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Abstract: Finite element analysis (FEA) is a computational method providing numerical solutions and
mathematical modeling of complex physical phenomena that evolve during compression tableting
of pharmaceutical powders. Since the early 2000s, FEA has been utilized together with various
constitutive material models in a quest for a deeper understanding and unraveling of the complex
mechanisms that govern powder compression. The objective of the present review paper is to
highlight the potential and feasibility of FEA for implementation in pharmaceutical tableting in order
to elucidate important aspects of the process, namely: stress and density distributions, temperature
evolution, effect of punch shape on tablet formation, effect of friction, and failure of the tablet under
stress. The constitutive models and theoretical background governing the above aspects of tablet
compression and tablet fracture under diametral loading are also presented. In the last sections,
applications of FEA in pharmaceutical tableting are demonstrated by many examples that prove its
utilization and point out further potential applications.

Keywords: overview; pharmaceuticals; tablet shape; punch shape; simulation; constitutive models;
microcrystalline cellulose; Drucker–Prager; compression; density distribution

1. Introduction

Pharmaceutical tablets containing pharmacologically active and functional ingredients
are by and large prepared by compression of dry powder mixtures. Tablets are available in
different shapes and weights and are mostly administered per os to provide immediate or
sustained release of the active pharmaceutical ingredient (API) effect. Tablet compression of
dry pharmaceutical powders comprises die filling, compaction, and ejection. It is associated
with many complex phenomena that can lead to manufacturing problems, such as sticking,
picking, capping, and strength variability. Therefore, understanding the behavior of the
powder under compression is an important aspect of the tableting process and for defining
the properties of the final tablets.

Traditionally, the study of tablet compression is based on two principal equations: the
Heckel equation that provides information on the compression stages of the powder [1]; and
the hardness equation [2] that gives information on the compactibility of the powder [2,3].
However, these two equations consider only an average stress along the direction of
compression, ignoring radial stress transmission and friction. Moreover, they do not
address the 3D character of the stress field and the density inhomogeneity inside the tablets,
especially when the shape is other than flat-faced [4].

In order to address the limitations of the above equations, constitutive material models
representing yield surfaces of compressed powders have been adopted [5,6]. There are
several constitutive models available, of which the Drucker–Prager Cap (DPC), the Cam-
Clay, and the DiMaggio–Sandler model are better known [7–9]. From these, the DPC
model is more often employed in pharmaceutical tableting due to its ability to describe
the complex physical phenomena taking place during compression, decompression, and
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ejection [5]. Its basic features and examples of applications in various fields involving
powder compaction, including pharmaceuticals, are explicitly described in the review by
Sinka (2007) [10]. Modifications of the DPC model addressing specific issues related to the
elastoplacticity of pharmaceutical excipients have also been developed, making further
contributions in the field [11,12].

Finite element analysis (FEA) by discretization has been implemented as a tool to
predict the stress distribution inside the powder under compression. The first attempt to
adapt FEA for the study of tablet compression was made by Al-Khattat and Al-Hassani in
1987 [13]. Their numerical simulation model was based on an analogue to the continuum
friction model developed by Al-Khattat in 1981 for application in metal’s plasticity [14].
Since the early 2000s, several works have been published utilizing modern FEA models for
the study of the compression of pharmaceutical powders, and the number of publications
is constantly increasing [12,15,16]. The parameters of the various constitutive models are
entered as input in FEA to perform a detailed analysis of tablet compaction and predict
tablet properties. Thus, FEA is considered as a practical, potent, resource-saving, and robust
mathematical technique for generating crucial information and for predicting the density
distribution in the compacted powder, the elastic deformation during tablet ejection, and
the tablet strength.

The present review was conducted by using the Scopus® (Elsevier) and the PubMed®

(NLM: United States National Library of Medicine) databases. It focuses on the imple-
mentation of FEA in pharmaceutical tableting, aiming to enlighten important aspects of
this process, namely: tablet failure mechanisms; temperature evolution; stress and density
distribution; effect of punch shape and friction on tablet formation; and tensile strength of
differently shaped tablets. The constitutive models, their theoretical background governing
the different aspects of tableting, and the diametral compression test for the mechanical
characterization of tablets (suggested by the United States Pharmacopeia [17]) are exploited,
aiming to provide a systematic overview of the latest contributions of FEA and a deeper
understanding of the pharmaceutical tableting process.

2. Finite Element Modeling and Analysis
2.1. Overview

Finite element analysis (FEA) was first introduced in 1943 [18] and has been success-
fully evolving since then in the field of engineering sciences. The basic ideas behind FEA
date back to 1909 [19] and 1915 [20], while the term “Finite Element” was introduced by
Clough in 1960 [21].

FEA is a computational tool that involves discretization (meshing) of a domain (body)
into a finite number of subdivisions (elements) and mathematical expression of the relevant
physical behavior in each element [22]. In the framework of the present review, the primary
interest is the strain–stress distributions within the compressed powder during tablet for-
mation and in the final tablet during mechanical testing. Each element is connected to its
neighboring elements by points, known as nodes. Nodes connect elements into 2D (plane
triangle or quadrangle) or 3D (tetrahedral or hexahedral) shapes [22,23]. Once the appropriate
meshing has been established, a constitutive equation describing the physical phenomenon is
solved for each node [22,24]. In general, the workflow of FEA consists of the following steps:
(i) creation of the geometric model; (ii) meshing; (iii) establishment of boundary conditions;
(iv) definition of material properties; (v) definition of loading conditions; (vi) solution of FEA
model; (vii) verification and validation of the model [22,24–26].

The concepts involved in each step of FEA will be discussed in this section to provide
the reader with an overview of the workflow and the individual steps of FEA and enable
smooth passage into the main themes related to tablet compression and fracture mechanical
test presented in later sections.
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2.2. Geometry

The first step in FEA is to define the geometry of the system. This is a very important
step as it directly affects the quality of the analysis of results. The geometry is usually
constructed via computer-aided design (CAD) methods and refers to both the geometry of
the compacted powder (flat-faced tablet, biconvex, capsule shape tablet, etc.), the punches,
and the die walls of the press. Since during compression the powder bed, the punch, and
the die have a vertical axis of symmetry, the boundary conditions are symmetrical with
respect to this axis and, hence, it is feasible to create and use only half of the geometry of the
compression system. There is no however symmetry on the horizontal axis because during
decompression/tablet ejection, the position of the lower punch changes. On the other hand,
during mechanical testing by diametral loading, only the quarter of the tablet and platens
geometry is modeled since the boundary conditions allow symmetry to both the horizontal
and vertical axes. Taking advantage of symmetry is very important since it significantly
reduces the computation time without affecting the quality of FEA. Figure 1a depicts 2D
symmetry applied for compression, while Figure 1b depicts 2D symmetry applied during
diametral compression mechanical strength test. In both cases, a round flat-faced tablet
with 8 mm diameter is considered.
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Figure 1. Symmetric geometric 2D model (a) for powder compression and (b) for diametral loading
test of tablet mechanical strength.

2.3. Meshing

The next step in FEA is the generation of the mesh, which is basically the process of
discretization of the continuous geometry of the system into a network of finite elements
connected to one another at nodes. Three different types of finite elements are defined
according to the type of equation (also known as shape function) by which they are
connected: (i) first order or linear elements, where the nodes are located at the vertices of
the elements; (ii) second order or quadratic elements, where they are located at the midpoint
of the element edges; (iii) third order elements, where the nodes are located at the midpoint
of element faces. Mesh generation is very important. The shape of the constructed element
(triangular, quadrilateral, etc.) influences the prediction. The simpler the shape, the better.
However, most important for element quality and, consequently, for the resolution and



Pharmaceutics 2022, 14, 673 4 of 32

model accuracy and for simulation solving time is the element size. Improper size can lead
to erroneous calculations and inaccurate solutions of the FEA. Mesh convergence or mesh
sensitivity studies are usually performed in preliminary stages of analysis to determine the
optimal number and size of the comprising elements. In tablet compression and strength
test analyses, the 4-node quadrilateral bilinear element is usually applied.

2.4. Boundary Conditions

Boundary conditions are constraints or restraints imposed on the degrees of freedom
of the parameters of the mechanical system and also on the friction or interface conditions
between the punches and die walls. The main purpose of the constraints is to restrict motion
(translation and/or rotation) at each node, i.e., to limit possible, permissible movements.
The main boundary conditions that are imposed during compression simulation are (i) the
upper punch is constrained to move vertically along the y-axis with specified compression
speed; (ii) the lower punch is either constrained to move vertically along the y-axis or its
translational and rotational degrees of freedom are fixed; in the case that tablet ejection is not
taken into account or if it follows a different mechanism, the above conditions are imposed
separately; (iii) the degree of freedom of the die walls is fixed; (iv) a constant friction
coefficient (µ) boundary condition is applied at the powder/tooling interface (µ values
usually range between 0.1 and 0.35 [5,27]). Regarding the test of mechanical strength, the
main boundary condition is the vertical movement of the platen along the y-axis.

2.5. Material Properties

The fourth step defines the properties of the material comprising the tablet and their
assignment to finite elements. The definition of material properties depends on the type of
analysis and the conceptualization of the problem. In linear analysis, under the assumption
of an isotropic elastic material, the Young’s modulus (E) and Poisson’s ration (ν) have
to defined. For nonlinear analyses, the yield stress is added. When thermal effects are
investigated (e.g., temperature evolution during tableting), the thermal conductivity (k)
and specific heat (Cp) are defined additionally. The tooling bodies (punches and die
walls) are usually modeled as rigid bodies. Otherwise, the properties of steel are adopted
(E = 220 GPa and ν = 0.3 [28]).

2.6. Loading Conditions

In FEA, loading is entered through the nodes of the model mesh. There are many
types of loading conditions available that can be used to study the performance of the
model: (i) concentrated forces/moments; (ii) distributed forces/moments; (iii) nodal dis-
placements/velocities/accelerations; (iv) thermal loads. Loading is very important as it is
applied as input data to the chosen constitutive equation and defines the model response
during the stage of model solution. For ultimate tablet fracture parametric analysis, it is
usually applied using a range of static loads for the determination of the force required to
generate sufficient fracture stresses. On the other hand, for the simulation of compression,
dynamic loading conditions are used. In this case, the loading rates are also important
since pharmaceutical powders are viscoelastic and their compressive behavior is sensitive
to strain rates induced by the compression speed [29].

In some cases, and especially during the mechanical strength test simulation, it is
tempting to model the applied external forces at a single point of the geometry. However,
these point loads can be problematic and should be avoided because they are interpreted
by the FEA as application of a finite force over an infinite small area, leading to infinite
stresses applied at this point. By increasing mesh density, the stresses will also increase,
resulting in singularities in the model.

2.7. FEA Model Solution

Once the prerequisite steps have been fulfilled, the FEA model is solved by imple-
menting constitutive equations. These characterize the material and its behavior under
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the applied loads and describe the macroscopic performance resulting from the internal
material characteristics [30].

Firstly, the applied constitutive equation has to be calibrated. This means that model
parameters have to be estimated first experimentally (e.g., by using instrumented tableting
equipment). Then, the known parameters of the equation for the particular material in
question are used together with the material properties and the constraints for every node
of the mesh to solve the FEA model. All of these are combined in a global stiffness matrix,
[K], which relates the displacement with the applied loads, or the resistance to displacement.
The applied loads are combined in a vector, {F}, (Equation (1)), to calculate the primary
variable, which is the nodal displacements vector, {u}.

[K]·{u} = {F} (1)

Equation (1) refers to static analyses. For dynamic analyses, the equation of motion is
used, which has the following form:

[M]·
{ ..

u
}
+ [C]·

{ .
u
}
+ [K]·{u} = {F} (2)

[M], [C] are the mass and damping matrices, respectively, and
{ ..

u
}

,
{ .

u
}

are the accel-
eration and displacement vectors. The mass matrix refers to the inertial characteristics
of the studied specimens, while the damping matrix encompasses the intrinsic damping
mechanisms of the system.

The calculated primary variable vector, {u}, is used to determine the derived variables
of interest, that is, the stress and the strain. In linear analyses, [K] matrix is constant and
the displacement is proportionally correlated to the applied loads. In nonlinear analyses,
the material behavior due to the applied load is non-linear dependent on the inflicted
displacement and the compacted powder is modeled as elastoplastic entity. In this case, [K]
and {F} are functions of {u}, which necessitates application of an iterative approach [25].

2.8. FEA Model Verification and Validation

Verification and validation (V&V) of the FEA model are very important as they en-
sure its accuracy in terms of model assumptions, meshing quality, boundary, and loading
conditions. There are several guidelines for the V&V of FEA models. For solid mechanics,
the most important are those issued by the American Society of Mechanical Engineers
(ASME) [31]. In Figure 2, a V&V flowchart based on the ASME 10.1 Standard is presented.
The first step is verification of the code. This process identifies and removes any bugs or
programming errors generated while implementing the numerical algorithms. Modern
FEA can be easily accessed through several software packages, e.g., Abaqus (Dassault
Systems, Johnston, RI, USA), Ansys (ANSYS Inc., Canonsburg, PA, USA), and COMSOL
(Burlington, MA, USA). These software packages provide benchmark manuals explaining
the verification of the implemented algorithms since “code verification” is their responsibil-
ity. The next step is “calculation verification”, which is carried out by the user/researcher.
It involves the quantification of errors due to insufficient mesh discretization, improper
boundary conditions, approximations in material properties, and errors during model gen-
eration. The most common source of errors during model generation is mesh discretization
and, for this reason, mesh convergence studies are commonly performed in preliminary
FEA stages. Usually, the FEA model validation initiates with the creation of a simple
model that can be confirmed via basic analytical solutions. Further validation involves
comparison of the available experimental and numerical results in order to test the ability
of the simulation to capture the physical behavior of the experimental process. As soon as
the results converge, more complex models can be designed and tested, or even parametric
analyses can be conducted.



Pharmaceutics 2022, 14, 673 6 of 32

Pharmaceutics 2022, 14, x  6  of  32 

 

 

Figure 2. Flowchart for the application, verification, and validation of a finite element analysis 

(FEA) model. 

3. Theoretical Background: Constitutive Equations 

In this section, the constitutive equations that are used to describe tablet compression 

or tablet mechanical strength will be presented. The parameters derived from these equa‐

tions are subsequently  implemented as  inputs  in  the FEA model  to perform a detailed 

analysis and gain information on the internal structure of the compacted powder or final 

tablet. 

3.1. Tableting 

3.1.1. Powder as Continuum Medium 

During powder compression, several interacting processes take place, and the extent 

of the  involvement of each  is difficult to quantify and predict [2,3]. In the first stage of 

compression, powder is fed into the die to form a loosely packed bed. At low compression, 

particle rearrangement takes place. At high compression, the powder densifies by friction, 

fragmentation, deformation, and mechanical particle interlocking. Therefore, in terms of 

the  continuum model, powder  compression  can  be  regarded  as  an  irreversible defor‐

mation from the state of low porosity (loose powder) to high porosity (compact). 

Since  the  compressed  particles  are  several  orders  of magnitude  smaller  than  the 

physical size of the tablet, the powder can be regarded macroscopically as a continuous, 

porous medium and a representative volume medium consisting of numerous particles 

can be defined. This medium represents macroscopic responses and should be insensitive 

to variations at the particle level [4]. Therefore, this approach does not consider the char‐

acteristics of individual particles, but the powder is treated as a continuum medium char‐

acterized by averaging parameters (e.g., cohesion, interparticle friction). 

In terms of continuum medium, the evolution of microstructure and loading/defor‐

mation can be studied using FEA  together with constitutive mechanical models. These 

models describe the deformation under stress and the friction between the material and 

the tools of the press (punch dies) [4,5] and include density‐dependent parameters. For 

the analysis, the combined averaging parameters derived from the macroscopic responses 

are entered into the density‐dependent parameters of the constitutive models. Addition‐

ally, knowledge of the geometry of the die and punches and of the sequence of punch 

motion is necessary for the analysis [10]. 

Several constitutive models based on the elastoplastic theory have been adopted for 

the compression of porous materials [7,8,32–34]. The most common are presented next, in 
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3. Theoretical Background: Constitutive Equations

In this section, the constitutive equations that are used to describe tablet compres-
sion or tablet mechanical strength will be presented. The parameters derived from these
equations are subsequently implemented as inputs in the FEA model to perform a de-
tailed analysis and gain information on the internal structure of the compacted powder or
final tablet.

3.1. Tableting
3.1.1. Powder as Continuum Medium

During powder compression, several interacting processes take place, and the extent
of the involvement of each is difficult to quantify and predict [2,3]. In the first stage of
compression, powder is fed into the die to form a loosely packed bed. At low compression,
particle rearrangement takes place. At high compression, the powder densifies by friction,
fragmentation, deformation, and mechanical particle interlocking. Therefore, in terms of
the continuum model, powder compression can be regarded as an irreversible deformation
from the state of low porosity (loose powder) to high porosity (compact).

Since the compressed particles are several orders of magnitude smaller than the
physical size of the tablet, the powder can be regarded macroscopically as a continuous,
porous medium and a representative volume medium consisting of numerous particles
can be defined. This medium represents macroscopic responses and should be insensitive
to variations at the particle level [4]. Therefore, this approach does not consider the
characteristics of individual particles, but the powder is treated as a continuum medium
characterized by averaging parameters (e.g., cohesion, interparticle friction).

In terms of continuum medium, the evolution of microstructure and loading/deformation
can be studied using FEA together with constitutive mechanical models. These models de-
scribe the deformation under stress and the friction between the material and the tools of
the press (punch dies) [4,5] and include density-dependent parameters. For the analysis, the
combined averaging parameters derived from the macroscopic responses are entered into the
density-dependent parameters of the constitutive models. Additionally, knowledge of the
geometry of the die and punches and of the sequence of punch motion is necessary for the
analysis [10].

Several constitutive models based on the elastoplastic theory have been adopted for
the compression of porous materials [7,8,32–34]. The most common are presented next,
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in order of increasing complexity. Emphasis is placed on the Drucker–Prager Cap (DPC)
model and its modifications.

3.1.2. Linear Elasticity Model

This model is essential for understanding the behavior of a material during tablet
ejection since, at this stage, the strains are predominantly elastic. In general, the elastic
behavior of powders is neither isotropic nor perfectly linear. However, to simplify the
study of material behavior during ejection, isotropic material with linear elastic behavior is
assumed. The elastic strains and stresses are described by the following equations:

εii =
σii
E
− v

E
·∑

j 6=1
σjj (3)

γij = (1 + v)·
σij

G
(4)

G =
E

2·(1 + v)
(5)

where εii and γij are the normal and the shear strains, respectively, E is the Young’s modulus,
v the Poisson’s ratio, and G the shear modulus. Therefore, the behavior of a linear isotropic
elastic material is fully explained by the parameters E and v [35,36].

3.1.3. Linear Viscoelasticity Model

This model is implemented when the quality of the final tablet depends on the loading
rate (compression speed), in other words, when there is strain rate sensitivity (SRS) [37–39].
In this case, the applied stress (σ) is time-dependent and is expressed by Equation (6) [40]:

σ(t) =
∫ t

0
E(t− τ)·dε(τ)

dτ
dτ (6)

where t is the time and τ a time variable of integration. The stress–strain relationship is a
function of the loading history (t = 0 corresponds to the beginning of loading). Equation (6)
represents the case of uniaxial loading. For three-dimensional loading, the above approach
is extended using the volumetric and deviatoric parts of stress and strain [41], which
suggests the use of bulk (K) and shear (G) moduli. The deviatoric (q′) and hydrostatic (P)
stresses are expressed by Equations (7) and (8):

q′(t) =
∫ t

0
G(t− τ)·dεs(τ)

dτ
dτ (7)

P(t) =
∫ t

0
K(t− τ)·dεv(τ)

dτ
dτ (8)

where εs and εv are the deviatoric and volumetric strains, respectively. Application of
Equations (7) and (8) prerequisite an analytical expression of the time dependency of (K)
and (G). For this reason, the Prony series, derived from the generalized Maxwell stress
relaxation model, is used [42,43]. The G(t) and K(t) are expressed by Equations (9) and (10):

G(t) = G∞·
(

1 +
n

∑
i=1

Gi·e−t/τi

)
(9)

K(t) = K∞·
(

1 +
n

∑
i=1

Ki·e−t/τi

)
(10)

where G∞ and K∞ are the infinite/long-term shear and bulk moduli; and Gi, Ki, and τi are
model parameters.
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3.1.4. Elastoplastic Models

There are two major phenomenological theories of plasticity: (i) the incremental
and (ii) the deformational [44]. The incremental theory considers dependency of material
deformation on the history of loading, while the deformational considers independency of
the deformation on loading. Since the incremental theory of plasticity is more representative
to real cases, it has been implemented in the description of plastic deformation of a wide
range of materials [4,10,44–46].

In general, three parameters of a constitutive model have to be defined for mate-
rials that experience microstructural changes during deformation. The first is the yield
parameter, which describes the transition from elastic to plastic behavior, the second is
the plastic potential, which connects the yield condition and the flow rule of the plastic
components, and the third is the evolution of microstructure that defines the resistance to
further deformation. The ways that these parameters contribute to the constitutive model
are discussed in accordance with the elastoplastic model.

In the elastoplastic model, the total increment strain tensor, dεij, results from the
contribution of the elastic strain increment (reversible), dεel

ij , and the plastic strain increment

(irreversible), dε
pl
ij , as described by Equation (11):

dεij = dεel
ij + dε

pl
ij (11)

where subscripts i and j vary between 1 and 3 depending on the coordinate system axes,
indicating the 3D nature of strain. For simplification, the contribution of increment is
assumed to be additive [4,15]. A multiplicative contribution of each increment has also
been developed and could give better accuracy, but it is quite complex and is not described
here [47–49].

The dεel
ij component of Equation (11) represents the reversible part of the deformation

and describes the elastic recovery of the material during the decompression stage of
tableting. The relationship between the macroscopic stress and the elastic strain is described
by a linear Hooke’s Law (Equation (12)) [36]:

dσij =
3

∑
k,l=1

Lijkl ·dεel
kl (12)

where dσij is the three-dimensional form of the stress and Lijkl is the elastic stiffness. For
isotropic materials, the (3 × 3 × 3 × 3) components of Lijkl contain only two independent
parameters (Young’s modulus and Poisson’s ratio) [4].

The dε
pl
ij component of Equation (11) represents the irreversible part of deformation

and is related to particle rearrangement, fragmentation, and plastic deformation [4].
The first parameter that needs to be defined is the yield parameter, which sets the limits

between elastic and plastic deformation, as expressed by the yield function F
(
σij, km, · · ·

)
in Equation (13):

F
(
σij, km, · · ·

)
=

{
< 0, elastic deformation
= 0, plastic deformation

(13)

where σij is the stress and km (m = 1, · · · , n) internal state variables affecting the yield
parameter of the material under compaction. The second parameter that needs to be
defined is the plastic flow potential dσ

pl
ij , which determines the three-dimensional form of

plastic deformation as expressed by Equation (14):

dσ
pl
ij = dλ·

∂G
(
σij, km, · · ·

)
∂σij

(14)

where G
(
σij, km, · · ·

)
is the flow function and dλ is a parameter for hardening.
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Equations (11), (12), and (14) are given in an incremental fashion since the state of
the material evolves progressively during compression and, therefore, can describe the
complete continuum mechanics constitutive model.

The evolution of the microstructure, which is the third parameter of interest, is the
relative density (or solid fraction, pF) of the compacted material, which is the ratio of the
density of the powder under compaction at a given state over the material true density.

The yield parameter and the plastic flow potential depend on two stress invariants:
(i) the hydrostatic pressure, P, and (ii) the von Mises equivalent or effective stress, q [4,50].
These are associated with the volumetric plastic strain and distortion, respectively, and are
expressed by Equations (15) and (16):

P = −1
3
·(σ11 + σ22 + σ33) (15)

q =

{
3
2
·[(σ11 + P)2 + (σ22 + P)2 + (σ33 + P)2 + 2·σ2

12 + 2·σ2
23 + 2·σ2

13]

}1/2
(16)

3.1.5. The Drucker–Prager Cap (DPC) Model

Drucker–Prager Cap (DPC) is the constitutive model that is often used to study tablet
compaction. It is able to describe the complex events taking place during compression,
namely: volume reduction, shear flow, nonlinear densification due to frictional forces,
stress hardening, and elastic recovery occurring during decompression and ejection [5].
The model is pressure-dependent and assumes isotropic powder behavior [5,8].

Figure 3a depicts a 2D projection of DPC model at a fixed solid fraction. The Y-axis
corresponds to the von Mises equivalent or effective stress, q, and the X-axis corresponds
to the hydrostatic pressure, P. The two yield surfaces represent two types of deformation
under compression. At high hydrostatic pressures (advanced compaction), the material
densifies when the pressure exceeds a certain value, Pa, as represented in Figure 3a (right)
by the “cap” line (Fc). At low hydrostatic pressures, the material exhibits shear failure,
as represented in Figure 3a (left) by the failure line (Fs). Therefore, at the beginning of
compaction, the DPC is a shear failure model reflecting the dependence of strength on the
intrinsic cohesion and angle of internal friction of the powder [4,5,8]. At low pressures,
the DPC model predicts that the strength in tension (negative P values) is smaller than in
compression, which is common for rocks [4,51]. The straight line (Fs), also known as Mohr
Coulomb shear failure line, is defined by Equation (17) [8,51–54]:

Fs(q, P) = q− d− P·tan(β) (17)

where d is the cohesion and β the angle of internal friction. According to Equation (17),
when the combination of hydrostatic pressure stress, P, and the von Mises equivalent stress,
q, results in Fs(q, P) <0, only elastic deformation occurs. On the other hand, when P and q
result in Fs(q, P) = 0, the material fails in shearing.

At the advanced compaction phase, the yield surface is described by the “cap” line on
the right of Figure 3a. The elliptical line, Fc, describes the plastic behavior strain-hardening
of the material under high hydrostatic pressure [5,8] and is defined by Equation (18) [4,5,8]:

Fc(q, P) =

√√√√(P− Pa)
2 +

(
R·q

1 + a− a
cos(β)

)2

− R·(d + Pa·tan(β)) (18)

where Pa is an evolution parameter representing the volumetric inelastic strain driven
hardening/softening, R is an eccentricity parameter that defines the shape of the “cap”,
and a is a transition surface radius parameter with values in the range 0.01 to 0.05 [4,5]. Pa
and R are estimated from compaction experiments during the model calibration procedure.
Parameter a does not have physical meaning. It is used to avoid the formation of a corner,
which may lead to numerical problems at the transition surface segment (Ft), where Fs and
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Fc intersect. In Figure 3, parameter a has a zero value and, therefore, the (Ft) segment is
depicted as a corner.
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Figure 3. (a) The Drucker–Prager Cap (DPC) model and its parameters and (b) family of DPC models
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Full description of the DPC model requires definition of the flow potential. Two types
are defined by the DPC model: (i) the associated flow potential, Gc, corresponding to the
“cap” region, and (ii) the plastic flow potential, Gs, corresponding to shear line and the
transition segment (Ft). In the “cap” region, the associated flow potential function, Gc, and
the yield surface function, Fc, coincide. This behavior is termed ‘associated plasticity’ [55,56]
and is expressed by equality (Equation (19)):

Gc = Fc = 0 (19)

On the other hand, the plastic flow potential function, Gs, is non-associated (Gs 6= Fs)
and is expressed by Equation (20):

Gs =

√√√√[(P− Pa)·tan(β)]2 +

(
q

1 + a− a
cos(β)

)2

(20)

Gc and Gs predict the densification in the corresponding surfaces when the hydrostatic
pressure is above and below Pa, respectively (Figure 3a).

The yield surface function, Fs(q, P), and the flow potential function receive unique
values for a given level of relative density, pF. Complete description of material behavior
during compression at different pF values requires collection of a family of DPC models
(Figure 3b). As the powder bed gets denser during compression, the applied stresses on
the material are represented by the yield surface corresponding to the current, pF. As
pF→ 1, the DPC model is consistent with the fully dense material behavior, that is, a
Mohr–Coulomb line at low hydrostatic pressures and no pressure dependence of the yield
function at high hydrostatic pressures [12].

The DPC also uses a hardening law to describe the strain hardening behavior during
compression. According to this law, the hydrostatic compression yield stress, Pb, depends
on the volumetric plastic strain, ε

pl
v , according to Equation (21). The volumetric plastic

strain is expressed by Equation (22).

Pb = f
(

ε
pl
v

)
(21)

ε
pl
v = In

(
p′F/pF0

)
(22)
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where p′F and pF0 are the final and initial relative densities, respectively.
Using microcrystalline cellulose (MCC) as a model material, Sinka et al. (2001) [16]

adopted a modified Drucker–Prager cap model where the elastic and plastic model pa-
rameters are expressed as functions of relative density. The parameters of the model
were determined using an instrumented die. Young’s modulus and Poisson’s ratio were
determined from the unloading curve of the material compressed to a given density.

3.1.6. Constitutive Model for Plastic Materials

Edmans and Sinka (2020) [11] introduced the von Mises Double Cap (VMDC) model
to describe the behavior of plastically compressible spherical particles. The model discerns
the compressive, deviatoric, and dilatory plastic behavior and is particularly useful for
the analysis of dense particulate systems where particles deform greatly under stress.
The parameters used for the VMDC model were based on experimental data obtained
for common pharmaceutical excipients, and the model parameters can be predicted from
material. The model can be employed in discrete element to predict macroscopic properties
of porous granular materials, while the analytical framework and qualitative findings can
be used in the design of granules.

The load-displacement response during the loading stage is represented by the
3-parameter Equation (23) in which an initially linear response is combined with an expo-
nential hardening response.

Fmodel(δ) =

{
κδ, δ < δt

κδtexp(α(δ− δt)), δ < δ < δmax
(23)

κ is dimensionless initial stiffness, δ dimensionless normal particle displacement. δmax
has the value 0.5 limited by the simulation data.

To describe the non-linear load-displacement response during the unloading processes,
separate parameters representing the nonlinearity of the unloading curve and the relative
unloading stiffness were defined as in Equation (24):

Funl(δ) =
{

0, δ < δo
κ(δ− δ)α, δ > δo

(24)

where F is the load, δo the nondimensional displacement at separation, the nonlinearity
exponent, α, is 1.5, and k is given and κ is a function of Young’s modulus and Poisson’s ratio.

3.1.7. Powder–Wall Friction Law

During compression, friction between the powder and die wall induces non-uniform
axial stresses that lead to density gradients [57,58] and, hence, ejection forces and defects in
the final tablets [12]. Therefore, incorporation of the powder–wall friction law in the FEA
model and determination of the friction coefficient, µ, is essential for the study of failure
mechanisms. According to the Janssen–Walker model, the friction coefficient, µ, is defined
by Equation (25) [57,59]:

µ =
D

4·h ·
σB
σr
·
(

σT
σB

)z/h
·In
(

σT
σB

)
(25)

where D is the internal diameter of the die, h the height of the compact, σr the radial
compression stress at position z from the compact surface, and σB and σT are the axial
compression stresses applied by the upper and lower punch, respectively. Although this
model can accurately calculate the friction coefficient, it requires elaborate experimental
set-up, and, for this reason, it is often bypassed and a value of µ = 0.1 is assigned [5,60,61].

Sinka et al. (2001) [16] applied a modified Drucker–Prager cap model for the study of
the effect of wall friction in the compaction of MCC tablets with curved surfaces using in-
strumented die fitted with radial sensors. They found that the friction coefficient depended
on contact pressure and, starting from high values at the early stages of compaction, it
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asymptotes to a lower value as the contact pressure and relative density are increased. They
also demonstrated that tablets of the same material, identical in shape, may have differ-
ent microstructures depending on the existing frictional conditions. This is because high
density regions develop around the edge of the tablet due to the curvature of the punch.

3.2. Mechanical Strength Test

From the available methods of the determination of the tablet mechanical strength,
the diametral compression test is most commonly employed [62]. It was independently
developed by Barcellos and Carneiro [63] in Brazil (known as “Brazilian” test) and by
Akazawa [64] in Japan for testing concrete specimens. It is also known as “indirect” tensile
test because fracture results from compressive loads [65].

Consideration of the elastic stresses in a flat-faced tablet subjected to two concentrated
diametral loads during mechanical strength testing is essential for modeling and studying
the fracture mechanism. According to Timoshenko’s theory of elasticity [36], the stress field
is expressed by Equations (26)–(28) [62,66–68].

σxx(x, y) = −2·P
π·t ·


(

Φ
2 − y

)
·x2[(

Φ
2 − y

)2
+ x2

]2 +

(
Φ
2 + y

)
·x2[(

Φ
2 + y

)2
+ x2

]2 −
1
Φ

 (26)

σyy(x, y) = −2·P
π·t ·


(

Φ
2 − y

)3

[(
Φ
2 − y

)2
+ x2

]2 +

(
Φ
2 + y

)3

[(
Φ
2 + y

)2
+ x2

]2 −
1
Φ

 (27)

τxy(x, y) =
2·P
π·t ·


(

Φ
2 − y

)2
·x[(

Φ
2 − y

)2
+ x2

]2 +

(
Φ
2 + y

)2
·x[(

Φ
2 + y

)2
+ x2

]2

 (28)

where σyy is the compressive stress; σxx is the tensile stress; τxy is the shear stress; P is the
concentrated (acting on a relatively small area) compressive load; Φ is the diameter of the
tested tablet; t is its thickness; x, y are the coordinates of a point that belongs to the surface
of the tablet according to a rectangular coordinate Oxy system (where O coincides with the
center of the tablet).

At the center of the tablet (x = 0, y = 0) Equations (26) and (27) can be reduced to
Equations (29) and (30), respectively. (Equation (28)) and the shear stress (τxy) equals zero.

σxx(0, 0) =
2·P

π·Φ·t (29)

σyy(0, 0) = −3· 2·P
π·Φ·t = −3·σxx(0, 0) (30)

According to the theory, upon breakage, the vertical compressive stress in the center
of the tablet is three times larger than the horizontal tensile stress. Modifications of the
above equations are often used in the literature for the calculation of the tensile strength of
various tablet shapes, e.g., flat-faced [69], doubly convex cylindrical shaped [70,71], capsule
shaped [72,73]. However, to establish an FEA model for mechanical strength test, the
equations describing the whole stress field in the tablet (Equations (26)–(28)) are necessary.
Figure 4 depicts the field of stresses developing at the end of a diametral test.
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3.3. Limitations of the Constitutive Models in the Pharmaceutical Field

The constitutive models described here are generated for the study of the compression
behavior of metallic powders. However, pharmaceutical powders are characterized by
significantly lower particle densities compared to metallic powders, having a true density in
the region of 1.0 to 1.7 g/cc. In addition, the relative density of pharmaceutical powders at
the beginning of the compression process (0.3–0.4) is also lower compared to that of metallic
or ceramic powders [10]. Moreover, the compression of powders is a very fast procedure,
with a duration of only a few milliseconds [10,38]. Therefore, air and powder interaction
become of importance and, as the air pressure raises within the pores of the powder bed,
it can reach to values that are comparable with the local strength of the material [10].
Thus, a better understanding of the processes is of importance, requiring insight into the
complex phenomena occurring at various length scales from particle contacts to the final
pharmaceutical tablet, and, therefore, improved constitutive models, providing better
understanding of the compression behavior, have been developed in the last years that are
expected to provide a multi-scale modelling approach [11].

4. Application of FEA Modelling for Pharmaceutical Tablets

In this section, examples of the application of FEA modeling in the tableting and me-
chanical test will be presented. The experimental materials, equipment used, the properties
of the FEA models, the objectives of the studies, and the literature sources are summarized
in Table 1.

The largest number of the presented studies (35.6% of the total) deal with the stress/density
distribution within the tablet during compression [5,15,27,61,74–85]. From these, 31.3%
deal with the effect of punch shape [61,74,79,82,85]. The second most studied aspect (22.2%
of the total) is the stress/strain distribution in the tablet during mechanical strength test-
ing [65,81,86–93]. From these, 40% deal with the effect of tablet shape and studied crack
propagation [89,90,92,93]. Two studies (4.4% of the total) deal with the stress/strain distri-
bution during the 3-point bending test [94,95]. The rest of the studies deal specifically with
failure mechanisms (15.6%) [96–102], friction (11.1%) [4,28,103–105], temperature evolution
(6.7%) [106–108], and viscoelastic behavior (6.7%) [29,109,110]. From the above account, it
appears that FEA has been mostly implemented for the study of stress distribution during
tablet formation by compression and during testing of various tablet shapes. More complex
aspects, e.g., temperature evolution and viscoelastic behavior, have received less attention.
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Therefore, FEA is not yet adequately explored in the area of pharmaceutical tableting
despite its use since 2002.

Moreover, Table 1 indicates the applicability of Drucker–Prager Cap (DPC) model
and its ability to describe complex physical phenomena taking place during tableting
since it is utilized in the majority (73.3%) of the studies. It is also noticeable that, in most
of the studies (44.4%), microcrystalline cellulose (MCC) is used. This is attributed to its
excellent compressibility, the abundant literature data available, and its wide use in the
pharmaceutical industry.

4.1. FEA in Compression
4.1.1. Studies on the Stress/Density Distribution during Compression

Modeling stress/density distribution discloses important information for the pre-
diction of failure mechanisms of the tablet during downstream processes (e.g., coating,
packaging, transportation). Furthermore, the studies in Table 1 do not assign single values
of Young’s modulus, E, and Poisson’s ratio, v, to the materials but rather report these
parameters in relation to the relative density of the compressed powder. This is because
the elastic behavior of a fully dense compacted material (i.e., at its highest relative density)
emanates from interactions occurring at the atomic level [4]. Thus, E and v tend to increase
rapidly as tablet evolves, and acquire maximum values at the end of compaction, where
the condition of a fully dense compact is approached. The most indicative studies for the
contribution of FEA in this application area are discussed.

Kadiri et al. (2005) [80] studied the axial stress distribution during MCC compaction
using an analytical model derived by coupling Heckel with Janssen–Walker equations.
They also studied the mechanical behavior of MCC tablets by numerical analysis (FEA)
combined with the DPC model. Experimental data were produced by a press with an
11.28 mm die and flat-faced punches. Both the results of axial density obtained by the
combined analytical model and by numerical analysis showed good qualitative agreement
with the experimental. However, the experimental data were better predicted by the FEA
model, which simulated both the compression and decompression stages, thus proving the
superiority of FEA in pharmaceutical tableting.

Hayashi et al. (2013) [77] used the DPC model to study the residual stresses during
compression of a powder mixture of LAC, MCC, and corn starch (CS), aiming for prediction
of tablet tensile strength (TS) and disintegration time (DT). Experimental data were obtained
by a press with an 8 mm die and flat-faced punches. The relationship between the residual
stress distribution and tablet characteristics was investigated by multiple linear regression
analysis (fitting index (R2) 0.992 for TS and 0.942 for DT, and root mean square error (RMSE)
0.080 for TS and 0.082 for DT. These results show that the residual stress distribution is
a good estimator for TS and DT. Further prediction ability of tablet tensile strength and
disintegration time based on the distribution of residual stresses was modeled by FEA and
partial least squares regression analysis (PLS). RMSEc and RMSEp were 0.081 and 0.095,
respectively, for the calibration model of TS, and 0.085 and 0.1 for DT. It was concluded
that both TS and DT could be accurately predicted by the residual stress distribution
modeled by FEA, suggesting that the latter can be used as CQA (critical quality attribute)
in pharmaceutical development.
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Table 1. Studies on the application of finite element analysis (FEA) in the tableting and mechanical strength test of pharmaceutical tablets.

Study Material 1 Equipment

FEA Model

Application References
Model 2 Meshing 3 Young’s Modulus

(E, GPa)/Poisson Ratio (ν, -)

01 LAC flat-faced punches DPC 4-node 4.6/0.17 *
Stress & density

distribution
during tableting

Michrafy et al., 2002 [15]

02 MCC 9.525 mm die,
flat-faced punches DPC no data E & ν expressed as function

of relative density

Stress & density
distribution/friction

evolution during tableting
Cunningham et al., 2004 [4]

03 MCC flat-faced punches DPC & Janssen–
Walker model 4-node E expressed as function of

relative density/0.18
Study of friction evolution

during tableting Michrafy et al., 2004 [104]

04 MCC 25 mm die,
concave-faced punches

DPC & Janssen–
Walker model 4-node E & ν expressed as function

of relative density
Study of friction evolution

during tableting Sinka et al., 2004 [105]

05 MCC 11.28 mm die,
flat-faced punches DPC 4-node E expressed as function of

relative density/0.18

Stress & density
distribution

during tableting
Kadiri et al., 2005 [80]

06 LAC 8 mm die,
flat-faced punches DPC 4-node 3.57/0.12 * Study of failure

mechanisms Wu et al., 2005 [102]

07 MCC diametral compression
of flat-faced tablets Filon theory 4-node 1.0/0.25

Stress & strain
distributions byopposing

compressive line loads
Drake et al., 2007 [87]

08 MCC 8 mm die,
flat-faced punches DPC no data no data

Stress & density
distribution/failure

mechanisms
during tableting

Han et al., 2008 [75]

09 MCC 8 mm die, flat- &
concave-faced punches DPC 4-node 4.2 and 22.6/0.42 and 0.233 *

Stress & density
distribution

during tableting
Han et al., 2008 [76]
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Table 1. Cont.

Study Material 1 Equipment

FEA Model

Application References
Model 2 Meshing 3 Young’s Modulus (E,

GPa)/Poisson Ratio (ν, -)

10 LAC 8 mm die, flat- &
concave-faced punches DPC 4-node 3.57/0.12 Study of failure (capping)

mechanisms Wu et al., 2008 [101]

11 MCC 9.525 mm die,
flat-faced punches DPC 4-node (T) no data Study of temperature

evolution during tableting Zavaliangos et al., 2008 [108]

12 MCC 9.525 mm die,
concave-faced punches DPC 8-node (T) E & ν expressed as function

of relative density
Study of temperature

evolution during tableting Klinzing et al., 2010 [106]

13 LAC flat-faced punches DPC 4-node (R) no data
Stress & density

distribution
during tableting

Sinha et al., 2010 [84]

14 MCC flat-faced punches DPC 4-node 2.207/0.14 *
Stress & density

distribution
during tableting

Sinha et al., 2010 [27]

15 LAC 5.6 mm die,
flat-faced punches DPC 4-node 4.86/0.12 *

Stress & density
distribution

during tableting
Si and Lan, 2012 [83]

16 MCC flat-faced punches DPC & creep
behavior model no data no data Study of the viscoelastic

behavior during tableting Diarra et al., 2013 [109]

17 LAC, CS & MCC 8 mm die,
flat-faced punches DPC no data 3–4/0.1–0.2

Stress & density
distribution

during tableting
Hayashi et al., 2013 [77]

18 MCC 11.28 mm die, flat &
concave-faced punches DPC 4-node (R) E & ν expressed as function

of relative density
Study of failure

(capping) mechanisms Kadiri and Michrafy, 2013 [99]

19 not applica-
ble/theoretical study

diametral compression
of elongated tablets

Elastic
stresses model 3-node 0.002/no data

Stress & strain
distributions during

diametral compression
Pitt and Heasley, 2013 [65]

20 Anhydrous dextrose diametral compression
of flat-faced tablets

Elastic
stresses model 20-node (R) 2.58 and 9/0.35 and 0.3

Stress & strain
distributions during

diametral compression
Podczeck et al., 2013 [89]
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Table 1. Cont.

Study Material 1 Equipment

FEA Model

Application References
Model 2 Meshing 3 Young’s Modulus (E,

GPa)/Poisson Ratio (ν, -)

21 MCC
diametral compression

of flat-faced and
biconvex tablets

DPC &
Elastic model 8-node E & ν expressed as function

of relative density

Stress & strain
distributions during

diametral compression
Shang et al., 2013 [92]

22 MCC 9.525 mm die,
flat-faced punches

Griffith &
Irwin models 4-node no data

Study of failure (cracking)
mechanisms during

decompression & ejection
Garner et al., 2014 [98]

23 TEO, LAC, CS,
MCC, MgSt

8 mm die, flat-faced
punches DPC no data 6.51–9.84/0.1164–0.1282

Stress & density
distribution

during tableting
Hayashi et al., 2014 [78]

24 MCC 5.25 mm die, flat- &
convex-faced punches DPC 8-node E & ν expressed as function

of relative density

Stress & density
distribution

during tableting
Krok et al., 2014 [61]

25 ACP three point bending
test of flat-faced tablets

Elastic
stresses model 4-node 3.4/0.23

Stress & strain distribution
during three point

bending test
Mazel et al., 2014 [94]

26 not applica-
ble/theoretical study

diametral compression
of flat, round,

bevel-edged tablets

Elastic
stresses model 4-node 2.58/0.35

Stress & strain
distributions during

diametral compression
Podczeck et al., 2014 [90]

27 ACP & MCC 11.28 mm die, flat- &
concave-faced punches DPC no data no data

Stress & density
distribution

during tableting
Diarra et al., 2015 [74]

28 MCC diametral compression
of biconvex tablets DPC no data E & ν expressed as function

of relative density
Study of failure

(capping) mechanisms Furukawa et al., 2015 [97]

29 ACP 11.28 mm die,
concave-faced punches DPC no data no data

Stress & density
distribution/friction

evolution during tableting
Mazel et al., 2015 [28]
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Table 1. Cont.

Study Material 1 Equipment

FEA Model

Application References
Model 2 Meshing 3 Young’s Modulus (E,

GPa)/Poisson Ratio (ν, -)

30 ACT, LAC, CS,
MCC, L-HPC, MgSt

12 mm die,
concave-faced punches DPC no data 2.96–6.51/0.0742–0.0943

Stress & density
distribution

during tableting
Otoguro et al., 2015 [82]

31 LAC, ASA
three point bending

test of flat, round,
bevel-edged tablets

Elastic & brittle-
cracking model 10-node 2.99 for LAC & 1.51 for

ASS/0.3

Stress & strain
distributions during three

point bending test
Podczeck et al., 2015 [95]

32 MCC 8 mm die, flat- &
convex-faced punches DPC 4-node (T) E & ν expressed as function

of relative density
Study of temperature

evolution during tableting Krok et al., 2016 [107]

33 ACP, CPD, SD-LAC,
G-LAC & SD-MAN

3.8 mm die,
flat-faced punches DPC no data E & ν expressed as function

of relative density

Stress & density
distribution

during tableting
Mazel et al., 2016 [81]

diametral compression
of flat-faced tablets

Elastic
stresses model no data 4.2/0.25

Stress & strain
distributions during

diametral compression

34 LAC, CS, MCC,
L-HPC

diametral compression
of flat-faced

scored tablets

Elastic
stresses model no data 2.35/0.08

Stress & strain
distributions during

diametral compression
Okada et al., 2016 [88]

35 MCC 12 mm die,
flat-faced punches DPC 4-node (R) E & ν expressed as function

of relative density

Stress & density
distribution

during tableting
Baroutaji et al., 2017 [5]

36 ACP, SD-LAC diametral compression
of flat-faced tablets

Elastic
stresses model no data 4.4/0.25 for ACP & 3.7/0.23

for SD-LAC

Stress & strain
distributions during

diametral compression
Croquelois et al., 2017 [86]

37 ACP 12 mm die,
concave-faced punches DPC no data no data Study of failure

(lamination) mechanisms Mazel et al., 2018 [100]

38 MCC 12 mm die,
concave-faced punches DPC 4-node (R) no data Study of failure (capping &

chipping) mechanisms Baroutaji et al., 2019 [96]
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Table 1. Cont.

Study Material 1 Equipment

FEA Model

Application References
Model 2 Meshing 3 Young’s Modulus (E,

GPa)/Poisson Ratio (ν, -)

39 PCZ, MCC & ACP 9.525 mm die,
concave-faced punches DPC 4-node no data

Stress & density
distribution

during tableting
Huang et al., 2019 [79]

40 MCC 11.28 mm die, flat- &
concave-faced punches

DPC & Janssen–
Walker model no data no data Study of friction evolution

during tableting Mazel et al., 2019 [103]

41 MCC, LAC, CS 12 mm die,
concave-faced punches DPC no data 1.803–3.321/0.1363–0.1774

Stress & density
distribution

during tableting
Takayama et al., 2019 [85]

42 LAC, ACP, MCC, CS 11.28 mm die,
flat-faced punches Linear viscoelastic no data no data Study of the viscoelastic

behavior during tableting Desbois et al., 2020 [29]

43 MCC, LAC,
ACT, MgSt

8.3 mm die, flat-faced
punches

DPC & Perzyna
model no data no data Study of the viscoelastic

behavior during tableting Ohsaki et al., 2020 [110]

44 MCC, MgSt,
LAC, NaCl

diametral compression
of flat-faced tablets

Elastic
stresses model 8-node 10.0/0.3

Stress & strain
distributions during

diametral compression
Radojevic et al., 2021 [91]

45 not applica-
ble/theoretical study

diametral compression
of various shape tablets

Elastic
stresses model 20-node no data

Stress & strain
distributions during

diametral compression
Yohannes and Abebe, 2021 [93]

1 Material abbreviations: LAC: Lactose monohydrate, MCC: Microcrystalline cellulose, CS: Corn starch, TEO: Theophylline, MgSt: Magnesium stearate, ACT: Acetaminophen,
L-HPC: low-substituted hydroxy-propyl-cellulose, ASA: Acetyl salicylic acid, ACP: anhydrous calcium phosphate, SD: spray—dried, G: granulated, MAN: Mannitol, PCZ: Posaconazole,
CPD: calcium phosphate dihydrate; 2 Model abbreviations: DPC: Drucker—Prager—Cap model; 3 Meshing: 4-node: four-node bilinear axisymmetric first order solid elements, 4-node (T):
4-node bilinear coupled displacement-temperature solid element, 8-node (T): 8-node trilinear coupled displacement-temperature solid element, 4-node (R): four-node axisymmetric
first-order solid element with reduced integration, 3-node: 3-node linear axisymmetric triangular solid element, 20-node (R): 20-node “brick” element with reduced integration, 8-node:
8-node linear “brick” solid element, 10-node: 10-node tetrahedral solid element, 20-node: 20-node “brick” solid element; * E and ν values refer to the material at the end of compaction at
its maximum relative density.
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4.1.2. Effect of Punch Shape on the Stress/Density Distribution during Tableting

The majority of commercially available pharmaceutical tablets have convex surfaces
to ease swallowing. This shape is likely to affect the stress distribution within the tablets
and the powder during compression compared to flat faced tablets [90,101]. From Table 1,
it appears that the number of studies investigating the effect of the punch shape on the
stress distribution is increasing since 2018, proving that FEA is still gaining interest and
has not revealed its full potential in pharmaceutical tableting. Some indicative studies are
discussed below.

Mazel et al. (2015) [28] studied the effect of concave-shaped punches on the residual
die-wall stresses during decompression of tablets of anhydrous calcium phosphate (ACP)
based on the DPC model. Experimental data were obtained using a press with an 11.28 mm
die and flat or concave-faced punches producing convex tablets. The results showed,
during compression, a lower maximal die-wall pressure and a higher residual die-wall
pressure for the convex tablets compared to the flat tablets. Moreover, for the biconvex
tablets, a temporary increase in die-wall pressure at the end of decompression was recorded.
FEA indicated that this increase was due to a gradual loss of contact between the concave
punch face and the tablet from the side to the center. Thus, a temporary increase in the
die-wall pressure and the development of shear stress between the convex and the flat part
of the tablet may arise, which explains the capping tendency of convex tablets.

Otoguro et al. (2015) [82] studied the distribution of residual stress in tablets of a
mixture of acetaminophen (ACT), LAC, CS, MCC, low-substituted hydroxypropyl cellulose
(L-HPC), and magnesium stearate (MgSt) powders based on the DPC model. Experimental
data were acquired by a press fitted with 12 mm die (long dimension) and flat- or concave-
faced punches. The stress distribution was studied after application of two different
compression forces: 4 and 8 kN, at two MgSt levels, 0.5 and 2.0%. For flat tablets, weak
positive residual shear stresses, τxy, were recorded on the die walls, decreasing from the
top and the bottom of the tablet towards its center. For the convex tablets, strong positive
residual τxy stresses were recorded on the upper side and the intermediate part between
the die wall and the center of the tablet. For both tablet shapes, negative x-axial σxx stress
values were observed, implying that σxx stresses always act from the die wall toward to the
center of the tablet. Weak residual stress in the y-axial direction, σyy, of the flat tablet were
also recorded, whereas an upward force remained at the center of the convex tablet. MLR
(multiple linear regression) analysis was also employed and gave accurate prediction of
the mechanical properties of the tablets. However, MLR failed to predict the dissolution
performance of ACT, implying that dissolution is complex and does not depend only on
the stress distribution within the tablet.

Baroutaji et al. (2019) [96] studied the effects of geometrical parameters on the compres-
sion of convex-faced tablets by applying experimental design (DoE) and response surface
methodology (RSM) to compression responses computed by FEA in order to optimize
tableting. Relationships were established between the diameter and radius of curvature
with the friction coefficient, residual die pressure, relative density variation, and relative
shear stress. The shape of the convex tablets was optimized. The FEA model was based
on the DPC model. Experimental data were obtained by a press fitted with a 12 mm die
and flat- or concave-faced punches. It was found that both the geometric parameters and
friction coefficient significantly affected the compression responses. After optimizing these
parameters for convex tablet (CT), the compression responses were compared with those of
a flat tablet (FT). As Figure 5 shows, flat-faced tablets (FT) exhibited lower density variation
than the CT. The relative shear stress of the FT was 47% smaller than that obtained for
the optimal CT tablet. Additionally, from Figure 5c, it is seen that the evolution of the
die-wall pressure is a function of the radial pressure for FT and CT tablets. Furthermore,
larger residual die press evolved during the production of FT tablets than during that of
CT tablets, and it was concluded that, if there is no occurrence of capping or chipping, a
better performance is expected from CT than FT tablets during downprocessing (coating,
packaging, transportation).
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Figure 5. Comparison of flat- and optimal convex-faced tablets: (a) relative density (RD) distribution,
(b) shear stress distribution within the tablets as they eject from the die, and (c) plot of radial pressure
vs. compaction pressure (Adapted with permission from Ref. [96]).

Takayama et al. (2019) [85] studied the effect of concave-shaped punches on the
residual stresses recorded during compression of a mixture of LAC, MCC, and CS powders
based on the DPC model aiming for prediction of tablet TS and DT. Experimental data
were obtained by a press fitted with a 12 mm die with flat- or concave-faced punches. A
clear difference in the residual stress distributions between the flat and convex tablets was
reported. High residual stresses were observed in the convex tablets, but low in the flat
tablets. Moreover, elastic-net (ENET) regression was employed to sparse the model and
identify specific stress sites in the tablets affecting the TS and DT. Both the quantity and
the direction of residual stresses acting at specific sites close to the die wall were crucial in
the convex tablets for prediction of TS and DT. Such tendency was not observed for flat
tablets. However, the linkage of residual stresses at specific sites still needs clarification,
and further studies are required to understand the mechanism of how these forces affect
the TS and DT. In conclusion, FEA coupled with ENET regression was able to study in
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depth the relationships between the residual stress distribution and the characteristics of
convex tablets.

4.1.3. Studies on Failure Mechanisms

Despite the long history of pharmaceutical tableting, the process still presents major
challenges since, at the extremely high-speed operating, modern machines’ defects, such as
capping, lamination, and chipping, are not uncommon. From Table 1, it appears that, only
in a few studies, the failure mechanism is investigated utilizing FEA. Indicative studies are
discussed below.

Han et al. (2008) [75] studied the von Mises stress distribution during compression
of MCC employing a modified DPC model to describe the non-linear elastic behavior of
the powder during decompression. Experimental data were acquired by a press fitted
with an 8 mm die/flat-faced punches. For the assessment of die-wall friction during tablet
ejection by the FEA model, two friction coefficient values (µ) were used. Zero (µ) was
set to model the case of lubricated punch and die and (µ) = 0.2 was set for un-lubricated
tools. Non-uniform von Mises stress distribution was reported in the un-lubricated case.
During compression/decompression, high von Mises stress regions were detected at the
top corner, while low von Mises stress regions were detected at the bottom corner. After
ejection, high stress regions were formed close to the die edge, which were attributed to
the radial elastic recovery of the tablet. Han et al. (2008) [75] linked these non-uniform
stress distributions to chipping, capping, and lamination in the tablets. X-ray tomography
was further employed to explore this link. As can be seen in Figure 8 of their publication,
there is agreement between the numerical von Mises stress patterns at the ejection stage
and the cracking patterns observed by X-ray tomography. As the tablet exits the die, cracks
initiate at the top corner, where highest von Mises stresses are predicted by FEA. Therefore,
it is concluded that modeling compression, decompression, and ejection stages by FEA
provides a quantitative assessment of tablet quality and prediction of failure probability.

In another work of Mazel et al. (2018) [100], the lamination of biconvex tablets of
anhydrous calcium phosphate (ACP) was studied with the aid of FEA based on a modified
DPC model. Experimental data were acquired using a 11 mm die (longest dimension) with
concave punches. Numerical simulation of the data with FEA pointed to lamination of
biconvex tablets due to tensile stresses developing at the center of the tablet, which are
induced by the residual die wall pressure in the biconvex tablet shape. As the crack is
formed at the center of the tablet, it may not propagate immediately. Thus, failure may
remain undetected by external visual examination. However, X-ray tomography was able
to detect central cracks inside the tablet even without breakage. Therefore, FEA can act
as a pre-diagnostic tool to avoid undetected ongoing cracks, which could have dramatic
consequences during further tablet processing.

4.1.4. Studies on Die-Wall and Powder Friction

Tableting is sometimes referred to as uniaxial die compression because pressure is
applied to the powder by the vertical movement of one or two punches. Die-wall pressure
and friction acting during the ejection stage play an important role for the final tablet
quality. Experimental studies indicate that friction depends on several factors, including:
contact pressure, local powder density, sliding velocity, sliding distance, temperature, and
wall roughness [10]. There are a number of studies on the friction between the powder and
tooling studied with the aid of FEA (Table 1). Two indicative studies are discussed below.

Michrafy et al. (2004) [104] studied the axial density profile of flat-faced MCC tablets
compressed in un-lubricated die by applying FEA together with the DPC and Janssen–
Walker models. Die wall friction coefficient and other material model parameters were
estimated from the experimental data. The axial density distribution was computed
from simulation of the compression/decompression results. Comparison with previously
published data indicated that it is possible to correlate powder die-wall friction and a
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simple loading path with the density distribution in the compact, proving the versatility
of FEA.

Mazel et al. (2019) [103] studied the influence of friction between the compressed MCC
powder and the tooling on the evolution of die-wall pressure for the cases of flat-faced
and concave punch shapes. Experimental data were acquired by a press fitted with a
11.28 mm die (long dimension). Numerical modeling via FEA with implementation of DPC
and Janssen–Walker models was used to confirm and interpret the experimental trends.
The results showed that, for flat punches, the stress evolution is mainly driven by the die
wall/powder friction. However, for concave punches, the punch/powder friction had
a significant effect on the evolution of die-wall pressure. Consequently, sticking during
compression due to the high powder-punch friction coefficient may lead to increased
die-wall pressure. Therefore, variation in the lubrication conditions during compression
could have an effect on tablet final properties. The results of the present study were in
contradiction with results that can be found in the literature reporting no influence of the
external lubrication on the die-wall pressure [111].

Moreover, Sinka et al. (2004) [105] analyzed tablet compaction by FEA of the density
distribution in convex tablets and demonstrated that the same compaction force under low
friction produced higher average tablet relative density of MCC tablets, which, in turn,
affected the failure mode and strength.

4.1.5. Studies on Temperature Evolution during Tableting

The increase in temperature during pharmaceutical tableting is widely recognized and
has been of concern since 1968 [112] on the characteristics of the tablet. Among others, it
may affect the compressibility and tablet strength, the performance of lubricants, the die
wall friction, and, hence, ejection force, as well as may induce physicochemical changes
(e.g., stability, polymorphism, crystalline state) [108]. From Table 1, it appears that only
three articles report FEA for the study of temperature evolution during tableting. The work
by Klinzing et al. (2010) [106] is discussed below.

Temperature evolution during tableting of MCC was studied with the aid of FEA and
DPC model coupled with thermomechanical analysis. Experimental data were acquired by
using a press fitted with a 9.525 mm die and concave punches. Figure 6 shows experimental
density values taken by X-ray microtomography (mCT) against FEA predictions. Both
experimental and simulation analysis results clearly show a gradient of higher density
in the areas where the tablet is in contact with the die and lower density in the middle
of the tablet. The prediction of porosity and temperature distribution by the FEA model
were found to be in agreement with the mCT results and infrared camera measurements of
surface temperature of the ejected tablet. Moreover, the fact that FEA model was calibrated
with data from differently shaped tablets (cylindrical, flat-faced) enhances the predictive
capability of FEM.

4.1.6. Studies of the Viscoelastic Behavior during Tableting

Compaction speed can vary between commercially used and developmental tableting
machines, which, for the industrial rotary machines, can be extremely high. It is well known
that any dependency of the compression of materials on compression speed expressed as
strain rate sensitivity (SRS) can have consequences on the final tablet quality attributes. SRS
describes the viscoelastic or viscoplastic behavior of pharmaceutical powders that exhibit
time-dependent elastic or plastic deformation, respectively. Three studies have applied
FEA for the study of the viscoelastic behavior of pharmaceutical powders during tableting.
The work of Ohsaki et al. (2020) [110] is discussed below.

A powder mixture consisting of MCC, lactose (LAC), acetaminophen (ACT), and mag-
nesium stearate (MgSt) was compressed at different speeds and the process was studied
with the aid of FEA based on the DPC and Perzyna models [113]. Experimental data were
acquired by a press fitted with 8.3 mm die/flat-faced punches. The DPC–Perzyna model
parameters were determined experimentally from compaction tests, unconfined compres-
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sion tests, and tensile tests. The calculated loading curves agreed with the experimental
data obtained under different compression speeds. High speeds resulted in less plastic
deformation but more residual stress. It was demonstrated that FEA adopted with the DPC
and Perzyna models was useful for the analysis of tableting at variable speeds.Pharmaceutics 2022, 14, x  24  of  32 
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4.2. Application of FEA in Diametral Loading Test of Mechanical Strength
Stress & Strain Distributions during Diametral Loading

The mechanical strength of pharmaceutical tablets is an important part of research
programs, aiming to understand the mechanism by which tablet ingredients stick together
to form a strong tablet, and also to reveal the important characteristics of the ingredients
relevant to bonding. The diametral compression test is the most frequently used test for the
evaluation of the mechanical strength of round pharmaceutical tablets. A full stress analysis
is performed, which allows calculation of the tensile stress at failure from the magnitude of
the breaking load. However, for non-simple shapes (e.g., capsule shape, lozenge, convex
shapes) a simple analytical solution is not available and stress analysis by simulation
is required. For a complex stress analysis of different tablet shapes and elucidation of
stress and strain distribution, FEA has been extensively implemented. Stanley (2001) [114]
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emphasized the need to deeply understand the stress distribution induced in a loaded
specimen in order to convert the breaking load into a strength value. Although FEA has also
been employed for the study of stress distribution induced by other types of mechanical
tests, e.g., three point bending [94,95] and axial crushing test [99], the diametral loading
compression has become the established method in pharmaceutical technology, and, for
this reason, from the studies listed in Table 1, only those related to this test are discussed.

Pitt and Heasley (2013) [65] sought analytical solutions and mathematical equations
for the calculation of the tensile strength of elongated tablets with the aid of FEA. Indeed,
10-mm convex- and capsule-shaped tablets were used for a hypothetical material with
0.02 GPa Young’s modulus. In Figure 7, the 3D model of a circular tablet under compression
is presented, showing positive and negative tensile stress in the x direction. The results
of stress analysis showed that, as the tablet was getting more elongated from a standard
circular tablet shape, the tensile stress approached a limiting value. This value was achieved
once the length to width ratio exceeded 1.7/1, which encompasses most of today’s pharma-
ceutical tablets. In addition, this value approximated 2/3 of the corresponding value of a
circular tablet. Thus, a modification to the equation by Pitt et al. (1988) [70] was proposed
in order to adapt this case to a convex-faced elongated tablet. Application of the modified
equation to commercial tablets of various shapes was also demonstrated.

Pharmaceutics 2022, 14, x  25  of  32 

 

4.2. Application of FEA in Diametral Loading Test of Mechanical Strength 

Stress & Strain Distributions during Diametral Loading 

The mechanical strength of pharmaceutical tablets is an important part of research 

programs, aiming to understand the mechanism by which tablet ingredients stick together 

to form a strong tablet, and also to reveal the important characteristics of the ingredients 

relevant to bonding. The diametral compression test is the most frequently used test for 

the evaluation of the mechanical strength of round pharmaceutical tablets. A full stress 

analysis  is performed, which allows calculation of  the  tensile stress at  failure  from  the 

magnitude of  the breaking  load. However,  for non‐simple  shapes  (e.g., capsule shape, 

lozenge, convex shapes) a simple analytical solution is not available and stress analysis by 

simulation is required. For a complex stress analysis of different tablet shapes and eluci‐

dation of stress and strain distribution, FEA has been extensively implemented. Stanley 

(2001) [114] emphasized the need to deeply understand the stress distribution induced in 

a loaded specimen in order to convert the breaking load into a strength value. Although 

FEA has also been employed for the study of stress distribution induced by other types of 

mechanical tests, e.g., three point bending [94,95] and axial crushing test [99], the diame‐

tral loading compression has become the established method in pharmaceutical technol‐

ogy, and, for this reason, from the studies listed in Table 1, only those related to this test 

are discussed. 

Pitt and Heasley (2013) [65] sought analytical solutions and mathematical equations 

for the calculation of the tensile strength of elongated tablets with the aid of FEA. Indeed, 

10‐mm convex‐ and capsule‐shaped  tablets were used  for a hypothetical material with 

0.02 GPa Young’s modulus. In Figure 7, the 3D model of a circular tablet under compres‐

sion is presented, showing positive and negative tensile stress in the x direction. The re‐

sults of stress analysis showed that, as the tablet was getting more elongated from a stand‐

ard circular tablet shape, the tensile stress approached a limiting value. This value was 

achieved once the length to width ratio exceeded 1.7/1, which encompasses most of to‐

day’s pharmaceutical tablets. In addition, this value approximated 2/3 of the correspond‐

ing value of a circular tablet. Thus, a modification to the equation by Pitt et al. (1988) [70] 

was proposed in order to adapt this case to a convex‐faced elongated tablet. Application 

of the modified equation to commercial tablets of various shapes was also demonstrated. 

 

Figure 7. 3D model of circular tablet under compression showing positive and negative tensile stress
in the x direction. Reprinted with permission from Ref. [65].

In the same year, Podczeck et al. [89] investigated analytical mathematical solutions
for the calculation of the tensile strength of anhydrous dextrose convex-shaped tablets.
FEA was employed to model and evaluate the tensile stress at failure of convex tables
with central cylindrical part to total tablet thickness ratio (W/D), between 0.06 and 0.50,
and face-curvature ratio (D/R), between 0.25 and 1.85. Both elastic and elasto-plastic
deformation behavior was considered. The results of 80 individual simulations showed
that the tensile failure stress of convex tablets can be calculated from the standard Brazilian
test equation for flat tablets, and this was valid for all combinatory (W/D) ratios between
0.06 and 0.50 and (D/R) ratios between 0.00 and 1.85. For the combination (W/D) 0.50
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and (D/R) 1.85 or 1.43, and for the combination of (W/D) 0.40 or 0.30 with (D/R) 1.85,
the modified equation of Pitt and Heasley [65] was a better alternative.

Podczeck et al. (2014) [90] investigated the influence of the position of a breaking
(“score”) line on the tensile failure and stress/strain distributions for flat, round, and bevel-
edged tablets subjected to diametral compression test using FEA model. Various breaking
line test positions at angles of 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ relative to the loading plane were
studied. The theoretical investigation referred to a material of E = 2.58 GPa and a v = 0.35.
Both elastic and elastoplastic deformation behavior were taken into account. From Figure 8,
it appears that the results obtained for fully elastic and elastoplastic tablets were fairly
similar. However, large differences were observed in stress distributions depending on the
position of the breaking line. The stress at failure was predicted to be similar for tablets
tested at an angle of 45◦ or above, whereas, at lower test angles, the predicted breaking
loads were up to three times larger. According to stress distributions, not all breaking line
angles would result in clean tensile failure. A comparison of the theoretical results with
experimental data, however, did not confirm the differences in the predicted breaking loads.
On the other hand, the experimental results confirmed differences in the way that tablets
broke depending on the position of the breaking line. The results of the study suggest that
breaking loads applied to scored tablets cannot be converted into tablet tensile strength
values. Furthermore, comparisons between different tablets or batches should carefully
consider the orientation of the breaking line with respect to the loading plane as the failure
mechanisms appear to vary.

Croquelois et al. (2017) [86] reevaluated the stress concentration factor (SCF) in the case
of cylindrical and flattened tablets [81] with holes, during the diametral compression test,
with the aid of FEA; 11-mm tablets were tested for two different materials: acetaminophen
(E = 4.4 GPa, v = 0.25) and spray dried lactose (E = 3.7 GPa, v = 0.23). It was reported that
the value of SCF was nearly independent of the hole size when the ratio of the hole and
the tablet diameters was less than 0.1. Nevertheless, the experimental results presented
in this work showed that the failure load on a compact varied with the hole size. These
results were attributed to changes in the stress distribution around the hole as the hole size
changed. Criteria such as the average stress criterion, which takes into account the stress
distribution, made it possible to explain the influence of the hole size on the breaking load.
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5. Outlooks

There is a great need for a deeper understanding of the tableting process, which can
be gained only by application of new research tools. As shown in the present review paper,
finite element analysis (FEA) combined with constitutive models has the capability to
fulfil this expectation by providing new information and knowledge on the mechanisms
involved leading to the production of tablets with improved performance. Nevertheless,
the increasing complexity and divergence of FEA software generate ambiguities regarding
its application. Therefore, there is a need to standardize the implementation of FEA in the
field of pharmaceutics.

In the engineering field, two main regulatory bodies, the American Society for Testing
and Material (ASTM) and the International Association for the Engineering Modelling,
Analysis and Simulation (NAFEMS) provide some guidelines (ASTM F2996, ASTM F2514,
and ASTM F3161) for the implementation of FEA in pharmacy and medicine. However,
these do not address the pharmaceutical tableting process. As shown in Table 1, in some
cases (indicated as ‘no data’), components of the FEA model, such as meshing, Young’s
modulus, and Poisson ratio, are not mentioned, and, when reading the publications,
boundary conditions and material properties are not given in detail, making it hard to
interpret the results. Therefore, more collaborative efforts have to be made by scientists
working in this field in order to improve the communication of the data and scientific
outcomes that would open up and encourage further research in this area.

6. Conclusions

Finite element analysis (FEA) coupled with constitutive models has been successfully
implemented to predict powder behavior during tablet compression with differently shaped
pharmaceutical tablets. FEA, together with the Drucker–Prager CAP (DPC) model, is more
often employed and has been shown to be a practical, potent, resource-saving, and reliable
research method that can generate crucial information about complex physical phenomena
occurring during tableting, such as: stress and density distribution during compression
and during testing of the compact by diametral loading, tablet failure mechanisms and
tablet mechanical strength, temperature evolution during compression, and frictional
forces between the compressed material and compression tools. The value of FEA in the
pharmaceutical tableting field has been recognized in the last two decades, and FEA is
expected to attract more interest from researchers as its potential and feasibility are realized.
It is a simple tool and, only by means of a computer and the appropriate software, it can
simulate and predict important aspects of the compression of pharmaceutical powders,
crucial to their quality and performance.
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