, R.; Sharman, J.E.; Edwards, L.M. Metabolomics data normalization with EigenMS.
PLoS ONE 2014, 9, e116221. [CrossRef]

26. Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods.
Biostatistics 2007, 8, 118–127. [CrossRef] [PubMed]

27. Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting network activity from
high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [CrossRef] [PubMed]

28. International Conference of Harmonization. Guidance on General Consideration for Clinical Trials. Available online: http://www.
ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E8/Step4/E8_Guideline.pdf (accessed on 22 March 2022).

29. Ivy, S.P.; Siu, L.L.; Garrett-Mayer, E.; Rubinstein, L. Approaches to phase 1 clinical trial design focused on safety, efficiency, and
selected patient populations: A report from the clinical trial design task force of the National Cancer Institute Investigational
Drug Steering Committee. Clin. Cancer Res. 2010, 16, 1726–1736. [CrossRef] [PubMed]

30. Mokdad, A.A.; Xie, X.-J.; Zhu, H.; Gerber, D.E.; Heitjan, D.F. Statistical justification of expansion cohorts in phase 1 cancer trials.
Cancer 2018, 124, 3339–3345. [CrossRef]

31. Nyamundanda, G.; Gormley, I.C.; Fan, Y.; Gallagher, W.M.; Brennan, L. MetSizeR: Selecting the optimal sample size for
metabolomic studies using an analysis based approach. BMC Bioinform. 2013, 14, 338. [CrossRef]

32. Bonnet, F.; Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes. Metab. 2017, 19,
473–481. [CrossRef]

33. Friedrich, C.; Br, T.; Ring, A.; Meinicke, T. Bioequivalence of Glucophage ® (Metformin) Tablets from Europe and the United
States Tested in Healthy Volunteers. J. Bioequivalence Bioavailab. 2014, 6, 61–66.

34. Chow, S.C.; Liu, J. Meta-analysis for bioequivalence review. J. Biopharm. Stat. 1997, 7, 97–111. [CrossRef]
35. Rotroff, D.M.; Oki, N.O.; Liang, X.; Yee, S.W.; Stocker, S.L.; Corum, D.G.; Meisner, M.; Fiehn, O.; Motsinger-Reif, A.A.; Giacomini,

K.M.; et al. Pharmacometabolomic Assessment of Metformin in Non-diabetic, African Americans. Front. Pharm. 2016, 7, 135.
[CrossRef]

36. Menge, B.A.; Schrader, H.; Ritter, P.R.; Ellrichmann, M.; Uhl, W.; Schmidt, W.E.; Meier, J.J. Selective amino acid deficiency in
patients with impaired glucose tolerance and type 2 diabetes. Regul. Pept. 2010, 160, 75–80. [CrossRef]

37. Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018,
19, 954. [CrossRef] [PubMed]

38. Ma, W.; Chen, J.; Meng, Y.; Yang, J.; Cui, Q.; Zhou, Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its
Potential Role in Gut Microbiota Homeostasis. Front. Microbiol. 2018, 9, 336. [CrossRef] [PubMed]

39. Safai, N.; Suvitaival, T.; Ali, A.; Spégel, P.; Al-Majdoub, M.; Carstensen, B.; Vestergaard, H.; Ridderstråle, M. Effect of metformin
on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. Diabet. Med. 2018, 35, 944–953.
[CrossRef] [PubMed]

40. Lagman, M.; Ly, J.; Saing, T.; Kaur Singh, M.; Vera Tudela, E.; Morris, D.; Chi, P.-T.; Ochoa, C.; Sathananthan, A.; Venketaraman, V.
Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS ONE 2015, 10, e0118436.
[CrossRef]

41. Lutchmansingh, F.K.; Hsu, J.W.; Bennett, F.I.; Badaloo, A.V.; McFarlane-Anderson, N.; Gordon-Strachan, G.M.; Wright-Pascoe,
R.A.; Jahoor, F.; Boyne, M.S. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and
glycemia. PLoS ONE 2018, 13, e0198626. [CrossRef]

42. Ewis, S.A.; Abdel-Rahman, M.S. Effect of metformin on glutathione and magnesium in normal and streptozotocin-induced
diabetic rats. J. Appl. Toxicol. 1995, 15, 387–390. [CrossRef]

43. Elekofehinti, O.O.; Ariyo, E.O.; Iwaloye, O.; Obafemi, T.O. Co-administration of metformin and gallic acid modulates JAK/STAT
signaling pathway and glutathione metabolism in fructose-fed streptozotocin diabetic Rats. Phytomedicine Plus 2022, 2, 100181.
[CrossRef]

44. Muthukumaran, P.; Thiyagarajan, G.; Arun Babu, R.; Lakshmi, B.S. Raffinose from Costus speciosus attenuates lipid synthesis
through modulation of PPARs/SREBP1c and improves insulin sensitivity through PI3K/AKT. Chem. Biol. Interact. 2018, 284,
80–89. [CrossRef]

45. Elango, D.; Rajendran, K.; Van der Laan, L.; Sebastiar, S.; Raigne, J.; Thaiparambil, N.A.; El Haddad, N.; Raja, B.; Wang, W.;
Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Front. Plant Sci. 2022, 13, 829118.
[CrossRef]

46. Oxenkrug, G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide
metabolic pathways. Mol. Neurobiol. 2013, 48, 294–301. [CrossRef]

47. Oxenkrug, G.F. Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes. Mol. Neurobiol. 2015, 52,
805–810. [CrossRef] [PubMed]

48. Muzik, O.; Burghardt, P.; Yi, Z.; Kumar, A.; Seyoum, B. Successful metformin treatment of insulin resistance is associated with
down-regulation of the kynurenine pathway. Biochem. Biophys. Res. Commun. 2017, 488, 29–32. [CrossRef] [PubMed]

49. Meyramov, G.; Meyramova, A. Diabetogenic Zinc Binding B-Cytotoxic Chemicals: Mechanisms of Action and Methods for
Prevention of Diabetes. J. Obes. Eat. Disord. 2016, 2, 100019. [CrossRef]

http://doi.org/10.3390/metabo10050186
http://doi.org/10.1371/journal.pone.0116221
http://doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
http://doi.org/10.1371/journal.pcbi.1003123
http://www.ncbi.nlm.nih.gov/pubmed/23861661
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E8/Step4/E8_Guideline.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E8/Step4/E8_Guideline.pdf
http://doi.org/10.1158/1078-0432.CCR-09-1961
http://www.ncbi.nlm.nih.gov/pubmed/20215542
http://doi.org/10.1002/cncr.31577
http://doi.org/10.1186/1471-2105-14-338
http://doi.org/10.1111/dom.12854
http://doi.org/10.1080/10543409708835172
http://doi.org/10.3389/fphar.2016.00135
http://doi.org/10.1016/j.regpep.2009.08.001
http://doi.org/10.3390/ijms19040954
http://www.ncbi.nlm.nih.gov/pubmed/29570613
http://doi.org/10.3389/fmicb.2018.01336
http://www.ncbi.nlm.nih.gov/pubmed/29988362
http://doi.org/10.1111/dme.13636
http://www.ncbi.nlm.nih.gov/pubmed/29633349
http://doi.org/10.1371/journal.pone.0118436
http://doi.org/10.1371/journal.pone.0198626
http://doi.org/10.1002/jat.2550150508
http://doi.org/10.1016/j.phyplu.2021.100181
http://doi.org/10.1016/j.cbi.2018.02.011
http://doi.org/10.3389/fpls.2022.829118
http://doi.org/10.1007/s12035-013-8497-4
http://doi.org/10.1007/s12035-015-9232-0
http://www.ncbi.nlm.nih.gov/pubmed/26055228
http://doi.org/10.1016/j.bbrc.2017.04.155
http://www.ncbi.nlm.nih.gov/pubmed/28478038
http://doi.org/10.21767/2471-8203.100019


Pharmaceutics 2022, 14, 1268 22 of 22

50. Basu, T.K.; Tze, W.J.; Leichter, J. Serum vitamin A and retinol-binding protein in patients with insulin-dependent diabetes mellitus.
Am. J. Clin. Nutr. 1989, 50, 329–331. [CrossRef]

51. Martinoli, L.; Di Felice, M.; Seghieri, G.; Ciuti, M.; De Giorgio, L.A.; Fazzini, A.; Gori, R.; Anichini, R.; Franconi, F. Plasma retinol
and alpha-tocopherol concentrations in insulin-dependent diabetes mellitus: Their relationship to microvascular complications.
Int. J. Vitam. Nutr. Res. 1993, 63, 87–92.

52. Graham, T.E.; Kahn, B.B. Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication
in obesity and type 2 diabetes. Horm. Metab. Res. 2007, 39, 717–721. [CrossRef]

53. Zabetian-Targhi, F.; Mahmoudi, M.J.; Rezaei, N.; Mahmoudi, M. Retinol binding protein 4 in relation to diet, inflammation,
immunity, and cardiovascular diseases. Adv. Nutr. 2015, 6, 748–762. [CrossRef]

54. Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol
binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436, 356–362. [CrossRef]

55. Perumalsamy, S.; Ahmad, W.A.W.; Huri, H.Z. Retinol-Binding Protein-4—A Predictor of Insulin Resistance and the Severity of
Coronary Artery Disease in Type 2 Diabetes Patients with Coronary Artery Disease. Biology 2021, 10, 858. [CrossRef]

56. Hussein, M.M.A.; El-Belbasi, H.I.; Morsy, M.A.; Saadeldin, I.M.; Alshammari, G.M. The synergistic effect of fenretinide and
metformin to achieve a decrease in insulin resistance and inflammatory mediators: An in vivo study. All Life 2020, 13, 108–119.
[CrossRef]

57. Electronic Medicines Compendium. Metformin 500 mg Tablets. Available online: https://www.medicines.org.uk/emc/product/
594/smpc#gref (accessed on 1 May 2022).
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