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Abstract: We evaluated the in vitro permeability of nanoparticle formulations of high and low
lipophilic compounds under non-sink conditions, wherein compounds are not completely dissolved.
The permeability of the highly lipophilic compound, griseofulvin, was improved by about 30% due to
nanonization under non-sink conditions. Moreover, this permeability was about 50% higher than that
under sink conditions. On the other hand, for the low lipophilic compound, hydrocortisone, there was
no difference in permeability between micro-and nano-sized compounds under non-sink conditions.
The nanonization of highly lipophilic compounds improves the permeability of the unstirred water
layer (UWL), which in turn improves overall permeability. On the other hand, because the rate-
limiting step in permeation for the low lipophilic compounds is the diffusion of the compounds in
the membrane, the improvement of UWL permeability by nanonization does not improve the overall
permeability. Based on this mechanism, nanoparticle formulations are not effective for low lipophilic
compounds. To accurately predict the absorption of nanoparticle formulations, it is necessary to
consider their permeability under non-sink conditions which reflect in vivo conditions.

Keywords: nanoparticle formulation; permeability; non-sink condition; lipophilicity; absorption

1. Introduction

In recent years, due to the broadening of pharmaceutical targets and the desire for
better medicinal efficacy, the chemical structures of drug candidates have become much
more complicated [1]. As a result, a lot of drug candidates have the problem of low ab-
sorption, caused by poor solubility [1–3]. To overcome this issue, various formulation
technologies have been developed to improve absorption, such as nanoparticle formu-
lations, amorphous solid dispersions (ASDs) and the use of solubilizing additives [4–6].
Among these, nanoparticle formulations have successfully improved the absorption of
various pharmaceutical compounds, and several, such as Rapamune®, Emed®, Tricor®,
MEGACE® ES, have already been launched as pharmaceuticals.

In pharmaceutical development, the practice of predicting in vivo absorption with
in vitro tools is essential for optimizing formulations and designing manufacturing pro-
cesses [3,7–13]. However, it is difficult to predict the absorption of nanoparticle formula-
tions using the existing in vitro tools [14]. Though nanoparticle formulations successfully
increased the absorption of some compounds by more than ten-fold, they have been un-
able to increase that of other compounds [15]. The mechanism by which nanoparticle
formulations improve absorption can be explained by solubility, dissolution rate and per-
meability [15–17]. The relationship between solubility and particle size is described by the
Ostwald–Freundlich equation. Based on this equation, the solubility of small-molecule
compounds is calculated to improve by about 10% to 15% when the particle size of the
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un-milled compounds decreases to 100 nm [16,18]. As many studies have shown that
nanoparticle formulations can more than double the absorption of some compounds, we do
not think that solubility contributes to the absorption of nanoparticle formulations [15]. The
relationship between dissolution rate and particle size is described by the Noyes–Whitney
equation [15,16]. For some poorly water-soluble compounds, the rate-limiting step in the
absorption is in the dissolution process. It has been reported that nanoparticle formula-
tions improve the absorption of fenofibrate and ritonavir by improving the dissolution
rate [19,20]. Recently, it was reported that nanoparticle formulations could also affect
permeability [17]. The nanoparticle-improved permeability of poorly water-soluble com-
pounds, namely aprepitant and fenofibrate, has been observed in both in vivo and in vitro
models [21,22]. Though these studies suggested that the improved overall permeability
was caused by the improved permeability of the unstirred water layer (UWL), the detailed
mechanism has not been elucidated.

In this study, we elucidate the mechanism by which nanoparticle formulations are able
to improve permeability. The permeation process in passive diffusion is composed of two
continuous processes: diffusion of compounds in the UWL, and in the membrane [23,24].
Membrane permeability (Pm(app)) is not affected by the undissolved compounds. On the
other hand, our previous study clarified that UWL permeability (PUWL(app)) is affected by
them [25]. The undissolved compounds can enter the UWL, resulting in the reduction of the
apparent UWL thickness (hUWL(app)) and the improvement of PUWL(app). The effectiveness
of PUWL(app) improvement will depend on the particle size of the compounds. The nano-
sized compounds may improve PUWL(app) much more than the micro-sized compounds. In
addition, Pm(app) depends on the lipophilicity of the compounds [26]. Therefore, for highly
lipophilic compounds, the rate-limiting step in permeation is the diffusion of the com-
pounds in the UWL, and for low lipophilic compounds it is the diffusion of the compounds
in the membrane. Thus, nanoparticle formulations may improve the absorption of highly
lipophilic compounds, but not low lipophilic compounds. To confirm the improvement of
permeability by nanoparticle formulations experimentally, we had to measure permeability
under non-sink conditions, wherein compounds are not dissolved completely. However,
the conventional Caco-2 and parallel artificial membrane permeability assay (PAMPA) only
measures drug permeability under sink conditions, where they are fully dissolved. Thus,
the PUWL(app) of nanoparticle formulations has never been reported.

In this study, we prepared nanosuspensions of a highly lipophilic compound, griseo-
fulvin (MW = 352.77 and Log P = 2.18), and a low lipophilic compound, hydrocortisone
(MW = 362.46 and Log P = 1.55), by wet milling (Figure 1) [27,28]. We measured the
permeability of the un-milled samples and the nanosuspensions under non-sink conditions
using the in vitro tool Pion MicroFlux™ (Billerica, MA, USA), which has a permeation
compartment similar to that of PAMPA. The purpose of this study was to elucidate the
mechanism by which nanoparticle formulations improve permeability by reducing the
hUWL(app) and improving the PUWL(app). In addition, we aimed to reveal that the improve-
ment of permeability depends on the lipophilicity of the compounds.
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2. Materials and Methods
2.1. Materials

The reagents were used as received. Griseofulvin was purchased from Tokyo Chem-
ical Industry Co., Ltd. (Tokyo, Japan). The purity of the griseofulvin was guaranteed
to be ≥97.0%. Hydrocortisone, methanol, polyvinylpyrrolidone K30 (PVP K30), buffer
components (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O), sodium hydrox-
ide (NaOH), sodium chloride (NaCl)), heptane, sorbitan monooleate, acetonitrile (MeCN)
and trifluoroacetic acid (TFA) were purchased from FUJI FILM Wako Pure Chemical Co.
(Osaka, Japan). Hydrocortisone and PVP K30 were Wako special grade. The purity of the
hydrocortisone was guaranteed to be ≥97.0%. The NaH2PO4·2H2O, NaOH, NaCl and
heptane were guaranteed reagents. The purity of the NaH2PO4·2H2O, NaOH, NaCl and
heptane was guaranteed to be 99.0–102.0%, ≥97.0%, ≥99.5% and ≥99.0%. The methanol,
MeCN and TFA were for high-performance liquid chromatography (HPLC). The purity
of the methanol, MeCN and TFA was guaranteed to be ≥99.7%, ≥99.9% and ≥99.8%.
Dioctyl sulfosuccinate (AOT) and sodium lauryl sulfate (SLS) were purchased from Sigma–
Aldrich (St. Louis, MO, USA). The purity of the AOT and SLS was guaranteed to be ≥97%
and ≥98.0%. Gastrointestinal tract (GIT) lipids and the acceptor sink buffer (ASB) were
purchased from Pion Inc. (Billerica, MA, USA).

2.2. Methods
2.2.1. Preparation of Microparticles and a Nanosuspension for Griseofulvin

Two sizes of griseofulvin microparticle were prepared. The purchased griseofulvin
was the smaller microparticle (S-microparticle griseofulvin). The larger microparticle
(L-microparticle griseofulvin) was prepared by recrystallization. The griseofulvin was
dissolved in methanol at 70 ◦C. The solution was cooled to room temperature. The obtained
microparticles were isolated by filtration and allowed to dry under the vacuum.

A nanosuspension of griseofulvin (nanosuspension griseofulvin) was prepared by
wet milling as described in the previous report [29]. 570 mg of griseofulvin was milled in
5.1 mL of 1.33% PVP K30/0.066% AOT using 24 g of Nikkato YTT 0.8 mm zirconia beads.
The milling was performed by a magnetic stirrer at 700 rpm for 30 min and repeated four
times. The interval time was 15 min. The zirconia beads were removed using a TERUMO
needle syringe (27 gauge) with an inner diameter smaller than the zirconia beads.

2.2.2. Preparation of a Microparticle and a Nanosuspension for Hydrocortisone

The purchased hydrocortisone was used as the microparticle sample (microparticle
hydrocortisone). A nanosuspension of hydrocortisone (nanosuspension hydrocortisone)
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was prepared by wet milling according to a previous report [30,31]. 0.2% PVP K30/0.05%
SLS was used as the milling solvent, and the other conditions were the same as those
applied to the griseofulvin.

2.2.3. X-ray Powder Diffraction (XRPD)

X-ray powder diffraction (XRPD) patterns in the range of 3◦ to 35◦ (2θ) were obtained
using a Malvern Panalytical Empyrean powder X-ray diffractometer with Cu Kα radiation
in transmission mode. A tube voltage of 45 kV and amperage of 40 mA were used. The
nanosuspensions separated by centrifuging and the microparticle samples were used to
measure the XRPD patterns.

2.2.4. Particle Size Measurement

The particle size distributions of the nanosuspensions were measured by Malvern
Instruments Zetasizer Pro dynamic light scattering (DLS). Before the measurements, the
nanosuspensions were diluted to the appropriate concentration using water to prevent
multiple scattering. We visually confirmed that the nanosuspensions were dispersed in the
water during the measurements. All the measurements were performed in triplicate.

The particle size distributions of the microparticle samples were measured by a
Malvern Instruments Mastersizer 3000 laser diffraction size analyzer. Before the mea-
surements, the microparticle samples were suspended in the saturated heptane solution
of the compound containing 0.2% sorbitan monooleate which was used to keep the mi-
croparticle samples dispersed during the measurements. And, to prevent bubbles in the
test samples caused by sorbitan monooleate, heptane was chosen as the solvent instead of
water. All the measurements were performed in triplicate.

The morphologies of the nanosuspensions and microparticle samples were visualized
using JEOL JSM-IT500HR scanning electron microscopy (SEM). Before the measurement,
the mounted samples were coated with platinum under vacuum. We measured different
points in more than three images to confirm that the pictured image reflected the whole
sample and was not biased in terms of particle size and shape.

2.2.5. Permeability Measurement by MicroFlux™

The microparticle samples were suspended in 1.33% PVP K30/0.066% AOT for grise-
ofulvin and 0.2% PVP K30/0.05% SLS for hydrocortisone. The test sample suspensions
in the donor chamber were prepared by diluting the suspensions to a pH 6.5 phosphate
buffer. The sample dose amounts of the test sample suspensions were set at 200 µg/mL
for griseofulvin and 2000 µg/mL for hydrocortisone to achieve the non-sink conditions.
These test sample suspensions were stirred well by the rotation stirrers at 37 ◦C before the
permeability measurements.

The permeability was measured by a Pion MicroFlux™. The measurement conditions
were the same as those in our previous study [25]. A polyvinylidene fluoride (PVDF)
membrane filter of 0.45 µm pore size with 25 µL of GIT lipids solution was used as a
membrane compartment. After 20 mL of ASB was added in each acceptor chamber, 20 mL
of the test sample suspension (4 mg of griseofulvin or 40 mg of hydrocortisone) was added
in the donor chamber. During the measurement, the solutions in the donor and acceptor
chambers were stirred by cross-bar magnetic stirrers at 150 rpm, and were maintained at
37 ◦C. All permeability measurements were performed in triplicate.

At 0, 30, 60, 120, 240 and 360 min, 100 µL of the acceptor chamber solution was
withdrawn and diluted 2-fold. At 0, 120 and 360 min, 1000 µL of the donor chamber
solution was withdrawn and filtered through a Cytiva Whatman® Anotop® 10 glass
microfiber membrane filter of 0.02 µm pose size (Little Chalfont, UK). To measure the exact
concentration in the donor chamber containing the nanosuspensions, the filtration method
was applied according to a previous report [32]. Then, 100 µL of the filtered solution was
diluted 2-fold. The sample concentration was determined by ultra-high-performance liquid
chromatography (UHPLC).
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From the obtained concentration–time profiles in the acceptor chambers, the flux (J),
which means the mass transfer through the membrane, was calculated by Equation (1):

J (t) =
1
A
·dm

dt
=

V
A
·dC(t)

dt
(1)

where dm/dt is the total amount of material crossing the membrane per unit time, A is
the area of the membrane (1.54 cm2), V is the volume of the acceptor chamber (20 mL),
and dC(t)/dt is the slope of the concentration–time profiles in the acceptor chambers. To
compensate for the concentration decrease in the donor chamber, and the lag times in the
permeation, the initial fluxes from 30 min to 120 min were used to calculate dC(t)/dt. As
ASB can keep the acceptor chambers under sink condition during measurement, the flux is
described by Equation (2):

J (t) = PappCD(t) (2)

where Papp is the apparent permeability of the compounds and CD (t) is the concentration
of the dissolved compounds in the donor chambers. CD (t) at 0 min (=CD (0)) was used to
calculate Papp by Equation (2).

2.2.6. UHPLC Analysis

The concentrations of griseofulvin and hydrocortisone were determined using a Wa-
ters Acquity UPLC H-Class system and an Acquity UPLC® BEH Shield RP18 1.7 µm,
2.1 × 50 mm column. 0.05%TFA/water (v/v) and 0.05%TFA/MeCN (v/v) were used as
gradient mobile phase A and gradient mobile phase B respectively. At a flow rate of
1.0 mL/min, the gradient program was initially set as 5% B, and increased to 100% B over
2 min. The column temperature was controlled at 35 ◦C. The injection volume and ultravi-
olet (UV) wavelength for griseofulvin were 5 µL and 240 nm, respectively. The injection
volume and UV wavelength for hydrocortisone were 1 µL and 254 nm, respectively.

3. Results
3.1. Characterization of Microparticles and Nanosuspensions

The particle size distributions of the nanosuspensions and microparticle samples for
griseofulvin and hydrocortisone are shown in Figure 2. The particle size distribution
parameters are summarized in Table 1. Three sizes of test samples were prepared for
griseofulvin. The median diameter of the nanosuspension griseofulvin was 0.30 µm, the
median diameter of the S-microparticle griseofulvin was 13 µm, and the median diameter
of the L-microparticle griseofulvin was 34 µm. Two sizes of hydrocortisone test samples
were prepared. The median diameter of the nanosuspension hydrocortisone was 0.25 µm,
and the median diameter of the microparticle hydrocortisone was 6.1 µm. In addition, the
SEM images of the particles for each sample were consistent with the results of the particle
size measurement (Figure 3).

The XRPD patterns of the griseofulvin and hydrocortisone samples are shown in
Figure 4. For both griseofulvin and hydrocortisone, the nanosuspensions and the micropar-
ticle samples showed the same diffraction pattern, and the positions of the diffraction peaks
were not changed by wet milling. The results confirmed that they had the same crystalline
form and that wet milling did not cause any polymorphic transition.
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Figure 2. Particle size distribution (PSD) of: (a) griseofulvin samples; (b) hydrocortisone samples.
The results were transformed to volume distribution. The PSD parameters for each sample are
summarized in Table 1. The PSD of the nanosuspensions was measured by dynamic light scattering,
where water was used as the solvent. The PSD of the microparticle samples was measured by laser
diffraction size analyzer, where the saturated heptane solution of the compound containing 0.2%
sorbitan monooleate was used as the solvent.

Table 1. PSD parameters of griseofulvin and hydrocortisone samples.

Samples Methods/Solvents D10 (µm) 1,2 D50 (µm) 1,2 D90 (µm) 1,2

nanosuspension
griseofulvin dynamic light scattering (DLS)/water 0.22 ± 0.00 0.30 ± 0.00 0.43 ± 0.01

S-microparticle
griseofulvin

laser diffraction size analyzer/heptane
containing 0.2%

sorbitan monooleate 3
4.2 ± 1.1 13 ± 1 30 ± 9

L-microparticle
griseofulvin

laser diffraction size analyzer/heptane
containing 0.2%

sorbitan monooleate 3
16 ± 1 34 ± 2 60 ± 5

nanosuspension
hydrocortisone DLS/water 0.19 ± 0.00 0.25 ± 0.01 0.33 ± 0.00

microparticle
hydrocortisone

laser diffraction size analyzer/heptane
containing 0.2%

sorbitan monooleate 3
2.4 ± 0.5 6.1 ± 0.7 35 ± 3

1 Results represent average value ± standard deviation (SD) (n = 3). 2 D10, D50 and D90 describe the diameter of
particles at which 10%, 50% and 90% of the sample particles, respectively, are smaller than those values based on
a volume distribution. 3 The saturated heptane solution of the compound containing 0.2% sorbitan monooleate
was used as the solvent.
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3.2. Permeability Measurement
3.2.1. Griseofulvin

The griseofulvin time-concentration profiles in the acceptor chambers and the donor
chambers, respectively, are shown in Figure 5. The Papp of each sample was calculated
by Equations (1) and (2) as shown in Figure 6. The samples in the donor chambers were
visually confirmed to be suspensions, meaning that they were under non-sink conditions.
Based on the concentrations in the donor chambers, we confirmed that the solubility of
the griseofulvin was constant, independent of the particle size, and that solubility was not
improved by nanonization. In addition, the compounds in the donor chambers were kept
in saturation during the measurements. We also confirmed by DLS that the particle size
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distributions of the nanosuspensions did not change during the measurements. The Papp
of the nanosuspension griseofulvin was about 30% higher than that of the S-microparticle
griseofulvin. On the other hand, the Papp of the S-microparticle griseofulvin and the L-
microparticle griseofulvin were the same. The XRPD patterns of the griseofulvin and
hydrocortisone samples are shown in Figure 4. For both griseofulvin and hydrocortisone,
the nanosuspensions and the microparticle samples showed the same diffraction pattern,
and the positions of the diffraction peaks were not changed by wet milling. The results
confirmed that they had the same crystalline form and that wet milling did not cause any
polymorphic transition.
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3.2.2. Hydrocortisone

The hydrocortisone time-concentration profiles in the acceptor chambers and donor
chambers are shown in Figure 7. The Papp of each sample was calculated by Equations (1)
and (2) as shown in Figure 8. The non-sink condition of the donor chamber samples,
the saturation of the compounds in the donor chambers, and the consistent particle size
distributions of the nanosuspensions during the measurements were confirmed for both
hydrocortisone samples as well as for the griseofulvin. The solubility of the hydrocortisone
was not improved by nanonization. The Papp of the nanosuspension hydrocortisone was
almost the same as that of the microparticle hydrocortisone. Therefore, the nanoparticle
formulation did not improve the permeability of the hydrocortisone.
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3.2.3. Calculation of Pm(app) and PUWL(app)

As the griseofulvin and the hydrocortisone were neutral compounds, the molecules in
the donor compartment were unionized free compounds or undissolved compounds. In
this condition, the intrinsic membrane permeability was equal to the Pm(app).

The PUWL(app) of the griseofulvin was theoretically calculated by the following equa-
tion [25]:

1
Papp

=
1

Pm (app)
+

1
PUWL (app)

(3)

In our previous study, the Pm(app) of the griseofulvin was 0.0284 cm/min [25]. Pm(app)
does not depend on the sink/non-sink conditions or the particle size of compounds. By
substituting the measured Papp in Equation (3), the PUWL(app) of the griseofulvin for each
test sample was calculated as shown in Table 2. The PUWL(app) of the nanosuspension
griseofulvin was almost twice as fast as that of the S-microparticle griseofulvin.

Table 2. Calculated permeability of griseofulvin.

Parameter Nanosuspension
Griseofulvin

S-Microparticle
Griseofulvin

L-Microparticle
Griseofulvin

Measured Papp (cm/min) 0.0224 0.0175 0.0180
Pm(app) (cm/min) 0.0284

Calculated PUWL(app) (cm/min) 0.107 0.0456 0.0490

As the Pm(app) of hydrocortisone has never been reported, we theoretically calculated
the impact of the PUWL(app) on the Papp of the hydrocortisone using the hUWL(app) under non-
sink conditions. Both the Papp of the nanosuspension hydrocortisone and the microparticle
hydrocortisone were 0.00239 cm/min. According to Fick’s first law, PUWL(app) is calculated
using the apparent aqueous diffusivity (Daq(app)) and the hUWL(app) as follows:

PUWL (app) =
Daq (app)

hUWL (app)
(4)

Daq(app) can be empirically estimated using the following equation [33] (p. 381):

Log Daq (app) = −4.131− 0.4531Log MW (5)

The Daq(app) of the hydrocortisone was calculated to be 5.12× 10−6 cm2/s by Equation (5).
The hUWL(app) under sink conditions was reported to be about 100 µm [23]. Therefore, we
assumed that the hUWL(app) under non-sink conditions was less than 100 µm. When the
hUWL(app) was from 1 µm to 100 µm, the PUWL(app) of the hydrocortisone was calculated as
shown in Table 3. The calculated Pm(app) was much smaller than the calculated PUWL(app)
in both conditions. Therefore, the diffusion of the compounds in the membrane was the
rate-limiting step in the permeation of the hydrocortisone.

Table 3. Calculated permeability of hydrocortisone.

Parameter

Measured Papp (cm/min) 0.00239
hUWL(app) (µm) 100 50 10 1

Calculated PUWL(app) (cm/min) 0.0307 0.0615 0.307 3.07
Calculated Pm(app) (cm/min) 0.00259 0.00249 0.00241 0.00239

4. Discussion

These results demonstrate the mechanism we proposed in the introduction to explain
how nanoparticle formulations improve permeability. The highly lipophilic compound,
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griseofulvin, had high permeability, and nanonization increased its Papp by about 30%. On
the other hand, the low lipophilic compound, hydrocortisone, had low permeability and
nanonization did not change its Papp. In this section, we discuss the importance of perme-
ability under non-sink conditions in predicting the absorption of nanoparticle formulations.
We also discuss whether nanoparticle formulations can improve the permeability of small
molecule compounds which have various lipophilicities.

To assess the impact of permeability under non-sink conditions, we compared it
with that under sink conditions. The Papp of griseofulvin under sink conditions was
0.0148 cm/min in our previous study [25]. Therefore, the nanoparticle formulation of
griseofulvin improved permeability by about 50% under non-sink conditions compared to
that under sink conditions. (Figure 9) This effect under non-sink conditions has a significant
impact on the absorption of nanoparticle formulations.
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Using the results of permeability measurements, we quantitatively estimated the
impact of nanoparticle formulations on permeability for small molecule compounds. As
described in the Results section, the hUWL(app) was reported to be around 100 µm under sink
conditions [23]. Under non-sink conditions, the hUWL(app) was calculated by the following
equation, using Daq(app), Papp and Pm(app) [25]:

hUWL (app) = Daq (app)(
1

Papp
− 1

Pm (app)
) (6)

The Daq(app) of griseofulvin was 5.18 × 10−6 cm2/s and the Pm(app) was 0.0284 cm/s.
Substituting the measured Papp into Equation (6), the hUWL(app) was calculated to be
around 70 µm for the microparticle samples and around 30 µm for the nanosuspensions
under non-sink conditions (Figure 10). The nanonization of particle size significantly
reduced the hUWL(app). When compounds are nanonized, the undissolved compounds
can deeply penetrate the UWL, causing it to shrink. Considering this hUWL(app) reduction
mechanism, the micronization of griseofulvin may have improved the Papp. However,
the S-microparticle griseofulvin and the L-microparticle griseofulvin did not show a clear
difference in Papp. Similar results showing the effect of micronization on Papp were reported
previously in vivo, but the mechanism has so far not been investigated in detail [34]. To
understand how micronization improves permeability, further research is necessary.
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To evaluate the relationship between the lipophilicity of compounds and the improve-
ment of Papp by nanonization, the Papp of microparticle and nanoparticle compounds with
Pm(app) ranging from 0.001 cm/min to 1.0 cm/min was calculated under sink and non-sink
conditions (Figure 11). The Papp can be calculated using Pm(app), hUWL (app) and Daq(app) as
described in Equation (7) [25]:

Papp =
1

Pm (app)
−

hUWL (app)

Daq (app)
(7)
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compounds under non-sink conditions. The permeability of model compounds ranges from
Papp,sink = 0.00097 cm/min to Papp,sink = 0.029 cm/min. Papp,sink and Papp,non-sink represent the
Papp under sink conditions and under non-sink conditions, respectively.

The Daq(app) of the model compounds (MW = ca.350) was calculated to be
5.20 × 10−6 cm2/s using Equation (5). Based on the measurements of griseofulvin per-
meability, the hUWL(app) was estimated to be 100 µm under sink conditions, 70 µm for
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microparticle compounds under non-sink conditions, and 30 µm for nanoparticle com-
pounds under non-sink conditions. The lipophilicity and membrane permeability of
griseofulvin were Log P = 2.18 and Pm(app) = 0.0284 cm/min, respectively. When the Pm(app)
of the compound is 0.0284 cm/min, its Papp under non-sink conditions for nanoparticle
compounds was estimated to be about 50% higher than that under sink conditions. On the
other hand, the lipophilicity of hydrocortisone is Log P = 1.55 and its membrane perme-
ability was estimated to be Pm(app) = 0.00259 cm/min. When the Pm(app) of the compound
was 0.00259 cm/min, its Papp under non-sink conditions for nanoparticle compounds was
estimated to be almost the same as that under sink conditions. These results were consistent
with the results of the permeability measurements. In addition, the effect of nanonization
on the Papp of the higher lipophilic compound was also calculated. The lipophilicity of the
neutral compound, progesterone, was Log P = 3.48 and its Papp using PAMPA was reported
to be 2–3 times higher than that of griseofulvin [35]. When the Papp of the compound under
sink conditions was twice as high as that of griseofulvin (Papp = 0.030 cm/min), its Pm(app)
was about 1.0 cm/min. Based on Figure 11, nanonization will increase its Papp by about
three times. Nanonization has previously been reported to increase the in vivo permeability
of several highly lipophilic compounds by around 2–3 times [17]. Therefore, the estimation
in Figure 11 is reasonable.

The in vivo absorption of compounds is proportional to their concentration and perme-
ability in the human small intestine. Based on Figure 11, nanoparticle formulations greatly
improve the permeability of highly lipophilic compounds. This improved permeability can
significantly improve absorption. On the other hand, nanoparticle formulations have a very
small effect on the permeability of low lipophilic compounds. As the effect of nanonization
on solubility is also negligible, nanoparticle formulations will not improve the absorption
of low lipophilic compounds. Our results explain the big differences in absorption for
each compound. Thus, knowledge of the relationship between lipophilicity and perme-
ability improvement (Figure 11) is critical for developing formulations for poorly water-
soluble compounds.

Our proposed mechanism for how nanoparticle formulations improve permeability is
illustrated in Figure 12. It explains why nanoparticle formulations improve the permeabil-
ity of highly lipophilic compounds, but not low lipophilic compounds. Compared with
sink conditions, hUWL(app) under non-sink conditions is smaller, becoming even smaller
as particle size decreases. The reduction of hUWL(app) by nanonization greatly improves
PUWL(app). For highly lipophilic compounds, Pm(app) is equal to or larger than PUWL(app),
and the improvement of PUWL(app) will in turn improve the Papp (Figure 12A). On the other
hand, for the low lipophilic compounds, Pm(app) is smaller than PUWL(app), and the improve-
ment of PUWL(app) will not improve the Papp (Figure 12B). The results of the permeability
measurements successfully demonstrated the mechanism described in Figure 12.

We can quantitatively evaluate the impact of nanonization on permeability by mea-
suring permeability under non-sink conditions, enabling the more accurate prediction
of absorption. Permeability measured by PAMPA, which was used in the permeation
compartment for MicroFlux™, is highly correlated with human jejunal permeability, but
only for compounds that are not affected by transporters [35,36]. Though MicroFlux™ and
the PAMPA system are apparently different, the mechanism underlying the measurement
of the passive diffusion is the same, and important features, such as membrane compo-
sition and the donor/acceptor chambers, are similar, suggesting that the permeability
measured using MicroFlux™ can also be correlated with human jejunal permeability. Sev-
eral studies have also reported that MicroFlux™ results are well-correlated with in vivo
absorption [22,23,37,38], and that PUWL(app) affects permeability in the human small intes-
tine [39,40]. Therefore, we concluded that the improvement of permeability by nanonization
observed in this study can be correlated with permeability in in vivo contexts.
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5. Conclusions

This is the first report to quantitatively study the impact of nanoparticle formulations
on permeability. Furthermore, it was not clear what type of compounds could have their
absorption improved by nanoparticle formulations. Thus, we proposed a mechanism
explaining how nanoparticle formulations improve permeability. We successfully demon-
strated this mechanism by measuring permeability under non-sink conditions, wherein
compounds are not completely dissolved. We found that nanoparticle formulations of
highly lipophilic compounds can greatly improve permeability under non-sink conditions,
resulting in the improvement of absorption. Nanoparticle formulations will improve the
absorption of compounds with Log P≥ ca.3.5 more than three-fold. On the other hand, they
do not effectively improve the permeability of low lipophilic compounds. Nanoparticle
formulations will not improve the absorption of compounds with Log P ≤ ca.1.5. Based
on these findings, the absorption of nanoparticle formulations is affected by both perme-
ability and dissolution. Furthermore, our research suggests that we should investigate
technologies other than nanoparticle formulations for low lipophilic compounds. It is
critical that permeability is measured under conditions that reflect clinical characteristics,
such as dosage and non-sink/sink conditions, in order to accurately predict the absorption
of nanoparticle formulations.
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