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Abstract: We designed and synthesized aminated mesoporous silica (MSN-NH2), and functionally
grafted alginate oligosaccharides (AOS) on its surface to get MSN-NH2-AOS nanoparticles as a
delivery vehicle for the fat-soluble model drug curcumin (Cur). Dynamic light scattering, thermo-
gravimetric analysis, and X-ray photoelectron spectroscopy were used to characterize the structure
and performance of MSN-NH2-AOS. The nano-MSN-NH2-AOS preparation process was optimized,
and the drug loading and encapsulation efficiencies of nano-MSN-NH2-AOS were investigated.
The encapsulation efficiency of the MSN-NH2-Cur-AOS nanoparticles was up to 91.24 ± 1.23%.
The pH-sensitive AOS coating made the total release rate of Cur only 28.9 ± 1.6% under neutral con-
ditions and 67.5 ± 1% under acidic conditions. According to the results of in vitro anti-tumor studies
conducted by MTT and cellular uptake assays, the MSN-NH2-Cur-AOS nanoparticles were more
easily absorbed by colon cancer cells than free Cur, achieving a high tumor cell targeting efficiency.
Moreover, when the concentration of Cur reached 50 µg/mL, MSN-NH2-Cur-AOS nanoparticles
showed strong cytotoxicity against tumor cells, indicating that MSN-NH2-AOS might be a promising
tool as a novel fat-soluble anticancer drug carrier.

Keywords: pH-sensitive drug release; silica; brown algae oligosaccharides; curcumin; colon
cancer cells

1. Introduction

Colon cancer is a cancer type with worldwide incidence and high morbidity and
mortality [1,2]. With the continuous deterioration in people’s quality of life, westernization
of dietary habits, and the imbalance in population structure, the incidence of colon cancer
has been slowly rising. According to the American Cancer Society, colon cancer has an
incidence of 10.2% and a death rate of 9.2% [2,3]. Nano-drug delivery systems (NDDS) are
an alternative therapeutic method to treat malignant tumors [4]. The issue of improving the
bioavailability of drugs and reducing toxicity and side effects has always been a research
hotspot in drug delivery. Nano drug delivery systems are represented by polymers, nano-
capsules, polymer micelles [5], liposomes [6], inorganic nanoparticles such as gold [7],
graphene [8], mesoporous silicon [9], and polydopamine [10], have been widely used in
tumor therapy. By endowing the common anticancer drugs with the specificity of targeted
delivery, anti-tumor activity can be improved [11]. NDDS mainly rely on the forces between
surface groups and molecules, including van der Waals forces and hydrogen bonds, so that
drug molecules can be dissolved, adsorbed, or covalently bound to the surface of particles.
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Drugs can be wrapped or embedded in these systems to form a stable drug carrier [12,13].
The rapid uptake of nanoparticles by the reticuloendothelial system causes the carrier
to circulate in the blood for a short amount of time to reach the minimum therapeutic
concentration. NDDS with particle sizes ranging from 1 to 1000 nm systematically reach the
tumor site and release their active drugs [14,15]. Stimulation-responsive functional NDDS
target the release of drugs upon specific endogenous (pH, redox, ROS) and exogenous
(light, heat, magnetic) stimuli that can be constructed, considering the acidic and reductive
characteristics of the tumor cell microenvironment [16].

The pH of normal biological tissues is neutral, while the pH of the tumor microen-
vironment is slightly acidic: the pH value of tumor cells is 5.7–7.8 and that of tumor cell
stroma can reach 4.5–5.5 [17]. Thus, the acidic environment around and inside tumor cells
provides a triggering condition for pH-sensitive nano-carriers. Stimulation-responsive
functional NDDS can achieve “zero release” of drugs under pH 7.4 conditions, which
prevents the release of drugs before reaching the lesion site, while effective targeted release
can be enabled under the weak acidic conditions of the tumor microenvironment [18,19].
Mesoporous silica nanoparticles (MSNs) are a type of porous non-metallic material carrier.
Due to their high surface area, stability, targeting ability, biocompatibility, and many other
excellent characteristics, MSNs have shown great application advantages in tumor-targeted
drug delivery [20–22]. Researchers have modified the surface of MSNs to enable the loading
of drugs into their pores [23,24]. Moreover, MSNs were encapsulated with appropriate
“gating” molecules, producing a drug delivery system that can respond to various environ-
mental changes such as pH, redox, enzymes, and temperature [25]. Zhang et al. constructed
pH-sensitive silica NDDS using human serum albumin, an endogenous protein, as a gating
molecule [26]. Functional groups on the modified MSN surface can enhance targeted
delivery through nanoparticle-environment interaction [27,28]. Different organic functional
groups have been covalently or electrostatically attached to the MSN surface to achieve the
ideal characteristics of MSNs [29]. Curcumin (Cur) is a natural polyphenolic compound
extracted from turmeric and has antioxidant and anti-inflammatory effects [30–32]. Studies
have shown that Cur can also exert anti-tumor effects by interacting with the transcrip-
tion factor nuclear factor-kappa ß, and protein kinase C, eventually leading to tumor cell
apoptosis [33–35]. However, the bioavailability and therapeutic index of Cur are low due
to its poor solubility in aqueous solvents, which hinders its clinical applications [36–38].
Alginate oligosaccharide (AOS) is an acidic, low-molecular-weight polymer derived from
alginates [39]. It is an oligosaccharide with weak toxicity, high biodegradability, and high
solubility. At the same time, it has various biological activities, such as anti-inflammatory,
antibacterial, immune-regulatory, and anti-tumor effects [40,41]. Some papers [42] have
discussed drug delivery systems based on MSN encapsulation using functional polysaccha-
rides, including chitosan, hyaluronic acid, sodium alginate, and dextran, to achieve drug
release control. However, to the best of our knowledge, this is the first report on the use
of AOS to coat MSNs. Since MSN-NH2 is positively charged, it can absorb the negatively
charged Cur through electrostatic adsorption and can be linked with AOS through an
amide bond. Therefore, we prepared a functional nano-drug carrier particle modified with
AOS to achieve pH-responsive release of Cur, improving its stability and bioavailability,
and accomplishing targeted Cur release in tumor sites. In addition, we studied the in vitro
release characteristics, cellular uptake, and safety of this nano-drug delivery system.

2. Materials and Methods
2.1. Materials

Curcumin (Cur, >99%), alginate oligosaccharides (AOS, >99%) ethyl orthosilicate
(TEOS, AR), potassium bromide (KBr, SP), coumarin–6 (>99%), cetyltrimethylammonium
bromide (CTAB, >99%), cetyltrimethylammonium chloride (CTAC, >99%), 3-amino-propyl
triethoxysilane (APTES, >99%), N-hydroxysuccinimide (NHS, AR), and 1-(3-Dimethylamin-
opropyl)-3-ethylcarbodiimide hydro (EDC, AR) were purchased from Shanghai Aladdin
Company. Monosodium phosphate (NaH2PO4), disodium phosphate (Na2HPO4), dipotas-
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sium phosphate (K2HPO4), triethanolamine (TEA), sodium hydroxide (NaOH), hydro-
gen chloride (HCl), and ethylene glycol are all analytical pure chemicals acquired from
Sinopharm Chemical Reagent limited corporation.

2.2. Preparation of MSNs

MSNs were prepared according to the methods in the literature, with several adjust-
ments [43,44]. CTAB (0.2 g) was dissolved in 96 mL of water, and the mixture was heated
and stirred. When the temperature reached 80 ◦C, 0.7 mL of 2 M NaOH solution was added
to the CTAB solution and continued to be stirred for 30 min. Then, 1.4 mL of TEOS was
slowly added to the solution, and the mixture was vigorously stirred at 80 ◦C for 2 h. After
cooling, a white precipitate was obtained by centrifugation. Then, 10% (v/v) hydrochloric
acid-ethanol solution was used to remove the template and 6 h after reflux to obtain the
product, MSN-1.

CTAB (500 mg) was dissolved in 200 mL of deionized water, ethylene glycol (40 mL),
and 1 M NaOH (3.5 mL). The mixture was heated to 80 ◦C and stirred vigorously for 1 h.
Then, ethyl orthosilicate (2.5 mL) was rapidly added to the solution, and the mixture was
kept at 80 ◦C for 2 h until a white precipitate was formed. The precipitate was washed with
water and ethanol at 10,000 rpm (20 min). After vacuum drying, the white precipitate was
calcined at 550 ◦C for 6 h to obtain the product, MSN-2.

Next, 2 g of CTAC was dissolved in 20 mL of deionized water, and 0.32 mL of TEA
was dropped into the solution, followed by stirring at 95 ◦C for 1 h. TEOS (1.5 mL) was
then added slowly into the solution. The reaction was completed after 1 h. The products
were washed with deionized water and ethanol three times, vacuum-dried at −60 ◦C, and
calcined in a Muffle furnace at 550 ◦C for 6 h to remove the template and obtain MSN-3 [45].

2.3. Preparation of Amino MSNs

The amino modification method was performed as previously described [46]. Briefly,
1 g of MSN was reacted with 20 mL of APTES in 100 mL of toluene (24 h, 60 ◦C). At the
end of the reaction, the materials were washed alternately with ethanol and water to obtain
amino MSNs (MSN-NH2).

2.4. Preparation of MSN-NH2 Coated with AOS

To prepare a 1 mg/mL Cur solution, 20 mg of Cur was accurately weighed and mixed
with 20 mL of anhydrous ethanol. The Cur solution (1 mL) was mixed with PBS (10 mL) and
20 mg of MSN-NH2 and stirred at 25◦C protected from light for 12 h. Subsequently, 50 mL
of 1% (w/v) AOS solution was prepared, and a certain volume of AOS solution (20 mL)
was mixed with 50 mg of NHS and 0.1 g of EDC, and the carboxyl group was activated by
stirring in the dark for 4 h. Drug-loaded MSN-NH2 solution was added to the activated
AOS solution, stirred at 25 ◦C without light for 12 h, and centrifuged (8000 r/min, 10 min)
to obtain MSN-NH2 nanoparticles coated with AOS (MSN-NH2-Cur-AOS). Nanoparticles
without Cur (MSN-NH2-AOS) were prepared using the same method. Figure 1 shows the
schematic diagram of MSN-NH2-Cur-AOS preparation. The absorbance at 426 nm was
detected using an ultraviolet-visible spectrophotometer (UV-Vis, U-2910, Thermo, Waltham,
MA, USA) to calculate the loading concentration of Cur and the loading efficiency of MSN.



Pharmaceutics 2022, 14, 1166 4 of 19Pharmaceutics 2022, 14, x  4 of 21 
 

 

 

Figure 1. Preparation of MSN-NH2-Cur-AOS nanoparticles. 

2.5. Characterization 

2.5.1. SEM and TEM 

A scanning electron microscope (SEM, Hitachi S-4800, Tokyo, Japan) was used to 

evaluate the surface morphology of the nanoparticles. Under the acceleration voltage of 

20 kV, the samples were properly magnified and observed, and clear and regular particle 

images were obtained. Transmission electron microscope (TEM, JEM-2100, Tokyo, Japan) 

images were obtained by Lorentz transmission electron microscopy. A proper amount of 

nanoparticle powder samples was dispersed on the conductive copper mesh for TEM 

scanning. 

2.5.2. FTIR 

The composition of the functional group was analyzed by Fourier transform infrared 

spectrometry (FTIR, Bruker Tensor II, Bremen, Germany). The samples were fully mixed 

with KBr. The infrared spectrum scanning range was between 4000 and 400 cm−1, and the 

instrument resolution was set as 4 cm−1. Carbon dioxide (CO2) and water (H2O) peaks were 

subtracted from the original spectrum to obtain the final FTIR spectrum. 

2.5.3. TGA 

Thermogravimetric analysis (TGA) was performed using the TAQ50 thermal ana-

lyzer (Shimadzu, Kyoto, Japan) at a heating rate of 10 °C/min under an N2 atmosphere, 

and the test interval was set to 37–800 °C. 

2.5.4. Zeta Potential and PDI 

The zeta potential and Polymer dispersity index (PDI) were measured using a Mal-

vern laser granulometer (ZS90, Malvern, UK): a few samples were prepared and dispersed 

with deionized water. Ultrasonication was performed for 15 min before measurements, 

and an appropriate amount of suspension was removed into a special sample pool. 

2.5.5. Size 

The average particle size of the composite nanoparticles was determined using the 

dynamic light scattering (DLS) technology (ZS90, Malvern, UK). Before each measure-

ment, the samples were diluted with water at the same pH to avoid multiple scattering. 

The samples were placed in a plastic cuvette for testing and the test results were recorded. 

  

Figure 1. Preparation of MSN-NH2-Cur-AOS nanoparticles.

2.5. Characterization
2.5.1. SEM and TEM

A scanning electron microscope (SEM, Hitachi S-4800, Tokyo, Japan) was used to
evaluate the surface morphology of the nanoparticles. Under the acceleration voltage
of 20 kV, the samples were properly magnified and observed, and clear and regular par-
ticle images were obtained. Transmission electron microscope (TEM, JEM-2100, Tokyo,
Japan) images were obtained by Lorentz transmission electron microscopy. A proper
amount of nanoparticle powder samples was dispersed on the conductive copper mesh for
TEM scanning.

2.5.2. FTIR

The composition of the functional group was analyzed by Fourier transform infrared
spectrometry (FTIR, Bruker Tensor II, Bremen, Germany). The samples were fully mixed
with KBr. The infrared spectrum scanning range was between 4000 and 400 cm−1, and the
instrument resolution was set as 4 cm−1. Carbon dioxide (CO2) and water (H2O) peaks
were subtracted from the original spectrum to obtain the final FTIR spectrum.

2.5.3. TGA

Thermogravimetric analysis (TGA) was performed using the TAQ50 thermal analyzer
(Shimadzu, Kyoto, Japan) at a heating rate of 10 ◦C/min under an N2 atmosphere, and the
test interval was set to 37–800 ◦C.

2.5.4. Zeta Potential and PDI

The zeta potential and Polymer dispersity index (PDI) were measured using a Malvern
laser granulometer (ZS90, Malvern, UK): a few samples were prepared and dispersed with
deionized water. Ultrasonication was performed for 15 min before measurements, and an
appropriate amount of suspension was removed into a special sample pool.

2.5.5. Size

The average particle size of the composite nanoparticles was determined using the
dynamic light scattering (DLS) technology (ZS90, Malvern, UK). Before each measure-
ment, the samples were diluted with water at the same pH to avoid multiple scattering.
The samples were placed in a plastic cuvette for testing and the test results were recorded.
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2.5.6. BET

Brunauer–Emmett–Teller (BET, Tri Star II 3020, Micromeritics, Norcross, GA, USA)
method is used to characterize parameters such as specific surface area, pore volume, and
pore size of mesoporous materials. An appropriate number of samples were prepared for
degassing and transferred to liquid nitrogen for adsorption-desorption analysis. The BET
analysis was performed in an N2 atmosphere for 6 h, and the desorption temperature was
set at 120 ◦C.

2.5.7. XPS

The surface chemical composition and the chemical state of each component of the
nanoparticles were analyzed using an X-ray photoelectron spectrometer (XPS, Kratos,
Manchester, UK).

2.6. Encapsulation Efficiency (EE) and Loading Efficiency (LE)

Encapsulation efficiency (EE) and loading efficiency (LE) are important indicators of
the quality of nanomedicines, which respectively represent the efficacy of encapsulation
and loading. Following the preparation of MSN-NH2-Cur-AOS, the supernatant was
collected by centrifuging the nanoparticle samples (8000 r/min, 15 min). The mass of Cur
initially added was denoted by Wt. Wd denoted the free Cur content in the supernatant, and
Wl denoted the dry mass of precipitate. The supernatant of MSN-NH2-AOS obtained by
the same method was used as a reference. Stock solutions of Cur (200 mg/L) were diluted
to obtain serial standard solutions to fit the standard curve (shown in Figure 2), and the
content of Cur was determined using the standard curve equation and UV measurements
at 426 nm. EE and LE of the drug were calculated according to the following formulas:

EE =
Wt − Wd

Wt
× 100% (1)

LE =
Wt − Wd

Wl
× 100% (2)
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2.7. Release Kinetics

Five milligrams of MSN-NH2-Cur-AOS and MSN-NH2-Cur were added into a cen-
trifugation tube containing 20 mL of PBS (pH 7.4 and pH 5.0) and placed in a 37 ◦C
constant-temperature water bath oscillator (150 r/min) to investigate the in vitro release
kinetics of the nanoparticles. At the time points of 1, 2, 4, 6, 8, 12, and 24 h, the sample
was centrifuged, and 1 mL of the supernatant removed (and replaced with 1 mL of PBS
solution at the original pH value), and then the samples were placed back into the oscillator
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to continue oscillating. At the same time, the release of Cur within 2 h was studied. The ab-
sorbance at 426 nm was measured using a UV spectrophotometer and the concentration of
Cur in the solution was calculated.

2.8. Cytotoxicity

The cytotoxicity of drug-loaded nanoparticles in HCT-116 colon cancer cells (Provided
by Zhejiang University) was evaluated using the MTT assay [44]. Briefly, HCT-116 cells
were seeded on 96-well plates at a density of 5 × 104 cells/well. After 24 h of culture,
the cells were subjected to a DMSO water diluent (control) medium containing 10, 20, 30,
40, or 50 µg/mL free Cur (MSN-NH2-Cur-AOS), or medium containing the nanoparticles
accounting for an equal amount of Cur (MSN-NH2-AOS). The cytotoxicity of MSN-NH2-
AOS and MSN-NH2-Cur-AOS on L929 fibroblast cells (provided by the Chinese Academy
of Sciences) was determined using the same method. L929 cells were seeded on 96-well
plates at a density of 2 × 104 cells/well, and after 24 h of culture, different concentrations of
MSN-NH2-AOS and MSN-NH2-Cur-AOS solutions were added. Simultaneously, an equal
volume of fresh culture medium was supplied to the blank control cells. After culturing the
cells for 24 h, each well was supplied with 20 µL of MTT reagent solution. After culturing
the cells in a CO2 incubator for 4 h, the supernatant was removed and 150 µL of DMSO
was added. The samples were vortexed for 8 min before the test and OD values at 490 nm
were measured using a microplate reader (Infinite 200 PRO, Tecan, Zurich, Switzerland).
The relative cell viability (%) was calculated according to the following formula:

Viability (%) = OD1/OD2 × 100% (3)

where OD1 denotes the absorbance value of the cells treated with the drug, and OD2
denotes the absorbance value of the blank control group.

2.9. Cellular Uptake

For cellular uptake experiments, we loaded MSN-NH2-AOS nanocarriers with
coumarin-6 since Cur is prone to light pollution and coumarin-6 is similar to curcumin in
structure. The preparation method was the same as that of MSN-NH2-Cur-AOS [47,48].
The uptake of MSN-NH2-Coumarin-6-AOS nanoparticles by colon cancer cells was investi-
gated via fluorescence staining images. HCT-116 cells were seeded into a 6-well culture
plate with an initial density of 1 × 106 cells/well and cultured for 24 h. The cells were
then treated as follows: First, two wells were supplied with MSN-NH2-AOS or MSN-NH2-
Coumarin-6-AOS nanoparticles at an equal concentration and cultured at 37 ◦C for 30 min,
while two wells were supplied with PBS as control; at the end of 30 min, an equal amount
of free MSN-NH2-AOS or MSN-NH2-Coumarin-6-AOS nanoparticles were added into
the remaining two wells and the plate was cultured for an additional 30 min under the
same conditions. Next, the supernatant was carefully discarded, and the cells were rinsed
3 times with PBS, shaking slowly for 2 min each time. Finally, all cells were collected and
analyzed for fluorescence intensity using an inverted fluorescence microscope (Leisi, Nikon,
Tokyo, Japan).

2.10. Statistical Analysis

All quantitative data were obtained from at least three independent experiments and
expressed as mean ± standard deviation (SD). Statistical comparisons were performed
using a one-way analysis of variance (ANOVA). p values < 0.05 (*) and < 0.01 (**) were
considered statistically significant.

3. Results and Discussion
3.1. Characterization of MSNs

Three different methods were used to prepare MSNs and the structures of the products
were compared. No porous structure was observed in MSN-1, but a rough surface, different
particle sizes, serious agglomeration, and poor dispersion (Figure 3a). Compared with that
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of MSN-1, the particle size of MSN-2, which was prepared by removing the template by
pickling, was slightly increased (Figure 3b). As shown in Figure 3c, MSN-3 nanoparticles
had a regular spherical shape, a porous surface, and uniform sizes, and the surfaces were
smooth. They had better dispersion than MSN-2 particles. The changes in particle size,
potential, and PDI during the modification were further tested using a zeta-potentiometer.
Table 1 shows significant differences in the particle sizes of MSN-1, MSN-2, and MSN-3,
among which MSN-3 had the smallest particle size, and the surface potentials were mea-
sured as −28.3, −29.6, and −32.2 mV, respectively. PDI also confirmed that MSN-3 particles
had better redispersal than the other two particles. Therefore, MSN-3 was selected for
subsequent experiments.
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Table 1. Particle size, zeta potential, and PDI of MSN-1, MSN-2, and MSN-3.

Sample Size (nm) Zeta Potential (mV) PDI

MSN-1 360.3 ± 3.6 −28.3 ± 0.5 0.356 ± 0.016
MSN-2 390.9 ± 2.6 −29.6 ± 0.3 0.320 ± 0.036
MSN-3 150.8 ± 4.6 −32.2 ± 0.6 0.190 ± 0.039

3.2. Preparation of MSN-NH2-Cur-AOS Nanoparticles

MSN-NH2 exists as a cation in an aqueous solution, but AOS is in the form of an anion
in the aqueous solution. Therefore, when MSN-NH2 and AOS are mixed evenly by me-
chanical stirring, they self-organize into nanoparticles through electrostatic interaction [49].
The solution of MSN-NH2 at a low concentration is transparent, with almost no flocculation.
However, the solution containing a high concentration of MSN-NH2 results in aggregation
and an enormous amount of precipitation. Therefore, the effect of the MSN-NH2 to AOS
ratio on the morphology of nanoparticles needs to be investigated. As seen in Figure 4a and
Table 2, when the ratio of MSN-NH2 to AOS in the solution was 5:1, because of the relatively
high MSN-NH2 ratio, the amount of free MSN-NH2 remaining in the solution was high,
and the nanoparticles obtained had a large particle size and poor dispersion. This may be
due to the aggregation of excess MSN-NH2 cations, which destroy the particle dispersion
steady-state and result in particle aggregation and particle size increase [50]. When the
MSN-NH2 content was decreased (5:1 to 1:1), the size of MSN-NH2 nanoparticles decreased
significantly (p < 0.05), and MSN-NH2 particles combined with AOS reached the dispersion
state at the same time due to the positive and negative charge attraction. However, when
the ratio of the two compounds was adjusted from 1:1 to 1:3, the particle increased in size
from 236.80 ± 0.54 nm to 269.50 ± 1.03 nm, indicating that more AOS remained in the
nano-dispersion solution. Meanwhile, the surface potentials of nanoparticles, which were
all negative, continuously decreased with the decrease of MSN-NH2 content, indicating
that AOS had a dominant influence on the potential of nanoparticles [51]. In addition,
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the zeta potential changed during the preparation of MSN-NH2-Cur-AOS. As shown in
Figure 4b, the zeta potential of MSN increased from −28.6 ± 1.3 mV to 25.3 ± 0.8 mV after
the preparation of MSN-NH2 by amine functionalization. After loading Cur and coating
with AOS, the zeta potential of MSN-NH2 decreased from 25.3 ± 0.8 mV (MSN-NH2) to
15.3 ± 0.9 mV (MSN-NH2-Cur) and −33.1 ± 1.1 mV (MSN-MH2-Cur-AOS). The variation
of zeta potential indicated that the modification of MSN was successful. Figure 4c shows
the absorbance of curcumin released by the nanocarrier after loading with 0.5 mg of Cur.
The absorbance of Cur increased with the increasing AOS content. While the AOS ratio
increased from 1:1 to 1:3, the rising trend of the absorbance of Cur was slow. On this basis
of these data, we selected the 1:1 ratio for subsequent experiments.
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Figure 4. The particle sizes and zeta potentials of MSN-NH2-AOS prepared with different mass ratios
of MSN-NH2 and AOS (a). Zeta potentials of MSN, MSN-NH2, MSN-NH2-Cur, and MSN-NH2-Cur-
AOS (b). Absorbance of Cur released from MSN-NH2-Cur-AOS nanoparticles with different mass
ratios after loading the same content of Cur (c).

Table 2. PDI of MSN-NH2-AOS prepared with different mass ratios of MSN-NH2 and AOS.

MSN-NH2/AOS (Mass Ratios) PDI

5:1 0.375 ± 0.01
3:1 0.318 ± 0.04
1:1 0.185 ± 0.035
1:3 0.020 ± 0.025

PDI: Polymer dispersity index.

3.3. Characterization of MSN-NH2-Cur-AOS Nanoparticles

As shown in the SEM image in Figure 5a, blank MSN-NH2 typically had a spherical
structure with circular mesoporous pores [6]. Meanwhile, the particles clustered after the
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addition of AOS, as shown in Figure 5b, mainly due to the adhesion effect of the linear
polysaccharide. Following the addition of Cur, the particle size of MSN-NH2-Cur-AOS
particles increased, as shown in Figure 5c. After MSN surface functionalization with APTES,
loading with Cur, and gradual conjugation with AOS, TEM images showed that amino-
functionalized MSN nanoparticles had a porous mesopore structure. AOS can be observed
around the nanoparticles, as shown in Figure 5d–f. Furthermore, the nanoparticle size
increased significantly, the porosity decreased gradually, and the honeycomb arrangement
could not be clearly observed. These morphological changes present additional evidence
for the existence of AOS coating on the MSN surface. This aspect proves the successful
construction of MSN-NH2-Cur-AOS [52].
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Figure 5. SEM images of MSN-NH2 (a), MSN-NH2-AOS (b), and MSN-NH2-Cur-AOS (c). TEM
images of MSN-NH2 (d), MSN-NH2-AOS (e), and MSN-NH2-Cur-AOS (f).

N2 adsorption and desorption curves and parameters are shown in Figure 6 and
Table 3. The specific surface areas of MSN, MSN-NH2, and MSN-NH2-Cur-AOS were
783.9, 648.1, and 286.3 m2/g, respectively, as measured using the BET method. The de-
crease in specific surface areas indicated that the surface of MSN nanoparticles had been
successfully coated with AOS. To a certain extent, the specific surface area can reflect the
smoothness of the surface of nanoparticles. In terms of specific surface area, the surface
of MSN-NH2-Cur-AOS was the roughest, which was consistent with the results of SEM
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characterization. The pore size and pore volume of nanoparticles were analyzed by the
Barrett-Joyner-Halenda method. After ATPES modification, the pore size was slightly
reduced from 6.165 to 4.646 nm, indicating that a small part entered the MSN interior.
Following AOS coating, the pore size of the sample decreased significantly (1.126 nm),
which proved that AOS successfully encapsulated MSN. The decreases in specific surface
area and pore size indicated that AOS could effectively block the mesoporous channels of
MSN, which could help effectively encapsulate and store drugs and avoid drug leakage
and premature release.
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Figure 6. N2-adsorption and desorption curves for MSN (a), MSN-NH2 (b), MSN-NH2-AOS (c), and 

MSN-NH2-Cur-AOS (d). 
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Figure 6. N2-adsorption and desorption curves for MSN (a), MSN-NH2 (b), MSN-NH2-AOS (c), and
MSN-NH2-Cur-AOS (d).

Table 3. The corresponding parameters of N2 adsorption and desorption.

Sample Pore Size (nm) Pore Volume (cm3) Surface Area (m2/g)

MSN 6.165 1.134 783.9
MSN-NH2 4.646 1.235 648.1

MSN-NH2-Cur-AOS 1.126 0.786 286.3
PDI: Polymer dispersity Index.

The dimensions of MSN, MSN-NH2, MSN-NH2-AOS, and MSN-NH2-Cur-AOS
nanoparticles were analyzed and measured using DLS [53,54]. Figure 7 shows the av-
erage particle size of MSN and MSN-NH2 was about 158 nm (PDI = 0.18 ± 0.02) and
227 nm (PDI = 0.26 ± 0.01), respectively, indicating the successful introduction of -NH2.
The average particle size of MSN-NH2-AOS increased to 310 nm (PDI = 0.25 ± 0.02) when
coated with AOS. It can be observed that Cur entering MSN pores had little effect on the
particle size of the nanocarriers. Compared with MSN-NH2 nanoparticles, MSN-NH2-AOS
and MSN-NH2-Cur-AOS nanoparticles had larger average sizes and wider size distribu-
tions, and there was little difference in size between the two nanoparticles. The above
results demonstrated the successful preparation of MSN-NH2-Cur-AOS, the successful
entry of Cur into MSN-NH2 mesopore, and the encapsulation by AOS mainly in MSN-NH2.
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Figure 8a shows the TGA curves of MSN, MSN-NH2, and MSN-NH2-AOS nanopar-
ticles. The weights of the three kinds of nanoparticles were similar at more than 80% of
the temperature range of 30–200 ◦C. In the test range from 30 to 800 ◦C, the weight loss
of MSN alone was only 1.5%. Before 100 ◦C, the main loss was the binding water on the
surface of MSN nanoparticles, which may be due to the dense mesopore structure of MSN.
MSN-NH2 had a mass loss in the temperature range of about 20 to 100 ◦C and 400 to
630 ◦C, which was caused by the thermal decomposition of the grafted organic matter
APTES and a large amount of combined hydrothermal volatilization, proving the success
of grafting. In addition, the weight loss of MSN-NH2-AOS between 20–100 ◦C was caused
by surface water separation, and the weight decreased significantly between 200–400 ◦C,
which was related to the thermal degradation of the coated AOS and was the result of the
breakage of glucoside bonds and the de-composition of glycosyl units of AOS. The weight
loss between 400 ◦C and 630 ◦C also indicated that NH2 graft modification was successful,
and the total weight loss was 61.81%. These results showed that each modification step
was successfully carried out, and the MSN-NH2-AOS carrier was successfully prepared for
Cur encapsulation.

Figure 8b shows the infrared spectra of Cur, MSN-NH2, MSN-NH2-AOS, and
MSN-NH2-Cur-AOS nanoparticles obtained using FTIR. MSN characteristic peaks can be
observed for MSN-NH2, MSN-NH2-AOS, and MSN-NH2-Cur-AOS, and the absorption
peaks at 821, 971, and 1084 cm−1 were the three main absorption peaks of MSN. The peaks
at 821 and 1084 cm−1 were respectively attributed to the symmetric and antisymmetric
stretching vibration of the Si-O-Si structure in MSN [55,56]. The bending vibration of Si-OH
in the nanoparticles formed an absorption peak at 971 cm−1. The absorption peaks at
1405 and 1246 cm−1 were caused by –CH=CH2. The peaks at 1632 and 3445 cm−1 belong to
H-OH or −OH groups on the surface of nanoparticles, indicating that there were numerous
hydroxyl groups on the surface of MSN [57]. After combining with AOS, the peaks at the
two sites became wider and more obvious, which was caused by the rich -COOH groups
in AOS. Due to the existence of different functional groups, the infrared spectrum of Cur
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showed many characteristic bands. The band at 3445 cm−1 corresponds to the −OH, which
was related to the tensile vibration of the phenolic hydroxyl group. The bands at 1428, 1281,
and 1155 cm−1 correspond to the tensile vibrations of some aromatic rings and interfering
chains of ketones, consistent with previous reports [58]. The absorption peaks for the
characteristic functional groups of Cur were not observed on MSN-NH2-Cur-AOS, which
also proved that the drug was successfully incorporated into the mesoporous structure of
nano-capsules.
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XPS can determine the photoelectron binding energy of a sample to infer the com-
position and structure of the elements on the sample surface [59,60]. We used XPS to
analyze MSN, MSN-NH2, and MSN-NH2-AOS nanoparticles. As shown in Figure 8c, MSN
contained Si and O [61]. However, the intensities of Si2p and Si2s peaks were weakened,
and the characteristic peaks of C and N elements also appeared, which was mainly related
to the polysaccharide coating on the surface. C and N are mainly derived from APTES and
AOS, resulting in a decrease in the proportion of the Si element. No N1s peak was observed
for MSN in Figure 8d, which shows the N1s spectra of MSN-NH2 and MSN-NH2-AOS.
MSN-NH2 shows two peaks for −NH2 (401.55 eV) and =N− (400.37 eV), mainly from the
grafted amino group, and a distinct peak for −NH3

+ (402.95 eV) appeared for MSN-NH2
after AOS packaging, indicating that the modified amino group could absorb the carboxyl
group of AOS on the particle surface through hydrogen bonding and electrostatic attraction.
In addition, the binding energies of −NH2 and =N− peaks were shifted. These results indi-
cate that AOS was successfully coated on the surface of nanoparticles, and MSN-NH2-AOS
nano-capsule was successfully prepared.

3.4. Drug Release and Loading
3.4.1. Drug Release

To achieve continuous drug delivery, an appropriate drug delivery system must not
only demonstrate appropriate drug delivery efficiency and dosage but also release drugs
in a controlled manner [62,63]. The pH in a normal body is 7.4, and the tumor lesions are
usually in a slightly acidic state [64]. Therefore, we investigated the release performance of
drug-loaded nanoparticles at different pH values. The results showed that the release of
nanoparticles was pH-dependent: the release rate is higher at a low pH. As seen from the
results depicted in Figure 9a, the cumulative drug release of MSN-NH2-Cur in the neutral
environment was only about 41.1% and about 84.6% in the slightly acidic environment
over a period of 24 h. This may be attributed to the decrease in pH weakening the forces
between the drug and the carrier and the effect of the concentration difference between
the inside and outside of the nanoparticle. Cur in the MSN-NH2 pores diffused outwardly
toward the solution and increased its Cur content. Figure 9b shows the curcumin release
curve of MSN-NH2-Cur-AOS in different pH buffers. In the buffer with pH 7.4, the release
rate of Cur slowed down. The cumulative release rate in the first two hours was about 10%,
and the total release rate in 24 h was 28.9%, compared with those of the MSN-NH2-Cur
particles. The release rate in the first two hours was 15.2%, and the total release rate in
24 h was 41.1%. The effect of AOS coating was also studied. When the pH was 5.0, the
release rate increased to 67.5% within 24 h. On the one hand, lowering the pH reduced
the dissociation of AOS and the electrostatic interaction between molecules. The AOS
layer fell off from the surface of the MSN-NH2 particle, rendering Cur free to dissociate
from the bare internal pores of MSN and diffuse into PBS solution [44]. On the other hand,
the difference in drug concentration between the inside and outside of the nanoparticles
positively improved the drug release rate. Collectively, these results indicated that the AOS
modification could effectively prevent the leakage of Cur from the MSN particle pores
and protect the transport of particles in the human body in neutral environments, while
the inhibitory effect of the oligosaccharides on Cur was weakened in acidic environments,
suggesting that AOS has the effect of a slow release of curcumin. Figure 9c shows that the
release rate of Cur can reach 92.3% within 2 h.
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3.4.2. Drug Loading

EE and LE are important indexes for assessing the quality of nanomaterials [65,66].
Therefore, we investigated the loading performance of MSN-NH2-Cur-AOS and
MSN-NH2-Cur systems (dosage: 0.25, 0.50, 0.75, and 1.00 mg). The abundant pores
of MSN nanoparticles showed superior drug loading efficiency. As seen in Table 4, the LE%
of the two groups increased with the increasing Cur doses. With the constant carrier mass,
the increase in the Cur dose allowed an easier entry of the drug into the inner cavity due
to the concentration gradient between the inside and outside of the carrier. On the other
hand, the EE% decreased with the increasing doses of Cur because the amount of Cur
exceeded the encapsulation ability of the nanoparticles. The existence of the AOS outer shell
was identified as the factor that makes the loading efficiency of the MSN-NH2-Cur-AOS
particles better than that of the MSN-NH2-Cur carrier.

Table 4. The encapsulation and loading efficiency of MSN-NH2-Cur-AOS and MSN-NH2-Cur.

Carrier Dosage (mg) Curcumin (mg) EE% LE%

MSN-NH2-Cur-AOS

10 0.25 99.12 ± 0.68 5.01 ± 0.02
10 0.50 91.24 ± 1.23 9.13± 0.04
10 0.75 80.74 ± 0.73 12.16 ± 0.10
10 1.00 74.64 ± 0.49 14.64 ± 0.07

MSN-NH2-Cur

10 0.25 88.85 ± 0.65 4.42 ± 0.06
10 0.50 85.29 ± 0.81 8.52 ± 0.08
10 0.75 73.29 ± 0.23 11.03 ± 0.03
10 1.00 70.29 ± 0.23 14.12± 0.09
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3.5. Cytotoxicity

According to literature reports, Cur is safe for normal cells [24,35]. Therefore, we
studied the cytotoxicity of the nanoparticles in HCT-116 colon carcinoma cells and the
cytotoxicity of MSN-NH2-AOS and MSN-NH2-Cur-AOS in L929 fibroblast cells using
the MTT assay. Figure 10a shows the viability rate of HCT-116 cells after 24 h treatment
with Cur, MSN-NH2-AOS, and MSN-NH2-Cur-AOS nanoparticles. The survival rates of
HCT-116 cells treated for 24 h in Cur, MSN-NH2-AOS, and MSN-NH2-Cur-AOS change in a
dose-dependent manner [67,68]. The cell survival rate decreased more slowly compared to
the other groups when the cells were treated with free Cur. When the concentration of Cur
reached 50.0 µg/mL, more than half of the tumor cells were still viable, with a cell survival
rate of 62.76%. This effect was mainly because free Cur does not rely on endocytosis and
can only enter the cells by penetrating the cell membrane. When the cells were treated with
MSN-NH2-AOS at a dose substituting for that of MSN-NH2-Cur-AOS carrying 50.0 µg/mL
of Cur, the cell survival rate was over 80% and the rate of apoptosis was not significant.
The survival rate of cells treated with MSN-NH2-AOS was significantly greater than that
of those treated with free Cur and MSN-NH2-Cur-AOS carrying an equal amount of Cur.
At this point, the blank carrier obstructs tumor growth and respiration, which is the major
cause of cell apoptosis [69]. Meanwhile, Figure 10b shows that when L929 cells were treated
with MSN-NH2-AOS at concentrations of 100, 200, 300, 400, 500, and 800 µg/mL, cell
viability exceeded 90%. When the L929 cells were treated with the same concentrations
as MSN-NH2-Cur-AOS, the cell survival rate was greater than 80%. These results imply
that the MSN-NH2-AOS carrier itself has no cytotoxicity and is relatively safe. Among
the experimental groups shown in Figure 10a, the survival rate of the cells treated with
MSN-NH2-Cur-AOS was significantly lower than that of the other two groups (p < 0.01).
When the concentration of Cur reached 50.0 µg/mL, the cell survival rate decreased to
27.48%, indicating an increase in cell death in a dose-dependent manner. This shows that
the damage to tumor cells mainly resulted from Cur released by MSN-NH2-Cur-AOS, and
MSN-NH2-AOS is a suitable Cur carrier, with no cytotoxicity against tumor cells.
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Figure 10. HCT-116 cell viability rates following 24 h treatment with Cur, MSN-NH2-AOS (mass of
MSN-NH2-AOS carrier containing the same amount of Cur), and MSN-NH2-Cur-AOS nanoparticles
(* p < 0.05; ** p < 0.01) (a). Viability rates of L929 cells treated with different concentrations of
MSN-NH2-AOS and MSN-NH2-Cur-AOS (b).

3.6. Cellular Uptake

Cur exerts strong cytotoxicity against a variety of cancer cells. We studied the cellular
uptake of MSN-NH2-AOS and MSN-NH2-Coumarin-6-AOS nanoparticles. Cells treated
with MSN-NH2-AOS had no fluorescence absorption. As seen in Figure 11a,b, after 30 min
of treatment, MSN-NH2-Coumarin-6-AOS nanoparticles were partially ingested by tumor
cells. After 1 h, the fluorescence intensity was significantly enhanced, and the uptake of
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drug-loaded nanoparticles by tumor cells increased, indicating that the therapeutic effect
was due to the successful absorption of the MSN-NH2-Coumarin-6-AOS nanoparticles and
release of the drug.
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Figure 11. Fluorescence images of cells treated with MSN-NH2-Coumarin-6-AOS for 30 min (a) and
1 h (b).

4. Conclusions

MSN has the advantages of adjustable pore size and controllable particle size and
provides a rich loading space for drugs. Moreover, the presence of large amounts of
silicon hydroxyl on the surface provides functionalization sites. In this study, AOS was
incorporated into MSN using a silane coupling agent as an intermediate to render the
composite nanoparticles pH-responsive, biocompatible and stable. The best AOS:MSN
ratio was 1:1, and the average particle size was about 236.8 nm, with a surface potential of
−33.1 mV. Below 800 ◦C, the loss of water adsorbed on the surface of the nanoparticles was
only 1.5%, which enables a wide range of applications for drug storage and transportation.
The total drug release rate of the MSN-NH2-Cur-AOS nanoparticles increased to 67.5% in a
slightly acidic environment, and the AOS layer could partially inhibit the release of Cur
under neutral conditions (release rate: 28.9%). Our study has shown that the MSN-NH2-
Cur-AOS nanoparticles loaded with Cur are effective in inducing cellular internalization,
and the release of Cur in a controlled manner from MSN-NH2-Cur-AOS proposes this
carrier as a strong candidate for the tumor-specific delivery of anticancer drugs.
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