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Abstract: In cancer immunotherapy, immune cells are the main force for tumor eradication. However,
they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenviron-
ment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect
of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct
inanimate entities whose functions are similar to natural living cells, or engineer immune cells with
functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these
advanced strategies in different cell types, as well as discussing the prospects of this field.

Keywords: immune cell; biomimetic engineering; materials-potentiated cell engineering; cancer
immunotherapy

1. Introduction

Immune cells, such as T cells, natural killer (NK) cells, neutrophils, macrophages
and dendritic cells (DCs), are the main functional components in cancer immunotherapy.
They can recognize and directly kill tumor cells (e.g., T cells, NK cells, neutrophils and
macrophages) or present antigens to effector T cells to trigger the anti-tumor immune
response (e.g., DCs). However, owing to the taming of the tumor immunosuppressive mi-
croenvironment, the anti-tumor functions of these immune cells are significantly inhibited.
A series of immune checkpoints (e.g., PD-1 [1], adenosine [2]), metabolism dysregulation in
the tumor microenvironment (TME) (e.g., amino acid metabolism [3], lipid metabolism [4]),
immunosuppressive cells (e.g., regulatory T cells (Tregs) [5], tumor-associated macrophages
(TAMs) [6]) and immunosuppressive cytokines (e.g., TGF-β, IL-6, IL-10), could cause the
dysfunction of these immune cells by exhaustion, or phenotype differentiation.

A variety of strategies have been reported to maintain the anti-tumor phenotype and
enhance the anti-tumor immune response of immune cells; for example, systemic injection
of cytokines or antibodies [7,8], or the utilization of genetic engineering technology to
reform immune cells before reinfusion, such as Chimeric Antigen Receptor T-Cell (CAR-T
cell). However, due to the toxicity caused by non-specific distribution and the safety issues
of genetic engineering technology [9], it is urgent to develop new strategies to promote
cancer immunotherapy.

Materials, especially nanomaterials have made remarkable progress in tumor im-
munotherapy. They can be constructed from various man-made organic or inorganic
materials, or natural cell components, such as the cell membrane or cell-secreted vesicles.

Pharmaceutics 2022, 14, 734. https://doi.org/10.3390/pharmaceutics14040734 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14040734
https://doi.org/10.3390/pharmaceutics14040734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-6428-5904
https://doi.org/10.3390/pharmaceutics14040734
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14040734?type=check_update&version=2


Pharmaceutics 2022, 14, 734 2 of 27

Due to the fantastic functions of nanomaterials, the biostability, bioavailability and biosafety
of various small molecular drugs, cytokines, ligands, aptamers and antibodies could largely
be improved. Some even realize intelligent and controllable therapeutics release on de-
mand. Moreover, by elaborate design, materials with special functional groups can be used
as a bridge to integrate the functional molecules with immune cells to endow immune cells
with tailored or new functions. In recent years, various materials-engineered strategies
have been reported for cancer immunotherapy (Scheme 1). These strategies mainly focused
on two parts: biomimetic strategies and materials-potentiated cell engineering strategies.
Biomimetic strategies utilize bioactive cell-derived components or biomimetic materials,
as building blocks to construct inanimate entities whose functions are similar to natural
living cells (Table 1). The abilities of targeting [10,11], chemotaxis [12], invisibility [13],
antigen presentation [14], phagocytosis and killing can be achieved via cell-mimicking
strategies [15,16]. Moreover, the biomimetic entities can be used as a “decoy”, to attract
the immunosuppression signals [15,17,18]. Therefore, the immunosuppression of immune
cells in TME could be relieved and immune activation could be indirectly achieved.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 2 of 28 
 

 

Materials, especially nanomaterials have made remarkable progress in tumor immu-
notherapy. They can be constructed from various man-made organic or inorganic materi-
als, or natural cell components, such as the cell membrane or cell-secreted vesicles. Due 
to the fantastic functions of nanomaterials, the biostability, bioavailability and biosafety 
of various small molecular drugs, cytokines, ligands, aptamers and antibodies could 
largely be improved. Some even realize intelligent and controllable therapeutics release 
on demand. Moreover, by elaborate design, materials with special functional groups can 
be used as a bridge to integrate the functional molecules with immune cells to endow 
immune cells with tailored or new functions. In recent years, various materials-engi-
neered strategies have been reported for cancer immunotherapy (Scheme 1). These strat-
egies mainly focused on two parts: biomimetic strategies and materials-potentiated cell 
engineering strategies. Biomimetic strategies utilize bioactive cell-derived components or 
biomimetic materials, as building blocks to construct inanimate entities whose functions 
are similar to natural living cells (Table 1). The abilities of targeting [10,11], chemotaxis 
[12], invisibility [13], antigen presentation [14], phagocytosis and killing can be achieved 
via cell-mimicking strategies [15,16]. Moreover, the biomimetic entities can be used as a 
“decoy”, to attract the immunosuppression signals [15,17,18]. Therefore, the immunosup-
pression of immune cells in TME could be relieved and immune activation could be indi-
rectly achieved. 

 
Scheme 1. Various materials-engineered strategies for cancer immunotherapy. 

Table 1. Biomimetic strategies for cancer immunotherapy. 

Mimic Cells Core Material Biomimetic Components Functions Reference 

T cell 

Poly(lactic-co-glycolic) 
acid (PLGA) nanoparti-

cles loaded with anti-can-
cer drugs 

T cell membrane 

To mimick the mechanisms of CTLs: releas-
ing anti-tumor molecules, Fas-ligand-medi-
ated apoptosis and removing immunosup-
pressive signals simultaneously by the ex-

hibited membrane molecules 

[16] 

T cell 
PD-1-expressing platelets 
and their derived micro-

particles 

PD-1 
(coloaded with cyclophos-

phamide) 

To revert exhausted CD8+ T cells (PD-L1 
blockade) and deplete Tregs (cyclophos-

phamide) 
[17] 

T cell 
Cellular nanovesicles 

presenting PD-1 
PD-1(coloaded with an 

IDO inhibitor) 

To overcome the inhibitory effects of IDO 
and PD-1/PD-L1 signaling on effector T 

cells in the TME 
[18] 

Scheme 1. Various materials-engineered strategies for cancer immunotherapy.

Table 1. Biomimetic strategies for cancer immunotherapy.

Mimic Cells Core Material Biomimetic Components Functions Reference

T cell

Poly(lactic-co-glycolic)
acid (PLGA) nanoparticles

loaded with
anti-cancer drugs

T cell membrane

To mimick the mechanisms of CTLs: releasing
anti-tumor molecules, Fas-ligand-mediated

apoptosis and removing immunosuppressive
signals simultaneously by the exhibited

membrane molecules

[16]

T cell
PD-1-expressing platelets

and their derived
microparticles

PD-1
(coloaded with

cyclophosphamide)

To revert exhausted CD8+ T cells (PD-L1
blockade) and deplete Tregs

(cyclophosphamide)
[17]

T cell Cellular nanovesicles
presenting PD-1

PD-1(coloaded with an
IDO inhibitor)

To overcome the inhibitory effects of IDO and
PD-1/PD-L1 signaling on effector T cells in

the TME
[18]

T cell —— T-cell-derived
nanovesicles

To prevent cytotoxic-T-cell exhaustion and
directly kill cancer cells via granzyme

B delivery
[19]
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Table 1. Cont.

Mimic Cells Core Material Biomimetic Components Functions Reference

T cell
mPEG-Pep-

PCL@PCL−PEG−COOH
NPs

Anti-Fas mAb (coloaded
with camptothecin)

To activate the Fas−FasL apoptosis pathway of
tumor cells [20]

T cell Polystyrene beads PD-1
To unlock tumor-specific T cells by

competitively inhibiting the
PD-1/PD-L1 signaling

[21]

NK/T cell
Cell-selective penetrating
and reduction-responsive

polymersomes
Granzyme B To achieve targeted delivery of granzyme B [22]

NK/T cell
Hyaluronic acid-directed

reduction-responsive
chimaeric polymersomes

Granzyme B To achieve targeted delivery of granzyme B [23]

NK /T cell
CaCO3 mineralized ZIF-8

coupled with
CD63-aptamer

Perforin and granzyme B
To achieve targeted delivery of perforin and

granzyme B for reprogramming lysosomes of
CD8+ T cells

[24]

Neutrophil Supramolecular hybrid
nanogel SOD, CPO To convert ROS in tumour tissue to highly

cytotoxic HOCl and the subsequent 1O2
[25]

Neutrophil Supramolecular nanogel CPO To elevate H2O2 levels in cancer cells and
convert it into 1O2

[26]

Neutrophil ZIF-8 GOx, CPO To produce more highly cytotoxic HClO [27]

Macrophage Magnetic nanoparticles

Genetically engineered
cell-membrane vesicles to

overexpress the
SIRPα variants

To block the CD47-SIRPα signaling
pathway and promote TAMs repolarization [28]

DC Nano-photosensitizers DC membrane
To achieve AIE photosensitizers selective
accumulation in tumor cells for PDT and

present antigens to T cells
[29]

DC
Nanoparticles loaded with

photothermal agents
(IR-797)

Mature DC membrane To enter the lymph nodes and present antigen
to stimulate T cells [14]

Different from biomimetic strategies, the strategies of materials-potentiated cell engi-
neering are to endow immune cells with different supportive components (also known as
backpack strategies), or functional materials to enhance their anti-tumor effects, prevent and
rescue their dysfunction, maintain and restore their anti-tumor phenotype (Table 2) [29–31].
The functional materials can be either coupled on the cell surface covalently/non-covalently
or internalized into cells by physical extrusion, natural phagocytosis, and others. As the
research on cells and immunity progresses, the fields of nanomaterials, medical immunity,
and cell biology have largely become integrated, in terms of interdisciplinarity, which
provides a new platform for cancer treatment. In this review, we will present the overview
in the way of classification of cell types. Firstly, their anti-tumor mechanisms and challenges
in immunotherapy are introduced. Then, we summarize the biomimetic and materials-
potentiated cell engineering strategies for cancer immunotherapy. Finally, the prospects
and development directions of these strategies will be prospected, to provide insights for
future related study.

Table 2. Materials-potentiated cell engineering strategies for cancer immunotherapy.

Immune Cell
Types Payloads Engineering Methods Functions Reference

TCR-T cell Lipid nanoparticles
(IL-15Sa and IL-21)

Surface conjugation by
maleimide-thiol reaction

To maintain the function, phenotype
and/or lifespan while reducing the

systemic side effects of
adjuvant drugs

[31]

CAR- T cell Nanogels (IL-15Sa)
Noncovalent attachment by

incorporating anti-CD45
into nanogels

[32]

TCR- T cell Nanogel (IL-2/Fc)

Covalent conjugation using an
amine-reactive linker and
coupling by incorporating
PEG-PLL onto the surface

of nanogels

[33]
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Table 2. Cont.

Immune Cell
Types Payloads Engineering Methods Functions Reference

CAR-T cell Liposomal vesicles
(SCH-58261)

Maleimide-thiol
coupling chemistry

To prevent or rescue the emergence
of hypofunctional CAR-T cells

within TME upon the blockade of
A2aR signaling

[30]

TCR- T cell Lipid vesicles (NSC-87877) Maleimide-thiol
coupling chemistry

To promote TCR signaling by
inhibiting Shp1 and Shp2 at the

immunological synapse for
enhancing the function of

tumor-specific Tcells

[34]

CAR-T cell Liposomal avasimibe Biorthogonal click reaction

To induce rapid T cell receptor
clustering and sustained T cell

activation by increasing the
cholesterol concentration in the T

cell membrane

[35]

CD8+ T cell IL4RPep-1 Lipid insertion using the
DOPE-BAM linker

To enhance tumor homing and
therapeutic efficacy [36]

NK cell
IS-environment-

responsive
micellar (Dox)

Maleimide-thiol
coupling chemistry

To reinforce the cytotoxic killing
effect of NK cells against solid
tumors through site-specific

diffusion of
chemotherapeutic agents.

[37]

NK cell Nanobody 7D12

Metabolic glycoengineering to
express 5′-azido sialic acid and

then conjugate the
DBCO-modified nanobody 7D12

through copper-free
click chemistry

[38]

NK cell CD22 ligands

Metabolic glycoengineering, or
glyco-polymer insertion through

hydrophobic-
hydrophobic interactions To improve the ability of NK cells to

recognize and bind to cancer cells

[39]

NK cell CD30-specific aptamers Biophysical intercalation into the
cell membrane [40]

NK cell Aptamer-based polyvalent
antibody mimic Lipid insertion [41]

NK cell TLS11a-aptamer Metabolic glycan biosynthesis [42]

NK cell Herceptin Single-step
chemoenzymatic reaction

To boost the activity of specific
tumor targeting and resist inhibitory

signals produced by tumor cells.
[43]

NK cell TLS11a aptamer and
PDL1-specific aptamer

Covalent modification through
metabolic glycan biosynthesis

and click reaction

To endow NK cell tumor-specific
targeting ability and PD-L1
checkpoint blockade ability

[44]

NK cell
Cy5.5 conjugated

Fe3O4/SiO2 core/shell
nanoparticles

Coincubation To improve the homing efficacy and
cytolytic function of the NK cells

[45]

NK cell Iron oxide nanoparticles Streptavidin-biotin interactions [46]

NK cell Fe3O4@polydopamine
nanoparticles Coincubation [47]

NK cell Cationic nanoparticles Coincubation To improve the ability of NK cells to
recognize and bind to cancer cells [48]

Neutrophil BSA-Ce6 nanoparticles Coincubation To enhance ROS generation [49]

Macrophage Soft discoidal particles
(IFN-γ) Cell-adhesion To enable adoptively transferred

macrophages to maintain their
phenotypes and functions and

induce TAMs polarization

[50]

Macrophage
Hyaluronic acid-decorated

superparamagnetic iron
oxide nanoparticles

Coincubation [51]

Macrophage Anti-SIRPα and
targeting Abs Fc-Fc receptors

To increase the accumulation of
macrophages in the tumor and
inhibit the self-recognition of

CD47-SIRPα

[15]

Macrophage Sgc8 aptamers Metabolic glycoengineering and
thiol-ene reaction

To enhance their activity for tumor
cell recognition [52]

Macrophage
LPS;

Lipopolysaccharides
(Dox)

Coincubation
To achieve selective intercellular

drug delivery and augmentation of
antitumor activities

[53]
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Table 2. Cont.

Immune Cell
Types Payloads Engineering Methods Functions Reference

Macrophage CuS nanoparticles Coincubation
To promote the cellular production

of ROS and direct BMDMs
polarization toward M1 phenotype

[54]

DC

Fluorescent magnetic
nanoparticles (loaded with

antigen peptide, iron
oxide nanoparticles, and

indocyanine green)

Coincubation To improve the efficiency of DCs
lymph node migration [55]

DC Doxorubicin-polyglycerol-
nanodiamond composites Coincubation

To elicit potent anti-GBM immunity
by virtue of stimulating GBM

cells’ immunogenicity
[56]

DC Glycopolymer Carbohydrate-lectin binding To promote the interaction of DCs
with T cells [57]

2. Biomimetic and Materials-Potentiated Cell Engineering Strategies
2.1. T Cell

T cells, especially cytotoxic T lymphocytes (CTLs), are the “main force” of anti-tumor
immune cells. Upon activation by major histocompatibility complex (MHC) molecule-
tumor antigen complex, CTLs can eliminate tumor cells, through the Fas-ligand-mediated
apoptosis or the secretion of cytotoxic molecules (e.g., granzyme B) [58]. However, in tumor
patients, especially in solid tumors, immunosuppressive TME hinders T cell infiltration
and leads to functional exhaustion [59]. Therefore, various materials-engineered strategies
were designed to mimic or enhance the functions of T cells.

2.1.1. T Cell Biomimetic Strategy

The Fas–FasL pathway is a central route for T cells to modulate tumor apoptosis.
Nanoparticles containing camptothecin (CPT) and the anti-Fas antibody have been de-
signed as T cell mimics by a sandwich structure (PEG as outer layer, anti-Fas antibody
as middle layer, and a CPT-loaded inner core) (Figure 1) [20]. Synergized with CPT, the
FasL-mediated cell apoptosis of the T cell mimics was up to 51.99%, which was significantly
improved, compared to the control group without any treatment (almost no cell apoptosis).
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In addition to directly killing tumor cells, T cell mimics could be fabricated as decoys
to ameliorate immunosuppression and prevent excessive immune responses. Taking
advantage of biomimetic materials, multiple immunosuppressive signals can be blocked.
Eventually, the immune tolerance of the TME is disrupted and the infiltration of immune
cells increases. Mukundan et al. reported a T cell mimic by constructing PD-1-conjugated
microparticles (PDMPs) [21]. Unlike the antibody blockade, PDMPs could competitively
inhibit the PD-1/PD-L1 signaling, while maintaining normal immune tolerance and the
CD45+ immune cell recruitment was enhanced with PDMPs treatment, which was a
mechanism for tumor control.

Apart from that, integrating multiple components into one system could provide
a “one-for-all” modality for combined immunotherapy. Zhang et al. encapsulated a
1-methyl-tryptophan (1-MT), an indoleamine-2,3-dioxygenase (IDO) inhibitor into engi-
neered cellular nanovesicles, presenting PD-1 receptors (PD-1 NVs), to block the inhibitory
effects of PD-1/PD-L1 and IDO on effector T cells, simultaneously. The percentage of
activated CD8+ T cells in tumors from the PD-1 NVs-treated group was increased by 23.4%,
compared to the PBS-treated group, and it further increased by 16.7% after the integration
of 1-MT, which directly drove tumor regression. Besides, they genetically engineered
platelets to express PD-1 and loaded a low dose of cyclophosphamide (CP) [17]. Such
engineered platelets could masquerade as T cells, binding to PD-L1 on tumor cells via
PD-1. Therefore, the PD-1/PD-L1 pathway between T cells and tumor cells is inhibited
and, thus, the exhausting of T cells is inhibited. Accumulating in the surgery wound, the
PD-1-expressing platelets and their derived microparticles increased the emergence of
CD8+Ki67+GzmB+ lymphocytes and selectively depleted Tregs. With all these synergistic
effects, the postsurgical tumor recurrence and metastasis were reduced.

Due to the presence of cell-derived components, natural cell membranes or cell-derived
nanovesicles have multiple anti-tumor mechanisms. T-cell-derived nanovesicles (TCNVs)
with programmed receptors could be produced by the continuous micro/nano pore ex-
trusion of cells. TCNVs could block PD-L1 and clear TGF-β, and directly killed tumor
cells by delivering granzyme B [19]. Similarly, Kang et al. developed T-cell-membrane-
coated nanoparticles (TCMNPs), which exhibited higher therapeutic efficacy than PD-L1
antibodies in melanoma treatment, due to the multiple therapeutic mechanisms and the
tumor-targeting ability (Figure 2a) [16]. By mimicking the mechanism of CTLs, TCMNPs
released anti-tumor molecules, induced Fas-ligand-mediated apoptosis and removed im-
munosuppressive signals by the exhibited membrane molecules (Figure 2b). Besides, as a
drug-carrying platform, TCMNPs could also be combined with chemotherapeutic drugs or
a CTLA-4 blockade, to exert synergistic therapeutic effects.

2.1.2. T Cell Engineering Strategy

Several T cell engineering therapies, including tumor-infiltrating lymphocyte (TIL)
therapy, T cell receptor (TCR)-T cell therapy and CAR-T cell therapy, have achieved great
success. However, the challenges of adoptively transferred T-cell therapy remain, in
terms of the declined vitality and functions of T cells in solid tumor treatment [60]. Many
chaperone molecules (e.g., supportive cytokines [7,31,32], TME immunomodulators) are
used to maximize the efficiency and persistence of adoptively transferred cells in vivo. They
also suffer from the risks of off-target toxicity, caused by the systemic administration of the
high and sustained systemic levels that are needed for desired efficacy. Another approach is
to secrete these supporting factors or knockout the inhibitory molecules genetically [61,62],
which is also hindered by the cost barriers and uncontrolled risks.

Utilizing materials-potentiated cell engineering strategies, nanoparticles containing
chaperone molecules could bind to the surface of T cells and target tumor sites simul-
taneously. This allows the delivery of different types and predetermined doses of chap-
erone molecules (including small molecules that cannot be recombined and expressed
by cells), while minimizing the toxicity risk caused by the uncontrolled stimulation of
transferred cells.
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One of the most common strategies is to couple cytokine-containing nanoparticles
to adoptively transferred T cells, to maintain their phenotype, function and lifespan. The
multilamellar lipid nanoparticles encapsulating IL-15 super-agonist (IL-15Sa) and IL-21
were bound to the surface of T cells, through thiol-reactive maleimide headgroups [31].
The in vivo proliferation and long-term persistence of nanoparticle-bound T cells greatly
outperformed unmodified Pmel-1 T cells. Li et al. used anti-CD45, as specific anchors
for the attachment of TCR-signaling-responsive nanogels to T cells [32]. The increased
reduction potential in the T cell surface after antigen recognition led to nanogel collapse
and IL-15Sa release. The expansion of IL-15Sa-backpacked T cells in tumors was 16-fold
greater than T cells supported by systemic cytokine injections, and 1000-fold greater than
T cells without cytokine support. In addition, they also extended this method to the
delivery of IL-2 [33]. All these cytokine nanoparticle-conjugated T cells have achieved
good tumor therapy effects and the supportive effect of cytokine nanoparticles is antigen
independent [31], so the amplified therapeutic effect can be directly transferred to T cells.

In addition to cytokines, delivering TME immunomodulators to block negative regu-
latory signals is also effective in preventing or rescuing the emergence of hypofunctional
CAR-T cells. However, delivering these drugs to immune cells within the TME represents
a challenge. Adenosine, a metabolite of the TME, has been reported to suppress T-cell
proliferation and IFN-γ secretion, by binding the A2a adenosine receptor (A2aR) on the
activated T cells [61,63]. Based on this, researchers chemically conjugated CAR-T cell
with multilamellar liposomal vesicles (cMLV), loaded with SCH-58261 (an A2aR-specific
small molecule antagonist), named as CAR-T. cMLV (SCH), to prevent CAR-T hypofunc-
tion and reverse the hypofunctional tumor-residing T cells (Figure 3a) [30]. Relative to
CAR-T + cMLV groups, the amount of colocalization of cMLV (SCH) and CAR-T cells
(78.57% ± 26.7%) inside tumors significantly increased (Figure 3b). Subsequent analysis
on day 2 after treatment showed that CAR-T. cMLV (SCH) had the highest T-cell engraft-
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ment (52.96% ± 15.5%) (Figure 3c). Moreover, higher intracellular IFN-γ expression was
observed compared to other groups (Figure 3d).
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To boost anti-tumor immunity, molecular interaction regulation in the T-cell synapse
is an important therapeutic strategy [64–66]. Despite some antibodies targeting cell surface
receptors in immunological synapses, and small molecule compounds targeting intracellu-
lar signaling pathways at the proximal end of TCRs [67–69], their clinical success hinges
on delivering therapeutic drug doses to the immunological synapse. Shp1 and Shp2 are
key phosphatases, which could downregulate T-cell receptor activation in the synapse. For
promoting TCR signaling, Stephan et al. covalently coupled maleimide-functionalized
nanoparticles, loaded with NSC-87877 (a dual inhibitor of Shp1 and Shp2) to the T-cell
membrane [34]. Interestingly, CD8+ T-cells surface-linked nanoparticles were dynamically
redistributed from the uropod of migrating cells into the nascent immunological synapse
during antigen recognition. Shp1/2 inhibitor-loaded nanoparticles enabled the efficient
delivery of compounds into the T-cell synapse (5.7-fold higher levels than free drug); there
was a 5.2-fold reduction in tumor burden compared to the untreated group, 10 days after
the T-cell transfer.

Previous studies have demonstrated that T cell exhaustion has a lot to do with the
suppressive metabolic state (e.g., hypoxia, nutrient deprivation) of TME, which likely
compromises the T cell therapeutic outcome of the solid tumor [69,70]. Despite various
metabolic intervention strategies based on metabolic modulators (e.g., T cells precondition
in vitro [71,72], nanoparticles-based drug delivery [73]), the poor pharmacokinetic limita-
tions of the drug and the immunosuppressive TME make them unsatisfactory effects [6,74].
Through elaborate design, an effective cholesterol-based metabolic intervention strategy
was proposed by Zhang and coworkers. The function of T cells depends on the amount
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of cholesterol on the cell membrane for clustering TCRs and forming immunological
synapses [75–77]. To induce rapid and sustained T cell activation, liposomal avasimibe (an
inhibitor of the cholesterol-esterification enzyme acetyl-CoA acetyltransferase) was clicked
onto the T cell surface by lipid insertion (named T-Tre/BCN-Lipo-Ava cells) to elevate the
plasma concentration of cholesterol for TCR clustering [35]. Retaining avasimibe on the
T cell surface provided avasimibe with autocrine- and paracrine-like mechanisms of action,
for maximizing the antitumor effector functions of both transferred and endogenous T cells.
Unlike unmodified T cells, T-Tre/BCN-Lipo-Ava cells showed larger TCR microclusters
and the TCRs featured with a more compact nature in the center of the immunological
synapse. Further, the synapse of T-Tre/BCN-Lipo-Ava cells could mature faster because
of smaller average area than unmodified T cells. Glioblastoma complete eradication was
achieved in three of the five mice that received surface anchor-engineered CAR-T cells.

Apart from enhancing the viability, the abilities of tumor homing and recognition
of transferred T cells are also important. Unlike CAR-T and TCR-T, CTLs isolated from
mice bearing melanomas, could be engineered with an IL-4 receptor-binding peptide
(IL4RPep-1) through a non-genetically engineered method [36]. Simply, a dioleoylphos-
phatidylethanolamine (DOPE)-biological anchor was used as a membrane phospholipid-
based linker for engineering. IL-4R is commonly up-regulated in melanoma and IL-4R-
targeted CTLs showed higher binding to melanoma cells. With the higher levels of se-
creted granzyme B and IFN-γ, the IL-4R-targeted CTLs exerted a more rapid and robust
effector response.

The complex immunosuppressive microenvironment provides a wide range of in-
tervention targets for improving the immunotherapy effect. Through elaborate design,
various strategies, based on materials-engineered T cells, can be used to increase the amount
of T cells and immunomodulatory drugs in the tumor site to achieve combined therapy.
For clinical translation, safety and vitality maintenance of cell therapy products are very
important. In addition to the continuous optimization of drug manufacturing solutions,
researchers, surprisingly, found that frozen nanogel-loaded CAR-T cells retained the ability
for cytokine-driven expansion, after thawing, which may be inspiring for drug storage [32].

2.2. NK Cell

NK cells, a unique subset of cytotoxic lymphocytes, are considered to be the most cyto-
toxic cells against tumors in vivo [78]. They have multiple mechanisms of effector function,
including perforin/granzyme particles, antibody-dependent cell-mediated cytotoxicity, and
cell death, mediated by death receptors and cytokines. In addition, the antitumor innate
and adaptive immune responses can be further activated by proinflammatory cytokines
and chemokines, secreted by NK cells [79].

2.2.1. NK Cell Biomimetic Strategy

Toxic components in immune cells can directly induce tumor cell apoptosis, which
has derived many biomimetic designs. However, their cellular uptake and intracellular
transport are challenging [80]. Some strategies focus on the application of nanotechnology,
such as polymersomes, to protect the toxic components (e.g., perforin and granzyme B
in NK and T cells) from degradation and achieve targeted delivery [22–24]. Compared
with pure materials and free drugs, it can induce a higher apoptotic rate, mainly due to
the maintenance of structure and bioactivity, more tumor accumulation and better cellular
uptake. In addition, with the assistance of targeted substances and responsive materials, the
selectivity and specificity of killing can also be achieved. Based on the NK/T cell biomimetic
strategy, Zhao et al. developed lysosome-targeting nanoparticles (LYS-NPs) by loading
perforin and granzyme B into the metal-organic framework (MOF) and coupling with a
lysosome-targeting aptamer (CD63-aptamer), to reprogram the lysosome of T cells in vivo
(Figure 4a) [24]. LYS-NPs stored perforin and granzyme B in the lysosomes and released
therapeutic proteins when the TCRs bound to tumor cells (Figure 4b,c). Compared with
LYS-NPs and ATVs (T cell that uses lysosomes to carry anticancer proteins as adoptive T cell
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vectors), tumor cell apoptosis of ATVs@LYS-NPs was 2.3- and 1.2-fold higher, respectively
(Figure 4d,e).

Pharmaceutics 2022, 14, x FOR PEER REVIEW 11 of 28 
 

 

adoptive T cell vectors), tumor cell apoptosis of ATVs@LYS-NPs was 2.3- and 1.2-fold 
higher, respectively (Figure 4d,e). 

 
Figure 4. Schematic diagram of the design and synthesis of LYS-NPs and their function. (a) Sche-
matic diagram of LYS-NPs synthetic processes; (b) schematic illustration of preparing adoptive T 
cell vectors (ATVs) with LYS-NPs. Once LYS-NPs are taken up by ATVs, they target CD63+ lyso-
somes and degrade inside to release the contents stored in the lysosomes; (c) schematic of ATVs 
casting cytotoxic proteins and Ca2+ in reassembled lysosomes to kill target tumor cells; (d,e) flow 
cytometry analysis of 4T1 cells apoptosis level after incubation with PBS, LYS-NPs, ATVs, and 
ATVs@LYS-NPs for 24 h. Reprinted with permission from Ref. [24]. Copyright 2021 John Willey and 
Sons. 

2.2.2. NK Cell Engineering Strategy 
Compared with T cells, NK cells recognize target cells via an array of surface ligands, 

without requiring prior sensitization and MHC matching [81,82]. For NK cell-based im-
munotherapy, the transfer safety of autologous, allogeneic, and cultured NK cells has 
been demonstrated [83–85]. However, there are still many challenges for the clinical trans-
formation of these highly oncolytic effector cells, including in vivo life span, the poor in-
filtration to solid tumors [44], and the lack of inherent selectivity for the tumor.  

Materials-potentiated engineered NK cells could directly increase their cytotoxicity; 
for example, coating NK cells with positively charged nanoparticles to enhance their cy-
totoxic activity by altering the expression of CCR4 and CXCR4 of NK cells [48]. The for-
mation of immunological synapse (IS) during cancer cell recognition plays a vital role in 
the NK-cell-mediated tumor killing. A reinforced NK cell (ReNK) was obtained by modi-
fying it with acid-responsive Dox, containing a tri-block copolymer-based micellar system 
(Figure 5) [37]. During the binding of ReNK to cancer cells, acidification at the IS acted as 
a stimulus for triggering the site-specific release of Dox. As a result, ReNK could penetrate 
deep into the tumor tissues and kill tumor cells efficiently.  
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diagram of LYS-NPs synthetic processes; (b) schematic illustration of preparing adoptive T cell
vectors (ATVs) with LYS-NPs. Once LYS-NPs are taken up by ATVs, they target CD63+ lysosomes
and degrade inside to release the contents stored in the lysosomes; (c) schematic of ATVs casting
cytotoxic proteins and Ca2+ in reassembled lysosomes to kill target tumor cells; (d,e) flow cytometry
analysis of 4T1 cells apoptosis level after incubation with PBS, LYS-NPs, ATVs, and ATVs@LYS-NPs
for 24 h. Reprinted with permission from Ref. [24]. Copyright 2021 John Willey and Sons.

2.2.2. NK Cell Engineering Strategy

Compared with T cells, NK cells recognize target cells via an array of surface ligands,
without requiring prior sensitization and MHC matching [81,82]. For NK cell-based im-
munotherapy, the transfer safety of autologous, allogeneic, and cultured NK cells has been
demonstrated [83–85]. However, there are still many challenges for the clinical transforma-
tion of these highly oncolytic effector cells, including in vivo life span, the poor infiltration
to solid tumors [44], and the lack of inherent selectivity for the tumor.

Materials-potentiated engineered NK cells could directly increase their cytotoxicity; for
example, coating NK cells with positively charged nanoparticles to enhance their cytotoxic
activity by altering the expression of CCR4 and CXCR4 of NK cells [48]. The formation of
immunological synapse (IS) during cancer cell recognition plays a vital role in the NK-cell-
mediated tumor killing. A reinforced NK cell (ReNK) was obtained by modifying it with
acid-responsive Dox, containing a tri-block copolymer-based micellar system (Figure 5) [37].
During the binding of ReNK to cancer cells, acidification at the IS acted as a stimulus for
triggering the site-specific release of Dox. As a result, ReNK could penetrate deep into the
tumor tissues and kill tumor cells efficiently.
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NK cells lack an inherent targeting ability to tumor cells [40]. Besides, they are notori-
ously averse to endogenous gene uptake, which brings about low transgene expression
for genetic engineering [86]. Current strategies mostly focus on the biological or chemical
functionalization of NK cells, by using ligands [39,87], aptamers [40–42,44], and antibodies
for increasing their migration to the tumor site and the specificity of recognizing cancer
cells [43]. The specific recognition between NK cells and tumor cells brings them into prox-
imity, thus, facilitating and prolonging intercellular interactions. The interaction between
effector and target cells mediates the formation of stronger immune synapses, which facili-
tates the release of payloads (such as perforin, granzyme B) and the transmission of death
signals. In addition, bifunctional cells have been developed to promote the migration of NK
cells to target sites [87], resist the immunosuppressive microenvironment and recognize
target cells [43,44]. PD-L1 expression on most tumors could be induced by IFN-γ, which
results in immunosuppression. Zhang et al. developed a “self-rescue strategy” [44]. They
equipped NK cells with aptamers of TLS11a and PD-L1 (T-P-NK cells) for targeting HepG2
cells and checkpoint blockade. The dual aptamer-modified T-P-NK cells showed higher
affinity to HepG2 cells and secreted more IFN-γ. The tumor cell apoptosis rate rose with
the increase in the effector-to-target (E/T) ratio, and significantly exceeded other groups.
Notably, the percentage of apoptotic and necrotic HepG2 cells could reach up to 62.76% at
the E/T ratio of 10:1 after treatment with T-P-NK cells. Additionally, the upregulated PD-L1
expression on HepG2 cells, induced by increased IFN-γ, in turn, enhanced aptamer-binding
of PD-L1 for target recognition and checkpoint blockade.

Materials technology also helps to flexibly adjust these targeted molecules to obtain en-
gineered NK cells, which have a stronger affinity with target cells. For example, modifying
NK cells with different sites of the CD22 ligand can obtain analogs with micromolar affinity
to CD22, thereby greatly improving the specific recognition and binding efficiency of NK
cells to cancer cells [48,88]. Aptamers are a group of short and single-stranded oligonu-
cleotides, with unique three-dimensional structures [89]. Compared with antibodies, they
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have many advantages, such as an inherent chemically synthetic nature and efficient tissue
penetration. In addition to the native or monovalent antibody mimic (MAM), researchers
synthesized a supramolecular aptamer-based polyvalent antibody mimic (PAM) on the
cell surface (Figure 6a,b) [41]. In comparison to the native NK cells, cells engineered with
MAMs and PAMs could form more NK-K562 complexes, thus, enhancing the efficiency
of cell-cell recognition. The results showed that the enhanced interactions between the
immune cells and cancer cells significantly promoted the killing of K562 cells, even at a low
NK/K562 cell ratio (Figure 6c–e). Of note, the branched structure of the PAM was crucial
for the enhanced cell-binding ability.
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Figure 6. (a) In situ synthesis of PAMs on the cell surface through DNA initiator (DI) display, scaffold
construction, and polyvalent hybridization; (b) comparison between the PAM and monovalent
antibody mimic (MAM) for recognizing target cancer cells; (c) effect of the NK/K562 ratio on the
cytotoxicity of K562 cells; (d) enhancement of the killing efficiency; (e) representative flow cytometry
histograms taken at a 1:5 effector/target ratio. Reprinted with permission from Ref. [41]. Copyright
2020 John Willey and Sons.

Entering the tumor site and having direct interaction with tumor cells is essential
for NK cells to exhibit their cytotoxicity effect. Some studies have proven that external
magnetic fields can act as a guide for NK cells. NK cells loaded with Cy5.5-coupled
Fe3O4/SiO2 core/shell nanoparticles can increase the infiltration to B-cell lymphoma by
17 times under magnetic navigation [45]. To avoid the use of an external magnetic field,
Wu et al. developed NK cells loaded with Fe3O4@PDA magnetic nanoparticles and sutured
the magnetic device into the subcutaneous tissue of mice [47]. This strategy improved the
accumulation and retention of NK in tumors, thereby significantly enhancing the killing
effect of NK cells.
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2.3. Neutrophil
2.3.1. Neutrophil Biomimetic Strategy

For neutrophils, ROS is one of the main effect molecules for them to exhibit the cytolytic
effect [90]. Many biomimetic strategies use enzymes within neutrophil biocatalytic system
or enzymes with similar effects, such as superoxide dismutase (SOD), glucose oxidase
(GOx), chloroperoxidase (CPO), etc., to produce highly cytotoxic ROS in tumors. However,
since enzymes are easily inactivated and degraded in the physiological environment, the
assistance of nanomaterials is essential [91,92]. Wu et al. used nanoscale gel to entrap the
SOD and CPO [25]. With the cascade reaction of the above two enzymes, the endogenous
ROS (O2

•− and H2O2) in the TME can be converted to highly cytotoxic 1O2, without
external energy activation. The highly reactive HClO is the most powerful effector of
neutrophils. Zhang et al. fabricated “super neutrophils” by embedding GOx and CPO into
zeolitic imidazolate framework-8 (ZIF-8) and then encapsulated them with a neutrophil
membrane (Figure 7a–d) [27]. In vitro and in vivo results indicated that these artificial
“super neutrophils” can generate 7-fold higher reactive HClO than the natural neutrophils
and reduce H2O2-involved systemic side effects via biocatalytic cascades.
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Figure 7. Schematic illustration of the biomimetic fabrication, biological reaction process, proposed
mechanism and diverse biomedical applications of the “super neutrophils.”(a) The synthesis of two
enzymes-embedded ZIF-8 nanoparticles by Zn2+, 2-methylimidazole, glucose oxidase (GOx), and
chloroperoxidase (CPO); (b) the biomimetic fabrication of the “super neutrophils” by the surface
modification of the GOx/CPO-embedded ZIF-8 nanoparticles with the natural neutrophil membrane
(NM); (c) stronger HClO generation ability and fewer systemic side effects of the “super neutrophils”
than the intrinsic neutrophils for promising antimetastatic, antitumor and antibiosis applications;
(d) the enzymatic reaction of GOx, CPO and the “super neutrophils”. Reprinted with permission
from Ref. [27]. Copyright 2019 John Willey and Sons.

In addition to the double-enzyme cascade catalytic reaction strategy that does not rely
on external energy, Zhang developed an adjustable magneto-caloric-enzymatic tandem
therapy [26]. Similarly, nanogels were loaded with magnetic nanoparticles (MNPs) and
CPO, and the cancer cells were thermally stimulated by alternating magnetic field. The
level of H2O2 or O2•− could be increased, owing to the oxidative stress, followed by the
upregulation of intracellular 1O2 with CPO biocatalysis. That is, the physical stimulus can
be exerted as the short-term activator and the enzyme can provide the constant ROS output
through biocatalysis.
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From the above review, we conclude that either internal stimulus respond to enzymatic
reactions or the addition of external stimulus for precise adjustment of time and space can
be utilized to integrate with the biomimetic strategy of neutrophils.

2.3.2. Neutrophil Engineering Strategy

Neutrophil transfusion, the only allogeneic leukocyte transfusion, has been used in
the clinical setting for decades to treat infections and used as a standard therapy [93–95].
However, the tumor-killing activity (TKA) of neutrophils, from more than 90% donors, is
insufficient, which has greatly affected the clinical application. Therefore, it is of partic-
ular importance for neutrophils to develop methods to enhance the TKA and, thus, the
immunotherapeutic effect.

In order to enhance the TKA of neutrophils, our group has developed a biotic/abiotic
integration strategy, simply by integrating the nano-photosensitizer P with neutrophils
(NEP) after incubation at 37 ◦C [49]. Upon NIR illumination, the improved anti-tumor
effect of neutrophils was achieved by the direct synergistic effect of ROS, generated by
photo-activated P (Figure 8a–f). In the biotic/abiotic integrated system, there were two
sources for the effect molecule ROS: photo-activated P and intrinsic antitumor properties
of neutrophils. In conventional biological approaches, the mediation of various upstream
signaling pathways stimulated by cytokines is often the main reason for the enhancement
of the antitumor effect of immune cells. However, we provided a materials-potentiated
strategy that directly enhanced the final concentration of effect molecules, while bypassing
the signaling pathways.
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Figure 8. The enhanced TKA of NEP by photo-activated ROS generation and NETosis. (a) The under-
lying tumoricidal mechanism of NEP. TKA assessment to 4T1 tumor cells via CCK8; (b) apoptosis
assay; (c) the viability/cytotoxicity assay; (d,e) TKA assessment of NE + LPS group to 4T1 tumor
cells via CCK8 with different LPS amount; (f) TKA assessment to B16-F10 tumor cells and HUVEC
via CCK8. (* p < 0.05, ** p < 0.01, *** p < 0.001). Reprinted with permission from Ref. [49]. Copyright
2020 Eisevier.
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2.4. Macrophage

Macrophages account for more than 50% of tumor tissues, which are considered to
be the most promising anti-tumor immune cells. However, tumor cells can escape from
macrophage phagocytosis, either by expressing several anti-phagocytic markers, such
as CD24 and CD47 [96,97], or by polarizing the anti-tumor M1 phenotype into the pro-
tumor M2 phenotype [98]. Biomimetic and materials-potentiated macrophage engineering
strategies for enhanced cancer immunotherapy are mainly designed from these two aspects.

2.4.1. Macrophage Biomimetic Strategy

Therapeutic blockade of the CD47-SIRPα pathway, to boost the antitumor activity of
TAMs, has entered the clinic or is in preclinical development [99,100]. However, the
safety and objective response rate need further improvement. Rao et al. developed
a competitive inhibition strategy by simulating the macrophage-cancer cell interaction
(Figure 9a) [28]. They wrapped magnetic nanoparticle (MN) cores, with genetically engi-
neered cell-membrane vesicles (gCMs), overexpressing SIRPα variants, and delivered the
gCMs into tumor tissues under magnetic navigation. The overexpressing SIRPα variants
on the gCM shell enhanced affinity to CD47 50,000-fold, and efficiently blocked the CD47-
SIRPα signaling pathway (Figure 9b). The MN core could serve to repolarize TAMs toward
the M1 phenotype, synergistically facilitating the macrophage phagocytosis of cancer cells
and triggering antitumor T-cell immunity.
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Figure 9. Scheme of genetically edited cell membrane-coated magnetic nanoparticles (gCM-MNs)
elicit potent macrophage immune responses for cancer immunotherapy. (a) Cell membranes were
isolated from the genetically engineered cells, overexpressing SIRPα variants and then coated onto
magnetic nanoparticles (MNs); (b) under external magnetic field, gCM-MNs efficiently accumulate in
the tumor microenvironment, block the CD47-SIRPα “don’t eat me” pathway, and repolarize TAMs
towards M1 phenotype, promoting macrophage phagocytosis of cancer cells as well as boosting
antitumor T-cell immunity. Reprinted with permission from Ref. [28]. Copyright 2020 John Willey
and Sons.

2.4.2. Macrophage Engineering Strategy

Like CAR-T, many attempts have been made to use CAR-Macrophage (CAR-M) to treat
cancers [101,102]. However, the major obstacle is that macrophages struggle to keep their
antitumor phenotype and become accomplices to TAMs, once injected into the body [103].
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The main reasons for this, affecting their phenotype, are the metabolism dysregulation of
TME, tumor debris and other tumor-infiltrating immune cells [104].

Immunoregulatory cytokines play a vital role in recovering and sustaining the anti-
tumor phenotype of macrophages [105]. However, providing sufficient concentration at
the target site, while minimizing side effects, remains a challenge, and free cytokines are
pleiotropic, which may have adverse effects on immunotherapy. Like the T cell backpack
strategy, a class of soft discoidal IFN-γ backpacks was developed [50]. The “backpacks”
can firmly adhere to the surface of macrophages by the cell-adhesive layer (hyaluronic
acid modified with aldehyde (HA-Ald) and poly(allylamine) hydrochloride (PAH)). The
sustained release of cytokine enabled macrophages to maintain the M1 phenotype in
immunosuppressive TME and polarized TAMs to the M1 phenotype, at a dose that was
100-fold lower than the maximum total dose. However, the same dose of free IFN-γ
induced significantly higher IL-6 related tumor metastasis, which is also secreted by M1
macrophages [106]. Here, macrophages were not only the targets of cytokines, but also
their active carriers. The inherent chemotactic ability of macrophages allows lower drug
dosage to achieve the desired therapeutic effect. Simultaneously, this pre-loaded strategy
provided the spatiotemporal consistency of several effects, which was conducive to the
precise control of the drug dosage to maximize therapeutic outcomes.

In addition to the backpack strategy, some inorganic nanomaterials can reprogram
macrophages after their phagocytosis and degradation. Superparamagnetic iron ox-
ide nanoparticles (IONs), modified with HA, could be internalized into macrophages
(HION@Macs) (Figure 10) [51]. As the IONs gradually degraded into iron ions, the produc-
tion of therapeutic macrophages was stimulated. Benefiting from magnet-guided location
and retention, the reprogrammed macrophages had a substantial improvement in pro-
ducing bioactive components (e.g., NO and TNF-α) at the tumor site. Besides, they can
endow macrophages with better resistance against M2-education compared with parent
macrophages and M1 macrophages. This hybrid system combined contributions from
both the biological regulation of materials and the intrinsic nature of immune cells, which
was enlightening for the design of cell therapy products. Likewise, pegylated copper
sulfide nanoparticles could promote the cellular ROS production of macrophages through
dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and direct bone marrow-
derived macrophage (BMDMs) polarization towards the M1 phenotype [54]. The copper
sulfide nanoparticle-stimulated BMDMs (CuS-MΦ) could maintain their low expression
of CD206 for 6 days ex vivo and the intracellular Cu ions provided a key link with M1
polarization. Further, the CuS-MΦ also exhibited enhanced phagocytic and digestive ability
due to the downregulated PD-1 expression.

To make macrophages work efficiently and quickly, the injected macrophages should
not only have high anti-tumor activity, but also have superior targeting properties, to
reduce their circulation time and increase their interaction with tumor cells [51]. Apart from
magnetic navigation to promote positioning and retention in tumors, aptamer-modified
macrophages can increase the capture rate of tumor cells. Due to the improved tumor cell
recognition of aptamer-modified macrophages, secretion of proinflammatory cytokines,
phagocytosis of captured tumor cells, and expression of MHC class molecules were accel-
erated [52]. In addition, blockade of the CD47-SIRPα pathway has been widely used in
promoting the efficiency of recognition and phagocytosis of cancer cells [107–109]. Unlike
past studies that opsonize tumors with antibodies or by reprogramming TAMs, Alvey
et al. engineered BMDMs with anti-SIRPa and pre-loaded human specific tumor-targeting
Abs (Ab-primed Plus SIRPa Blocked macrophages, A’PB) [15]. Due to tumor-selective
engorge-and-accumulate, the A’PB in tumors favored tumor regression for 1-2 weeks.
Compared with the systemic injection of antibodies and donor macrophages that quickly
differentiated toward non-phagocytic, high-SIRPa TAMs, these engineered macrophages
had the advantages of both safety and efficiency.
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tumors through active chemotaxis and magnet guidance, produce inflammatory factors (such as
TNF-α, NO and ROS) to suppress tumor, re-educate in situ M2 macrophages into pro-inflammatory
M1 phenotype for synergistic cancer-specific therapy. Reprinted with permission from Ref. [51].
Copyright 2019 John Willey and Sons.

Engineered macrophages can be more sensitive to the TME and respond to it, resulting
in higher efficiency and fewer side effects. In addition, the engineered macrophages could
re-educate TAMs to M1 macrophages for immune recovery in most cases. Although the
strategies of engineered macrophages for immunotherapy have achieved some success,
there is still much work to be done, in exploring the mechanism of macrophage distribution
and polarization. The discovery of these mechanisms will also provide other new ideas.

2.5. DC

As the most powerful antigen-presenting cells in the body, DCs can activate mem-
ory T lymphocytes and naive T lymphocytes, through effective ingestion, processing
and presentation of antigens [110]. However, the immunosuppressive TME inhibits DCs’
recruitment, activation, and antigen presentation, thus, promoting tumor immune es-
cape [111,112]. Therefore, strategies designed to improve the antigen-presenting ability of
DCs are greatly needed.

2.5.1. DC Biomimetic Strategy

Due to the source and biosafety issues of clinical collection and in vitro reinfusion
of DCs, an alternative strategy, artificial antigen-presenting cell (aAPC), has been pro-
posed and rapidly developed to induce therapeutic cellular immunity. aAPC is a new
technology for systemic cancer immunotherapy, based on cell engineering, or micro- or
nano-particles. aAPC can mimic the natural process of biological APCs by presenting
tumor-specific peptide-MHC and important signal proteins to T cells, bypassing the direct
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DCs activation [113]. As a synthetic system, aAPC can be maintained in an active state,
without being affected by the external microenvironment and has a long shelf-life.

The activation of T cells by aAPC is affected by many factors, and the simulation of
natural APC can be achieved through flexible adjustment of the following factors. First,
aAPC should have three key signals as natural APCs: signal I for antigen recognition, signal
II for co-stimulation and cytokines as signal III [114,115]. Second, the density, number and
different combinations of these signals will directly affect the expansion and activation
of T cells [116] and adequate surface contact between T cells and aAPC is essential for
activation [113]. Strategies, such as shape manipulation and nanoparticle clustering, can
increase the contact area with T cells and form more immune synapses [117,118]. In
addition, many other factors are worthy of consideration and under constant exploration.
However, the stimulation extent should be appropriately controlled to prevent the induction
of exhausted T cells, which are manifested as the decreased cytokine production, reduced
proliferative and killing capacity, and high expression of co-inhibitory molecules.

In anti-tumor immunotherapy, the combination of aAPC and immune checkpoint
blockade (such as anti-PD-1 [119], anti-CTLA4 [120]) has been proposed to amplify positive
regulation and inhibit negative regulation. Here, the blockade of immune checkpoints
is used to relieve the immune suppression of T cells, and the antigen-specific aAPC is
used to effectively activate and expand T cells. The combination of the two will produce a
synergistic effect, rather than a superimposed effect.

However, manufacturing aAPCs that completely replicate the complex components
and structures of DCs is almost impossible. Cell membranes that preserve some properties
of natural cells, combined with synthetic materials, could make it possible to produce
artificial cells [121–124]. Studies have shown that the DC membrane retains the ability
to recognize cells and can achieve antigen presentation for T cell activation. Tang et al.
coated nanoaggregates of the as-prepared aggregation-induced emission photosensitizers
with a DC membrane (DC@AIEdots) [29]. The biomimetic nano-photosensitizers could
efficiently accumulate around the tumor by hitchhiking the endogenous T cells, resulting
in about a 1.6-fold increase in the tumor delivery efficiency. Upon interaction between
the DC membrane ligands (MHC I, MHC II, CD80, and CD86) and T cell receptors on
the surface, DC@AIEdots can induce the in vivo proliferation and activation of T cells
(Figure 11). Results showed that DC@AIEdots-treated T cells induced 14-fold and 11-fold
higher TNF-α or IFN-γ production, respectively, compared with the PBS buffer or bare
AIEdots groups. Combining the nano-formulation that can induce tumor cell immunogenic
cell death (ICD) with a DC membrane can provide tumor antigen and activate T cells,
which induces an “in situ vaccine” effect. Simultaneously, the size advantage is beneficial
for biomimetic DCs, migrating to the lymph nodes(LNs), where initial T cells reside. Sun
et al. developed intelligent DCs (iDCs) by coating photothermal agents (IR-797) with a
mature DC membrane [14]. In addition to cross-prime T cells in situ, after intratumoral
injection, iDCs can also stimulate the initial T cells after migrating to tumor-draining lymph
nodes. Then, these activated and expanded CD4+/CD8+ T cells secreted cytokines and
reduced the expression of heat shock proteins in tumor cells, enhancing the cell damage
caused by heat stress. iDCs, as a refined system, can provide a general platform for
combining DCs-based immunotherapy with various materials as needed, to manufacture
multifunctional nano-agents.
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2.5.2. DC Engineering Strategy

DCs could be engineered to enhance the antigen-presenting process for immunother-
apy. Schemes have been developed to load antigens to DCs in vitro or to modify antigens
with biological materials, to activate phagocytosis receptors on the surface of DCs. Al-
though DC vaccines have been proven to be effective in many cancer types [125–128], the
clinical benefits are still disappointing [129].

One of the main factors limiting their efficacy is the inefficient migration of DCs to the
LNs, where DCs activate antigen-specific T cells. As previously reported, the efficiency of
DCs migration, from the injection site to LNs, is usually less than 4–5% [130]. To promote
DCs migration efficiency, several solutions have been attempted [131]: (1) inject pro-
inflammatory factors to enhance the expression of C-C Chemokine Receptor 7 (CCR7) for
attracting DCs; (2) exert stress (e.g., laser illumination, chemical stress) in the injection site
to realize punctures’ enlargement in the peri-lymphatic basement membrane, accompanied
by collagen fibers disarraying and cell-matrix disruption in the dermis to facilitate DCs’
migration; (3) enhance LN’s ability to recruit DCs via chemokine secretion by other immune
cells, with high LNs homing ability; (4) other methods, such as changing the route of
administration, including intradermal (ID) or subcutaneous (SC) routes. In addition,
the introduction of materials provides new options for this dilemma. DCs loaded with
magnetic nanoparticles can enhance their lymphatic targeting and subsequent anti-tumor
effects, under the action of an external magnetic field [55]. Compared with the control
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group, magnetic pull force resulted in an 11.4- and 16-fold increase in LNs migration of
BMDCs and DC2.4 cells, respectively. The low expression of tumor antigens and MHC
molecules on tumors also impairs antigen uptake and presentation by DCs. Nano-DOX-
loaded DCs could act as a carrier for chemotherapeutics, to increase the immunogenicity
of glioblastoma (GBM) cells. The enhanced immunogenicity stimulated the maturation of
DCs and lymphocytes, thereby subverting tumor-associated immunosuppression [56].

During DCs’ antigen presentation, the deletion of cell surface functional “arms” often
leads to the failure of T cell induction, due to weakened interaction between DCs and
T cells [132]. This may also be an important reason for the limited clinical effects of DCs
vaccines. Therefore, in addition to focusing on regulating the interaction between DCs and
antigens, effective T cell activation can also be achieved by directly improving the interac-
tion between DCs and T cells. T cells are easy to separate from DCs, even when the DCs
are mature, which is not beneficial for intercellular interactions. Using membrane-bound
halo-tag protein (HTP) as an anchor, synthesized glycopolymer (poly-2-methacrylamido
mannose (pMAM) or poly-2-methacrylamido glucopyranose (pMAG)), with an affinity for
mannose receptors, were attached to the DCs surface [57]. The engineered DCs specifically
attached to T cells through carbohydrate-lectin binding, increasing the stability of the DC-T
cell complex. As a result, the frequency and duration of contact between T cells and pMAM-
and pMAG-engineered DCs improved, leading to higher tumor toxicity.

The development of biomimetic and engineered DCs can not only help to activate and
expand T cells in vitro or in vivo, but also help us to further uncover the mechanism of the
T cell activation better, which, in turn, helps to design better aAPC or engineered DCs.

3. Conclusions and Prospects

With the deep understanding of the effector mechanisms of immune cells, the biomimetic
and materials-potentiated cell engineering is refreshing its meaning. The combination
of cell or cell-derived components with materials combines the sensitivity and speci-
ficity of naturally occurring interactions and the maneuverability of materials, to achieve
specific therapeutic effects. These strategies for anti-tumor immunotherapy include the
following aspects.

(1) Use or simulate cell-derived components (e.g., intracellular proteins, death ligand,
or key signals) to enhance the anti-tumor effect of biomimetic cells.

(2) Blockade the signals that are inhibiting the recognition (e.g., PD-1/PD-L1 pathway),
phagocytosis (e.g., CD47-SIRPα pathway) or the killing of tumor cells (e.g., adenosine and
IDO) of immune cells.

(3) Engineering immune cells with supportive components, such as cytokines and func-
tional nanomaterials, to resist the immunoediting by the suppressive TME and maintain
the anti-tumor phenotype.

(4) Engineering immune cells with tumor-targeting molecules (e.g., ligands, aptamers
and antibodies) to increase the cytotoxicity efficiency.

(5) Integrating immune cells with drugs, such as chemotherapy drugs and photosensi-
tizers to enhance their tumor killing activity.

Despite the rapid progress, there are still some challenges for biomimetic strategies
to simulate immune functions of immune cells. Although the cell analogs obtained by
biomimetic materials have rich functions and strong maneuverability, they are nonliving
and do not have the ability to proliferate. Therefore, a large dose is often required to
obtain the therapeutic concentration. Thus, most of these biomimetic strategies to simulate
immune functions of immune cells are now little more than mere ideas. To promote the
clinical transformation, greater efforts need to be made. Taking Krinsky and coworkers’
work as an example, they developed artificial lipid-based vesicles to synthesize anti-
cancer proteins inside tumors, through containing the molecular machinery necessary
for transcription and translation. This “artificial cell factory” strategy could be used as
synthetic biology platforms, to synthesize therapeutic proteins on demand [133]. In order
to endow the biomimetic systems with multiple functions similar to immune cells, their
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construction is relatively complicated. Moreover, for biomimetic strategies, the combination
rules for different materials and components are not clear. Therefore, a lot of screening and
simplification work needs to be done for the clinical translation. Although the research and
development (R&D) road is long, once the R&D is effective, it will open new avenues for
cancer treatment.

Compared with biomimetic strategies, materials-potentiated cell engineering strategies
are more promising, based on the existing strategy of adoptive cell transfer technology.
A clinical trial of aAPC has been conducted, using MART1/Melan-A peptide pulsed
aAPC to generate CTL for treating melanoma (skin) [NCT00512889]. Despite being in the
preclinical research stage, some strategies, such as the cytokine “backpack strategy” to
maintain the phenotype, function and lifespan, as well as the magnetic guidance strategy to
improve the tumor homing ability of immune cells, are promising [33,50,55]. For materials-
potentiated cell engineering strategies, better anti-tumor efficiency is mainly determined by
two aspects: the spatiotemporal consistency of the effects of functional materials and the
maintaining of the vitality and function of immune cells. Thus, there are some issues that
require special attention: (1) the biocompatibility of materials; (2) appropriate engineering
methods; (3) controlled and tunable drug release.

To achieve a better anti-tumor effect and promote the clinical transformation, biomimetic
and materials-potentiated cell engineering strategies will continue to evolve: (1) exploration
of more effective adjuvant drugs, intervention targets, and pathways related to immune
suppression and activation; (2) synergistic regulation of the anti-tumor effect with multiple
pathways; (3) utilizing endogenous stimulus-responded release strategies (e.g., hypoxia,
acidity, various proteins); (4) thorough study of the long-term toxicity and drug release
kinetics; (5) development of in vivo engineering strategies. In conclusion, the biological
mechanism and function of immune cells are worthy of study and utilization in the devel-
opment of cancer immunotherapy. Cell-based engineering strategies can utilize immune
cells to function as a drug-carrying “ship”, to enhance their anti-tumor effects. Through
smart design, not only the engineered immune cells, but also the whole immune system
could be stimulated to exert the anti-tumor effect. Besides, increasing the possibility of
clinical transformation and opening up new paths for cancer treatment is our ultimate goal.
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