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Abstract: Cancer continues to represent a global health concern, imposing an ongoing need to
research for better treatment alternatives. In this context, nanomedicine seems to be the solution
to existing problems, bringing unprecedented results in various biomedical applications, including
cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous
properties of various nanoscale metals, this review aims to present metal-based nanoparticles that
are most frequently employed for cancer applications. This paper follows the description of relevant
nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail
their potential applications in cancer management, ranging from the delivery of chemotherapeutics,
vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.

Keywords: metal-based nanoparticles; nanomedicine; metallic anticancer agents; cancer therapy;
drug delivery; hyperthermia; radiotherapy; phototherapy; combined cancer therapies

1. Introduction

Cancer comprises a complex array of diseases that represent one-third of the leading
causes of morbidity and mortality worldwide. As traditional therapeutic approaches (i.e.,
chemotherapy, radiotherapy, and surgery) may result in severe adverse effects or/and
unsatisfactory treatment outcomes, intense research has been shifted to integrating nan-
otechnology in cancer management [1–4].

Nanomedicine, the overlapping field of nanotechnology and medicine, brings a series
of advantages over conventional cancer therapeutics, including multifunctionality, efficient
drug delivery, and controlled release of chemotherapeutic agents. These benefits are
possible due to the unique physical and chemical properties of nanoparticles (NPs), such as
small size, chemical composition, large surface area, tailored shape, and morphology [5–9].

Whether based on polymeric, liposomal, or metallic formulations, NPs naturally traffic
to the spleen and lymph organs, being good candidates for delivering immunotherapeutic
agents [8]. Moreover, nanomaterials can be used as cytotoxics and/or enhancers of standard
chemotherapies, diminishing the side effects associated with conventional drugs, extending
their blood circulation time, and preventing drug degradation before reaching the target
site [1,10].

Metal-based NPs are particularly appealing in nanomedicine due to their relatively
narrow size and shape distribution, long activity period, dense surface functionalization,
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and capability for optical or heat-based therapeutic strategies. Compared to nonmetallic
NPs of similar sizes, the higher density of metallic NPs allows them to be more readily
taken up by cells, thus proving advantageous for cancer management strategies [8,11].
In addition, metal NPs were reported to offer better targeting, gene silencing, and drug
delivery, especially when functionalized with targeting ligands that provide controlled
deposition into tumor cells [6].

Metallic nanoconstructs can remodel the tumor microenvironment (TME) by turning
unfavorable conditions into therapeutically accessible ones. For instance, external stimuli
(e.g., light, heat, ultrasonic radiation, and magnetic fields) can enhance the targeting ability
of metallic NPs towards altering the redox potential of biological systems and generating
reactive oxygen species (ROS) that further sensitize target tissues [12]. Furthermore, certain
metallic NPs can induce oxidative stress in cancer cells even in the absence of external
stimulation [13,14]; internal conditions specific to tumor tissues, such as pH, redox potential,
and hypoxia, represent additional viable stimuli for triggering metal-based NPs activity
and drug release, enhancing therapeutic efficacy. Furthermore, surface functionalization of
metallic NPs with different organic molecules, macromolecules, or noble metal coatings is
considered an excellent tool for stabilizing NPs and manipulating their properties towards
responding to the above-mentioned stimuli (Figure 1) [12].
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Figure 1. Examples of commonly used moieties for coating metal NPs to produce stimuli-sensitive
nanosystems. Reproduced from [12].

Given these advantageous properties, numerous studies have investigated various
metal-based nanoparticles as an innovative technology for fighting cancer. NPs made of
metals (e.g., gold, silver, iron, zinc, titanium, cerium, and platinum), metal derivatives,
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metal alloys, metal hybrids, and combinations of metals with other nanomaterials have
been increasingly reported in the specialty literature.

In this respect, the present paper aims to thoroughly review metallic nanomaterials
that present attractive features for treating malignant diseases and present the possible
applications of metal-based NPs in various therapeutic, diagnosis, and imaging approaches,
focusing on the newest developments in the field.

2. Metallic Nanomaterials
2.1. Gold NPs

Gold nanoparticles (Au NPs) represent one of the most investigated metal-based NPs
in medicine [15]. The appealing features of Au NPs count low toxicity and immunogenicity,
good biocompatibility, excellent stability, enhanced permeability and retention, inherent
immune activation properties, and easily modifiable surface [1,8,11,16]. Moreover, the
developments achieved in various chemical and biological synthesis methods allowed the
fabrication of Au NPs with tailored sizes, shapes, and structures (Figure 2), endowing
them with desired properties. For instance, nanospheres’ small surface area is particularly
advantageous for creating efficient cytotoxic agents, and nanocages and nanoshells’ inner
cavities are appealing for drug encapsulation, while the large surface available to interact
with light per unit of volume of nanorods recommends them for phototherapies. Thus, the
versatility and tunability of Au NPs render them suitable for creating excellent delivery ve-
hicles that can achieve targeting and selectivity against cancer cells even without additional
molecules [1,17–20].
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Figure 2. Visual representation of the most common Au NPs assemblies and morphologies in
nanomedicine. Reproduced from [18].

Au NPs have also been reported to have tunable optical properties, surface plasmon
resonance (SPR), photothermal properties, and surface-enhanced Raman scattering (SERS),
being useful tools in phototherapy and photoimaging [16]. SPR is particularly important as
this optical property allows Au NPs to be used in near-infrared (NIR)-resonant biomedical
modalities, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI),
fluorescence imaging, and X-ray scatter imaging [21]. Moreover, Au NPs are of good use in
cancer hyperthermia therapy. They can generate heat due to the contained mobile carriers
that can be resonant at specific frequencies, depending on the structure of nanoplatforms.
The heating effect increases under a plasmon resonance frequency, when all mobile carriers
present on the particle resonate [22]. Other applications of Au NPs in cancer manage-
ment include but are not limited to gene silencing, radiotherapy, and positron emission
tomography (PET) imaging [6,21,23].

Additionally, green-synthesized Au NPs were demonstrated to have intrinsic an-
titumor properties [24], showing promising results when tested against several human
cancer cell lines, counting liver cancer [25,26], lung cancer [27–29], colon cancer [30–32],



Pharmaceutics 2022, 14, 435 4 of 29

pancreatic cancer [33,34], breast cancer [35,36], cervix carcinoma [37,38], and ovarian adeno-
carcinoma [39]. In what concerns the mechanisms of action, the particles were reported to
enhance ROS production, change the mitochondrial membrane potential, inhibit the migra-
tion assay, activate caspase expression, and downregulate antiapoptotic protein expression,
eventually resulting in antiproliferative effects and cancer cells apoptosis.

2.2. Silver NPs

Silver nanoparticles (Ag NPs) are another highly investigated material in nanomedicine.
Ag NPs have been extensively explored due to their physicochemical and biological proper-
ties, including biocompatibility, large surface-to-volume ratio, potent antimicrobial activity,
excellent SPR, ease of functionalization, and cytotoxicity against cancer cells [20,40].

Ag NPs have attracted increasing interest in the oncological domain, possessing
intrinsic anticancer activity and being demonstrated as effective antitumor drug delivery
systems [41,42]. Research has also proven that Ag NPs can modulate the autophagy of
cancer cells, either acting as cytotoxic agents themselves, in combination with transported
molecules, or in association with other treatments [1].

Concerning the mechanisms of anticancer action, Ag NPs were noted to affect mem-
brane fluidity, resulting in facile entry and accumulation in cancer cells, thus causing
cancer cells death or hindering their uncontrolled proliferation. Ag NPs can also act by
regulating signaling pathways, inducing early apoptosis in the absence of the p53 tumor
suppressor [6,40,43]. Moreover, NPs can release Ag+ cations that capture electrons, increase
intracellular oxidative stress, increase ROS production, reduce ATP levels of cancer cells,
and decrease cell proliferation rates [6,44]. Ag+ ions are reportedly released mainly in
mitochondria and secondarily in the nuclei; there, they interact with DNA, resulting in
its fragmentation and resulting in cell death [43,45]. The described Ag NPs mechanisms
of action are visually represented in Figure 3; similar paths have also been proposed for
other noble metal-based nanoparticles, including Au NPs [13,46], platinum NPs [47], and
palladium NPs [48].
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Significant results concerning Ag NPs antitumor activity were reported against several
human cancer cell lines [43] (Table 1), including hepatocellular carcinoma [51–53], breast
cancer [54–57], ovarian cancer [58,59], prostate cancer [60–62], colon cancer [30,63–66], lung
cancer [58,60,67,68], and osteosarcoma [69,70].
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Table 1. Half-maximal inhibitory concentrations (IC50) of Ag NPs against various human cancer
cell lines.

Cancer Type Cell Line IC50 (µg/mL) Ref.

Liver cancer
HepG2 48 [52]

HepG2 75 [53]

Breast cancer

MCF-7 20 [55]

MCF-7 0.65 [56]

AU565 0.25 [56]

T47D 5 [57]

Ovarian cancer

PA-1 30 [58]

A2780 7 [59]

A2780Cis 14.04 [59]

Prostate cancer PC-3 56.27 ± 1.17 [60]

Colon cancer

HCT-116 50 [30]

HCT-116 1.152 [66]

HT29 4.88 [63]

Lung cancer
A549 28 [58]

A549 11.28 ± 1.28 [60]

Bone cancer MG-63 0.665 [69]

2.3. Iron Oxide NPs

Different types of iron oxides found in nature have started to be explored for syn-
thesizing magnetic NPs, such as magnetite (Fe3O4), hematite (α-Fe2O3), and maghemite
(γ-Fe2O3 and β-Fe2O3) [3,71,72]. Iron oxide nanoparticles (IONPs) exhibit many advan-
tageous properties for biomedical applications, including non-toxicity, biocompatibility,
superparamagnetism, chemical inertness, and easily tunable surface [71,73,74].

Regarding cancer care, IONPs have been FDA-approved for clinical testing in cancer
diagnosis, imaging, and magnetic hyperthermia therapy, also demonstrating potential in
preclinical settings for photothermal and photodynamic therapies [75,76]. One particular
ferrofluid formulation developed by MagForce AG has received approval for the treatment
of brain tumors, their “NanoTherm” therapy being certified for use on patients from
member states of the European Union [77]. IONPs have also been extensively researched
for imaging applications. Iron oxide-based particles were noted to be promising contrast
agents for different imaging modalities, counting MRI [78,79], fluorescence imaging [80],
single-photon emission computed tomography (SPECT) [81], and multimodal imaging [82].

Moreover, IONPs have attracted particular interest in developing magnetic
nanoparticle-based drug delivery systems. This is particularly because drug-loaded IONPs
have strong targeting ability under external magnetic guidance (Figure 4). Specifically, by
applying an external magnetic field, injected IONP-based delivery systems move through
blood capillaries towards the desired site, releasing the drug in tumor cells, thus increasing
therapeutic efficacy without damaging the neighboring normal cells [3,83]. In addition,
their magnetic properties allow the transformation of radiant energy into heat or ROS
after applying the local external magnetic field, reducing the adverse effects of cancer
therapy [6].

Various such IONPs-based nanosystems have been tested in vitro and in vivo, being
reported effective against several types of cancer, including breast cancer [84,85], lung can-
cer [86,87], liver cancer [88], gastric cancer [89], colorectal cancer [90], prostate cancer [91],
and ovarian cancer [92]. The particles showed promising results either alone, in combi-
nation with other nanomaterials (e.g., copper, chitosan, aminosilane, and polyethylene



Pharmaceutics 2022, 14, 435 6 of 29

glycol) or as carriers of different chemotherapeutic agents (e.g., doxorubicin, docetaxel,
and curcumin).
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2.4. Other Metal-Based Nanomaterials

In addition to the above-discussed NPs, several other metals and metal derivatives
started to be investigated in their nanoform as potential candidates for applications in cancer
management. For instance, zinc oxide nanoparticles (ZnO NPs) have recently become
used in biomedical and cancer applications due to their favorable chemical properties [1].
ZnO NPs exhibit good biocompatibility, antimicrobial, and anticancer activities, gaining
increasing popularity in nanomedicine [93,94]. Moreover, ZnO NPs were reported to
behave similarly to genotoxic drugs due to their ability to form micronucleus into the cells.
This effect was noted to be maximum on glioblastoma multiforma tumor cells, medium
on epithelial carcinoma cells, and absent on normal cells [6]. Anticancer activity was also
reported for green-synthesized ZnO NPs against several other human cancer cell lines,
including colon cancer [95,96], cervical cancer [96], breast cancer [96], lung cancer [97,98],
laryngeal cancer [99], and osteosarcoma [100].

Cuprous and copper oxide NPs are other nanomaterials with potential applications
in the biomedical field [101]. In particular, plant-synthesized NPs showed pharmaco-
logical effects in tumor therapy, such as inducing apoptosis, increasing ROS generation,
inhibiting metastasis, and stimulating autophagic cell death [1,6] in colon cancer [102,103],
esophageal cancer [104], lung cancer [105], breast cancer [106], cervical cancer [107], renal
cell carcinoma [108], and melanoma [109].

Titanium dioxide NPs (TiO2 NPs) represent a useful material for photodynamic ther-
apy. Its mechanism of action is based on the excitation of hydrophobic molecules with
electromagnetic radiation in the range of visible or UV light towards ROS generation
and further induction of apoptosis [6]. Moreover, TiO2 NPs were reported cytotoxic in
several human cancer cell lines, such as colon cancer [110], breast cancer [111], and os-
teosarcoma [112].

Cerium oxide NPs have attracted interest in cancer management, especially in radia-
tion therapy and drug delivery of chemotherapeutics. These NPs exhibit the smart capacity
of inducing tumor cell death while leaving the surrounding healthy tissues unharmed by
radiation and oxidative stress [6]. In this respect, recent studies investigated cerium oxide
NPs anticancer potential for treating colon cancer [113,114], pancreatic cancer [115], breast
cancer [116,117], and ovarian cancer [114].
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Recent studies revealed that bio-synthesized palladium nanoparticles (Pd NPs) present
antioxidant, anticancer, antimicrobial, antiproliferative, and photothermal activities while
being biocompatible and less toxic than their chemically-synthesized counterparts [118].
Thus, they hold great promise in developing novel and improved cancer therapies, being
already evaluated against several cancer cell lines (e.g., lung cancer [48], breast cancer [119],
ovarian cancer [120], cervical cancer [121], and colorectal adenocarcinoma [121]).

Advantageous properties have also been reported for platinum nanoparticles (Pt
NPs), resulting in increasing interest for applications in biotechnology, nanomedicine, and
pharmacology fields. Specifically, Pt NPs exhibit potent antimicrobial, antioxidant, and
anticancer activities; SPR; and photothermal properties, which are all highly valuable
characteristics for designing performant nanotherapeutics, drug-delivery systems, and
bioimaging agents [122–124].

2.5. Hybrid Metal NPs and Metallic Alloy NPs

In addition to their remarkable individual potential, metals can also be manufactured
into hybrid metal NPs towards creating synergistic effects. For instance, bifunctional
iron-gold NPs of different shapes, sizes, and structures (Figure 5) are being evaluated
for biomedical applications, such as targeted drug delivery, biosensing, photothermal
therapy, and immunoassays. The attention these NPs have drawn owes to their beneficial
physicochemical properties, including low toxicity, small size, large surface-to-volume
ratio, optical characteristics, slow oxidation, increased magnetic susceptibility, and high
saturation magnetization [125].
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Other hybrid metal-based NPs that are relevant for cancer management include, but
are not limited to, MnSe@Bi2Se3 core-shell nanostructures, FeSe2/Bi2Se3 nanoparticles,
Pt@Fe2O3 nanorods, Au@FeS nanoparticles, Au@Pt nanodendrites, Au@MnO2 nanoparti-
cles, and Au@Se nanoparticles [126].

Synergistic effects were also reported when using bimetallic (Figure 6) and trimetallic
alloy nanoparticles, which are progressively studied for various applications. Compared to
monometallic NPs, alloy NPs benefit from more stable structures and improved properties,
possessing superior qualities in biomedical imaging. In particular, iron-based alloy NPs
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(e.g., Fe-Ni and Fe-Pt) have been employed in MRI as potential contrast agents due to their
high magnetic or superparamagnetic property and low toxicity in living cells [127].
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3. Discussion on Cancer Applications of Metallic Nanomaterials

Either alone, as alloys, in various metallic combinations or in association with other
nanomaterials, metal-based nanoparticles can be employed in a plethora of applications for
better cancer management (Figure 7). In this respect, the following subsections review the
role of metallic nanomaterials in detecting and treating cancer, describing some of the most
recent advancements in these fields.
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3.1. Drug Delivery

Metal-based NPs can circumvent the limitations of conventional chemotherapy by
providing targeted and controlled release of carried anticancer agents. Thus, carrying drugs
via nanoplatforms made of gold, silver, or metal derivatives has become an intense research
topic. Studies have reported promising results for a variety of metal-based nanocarriers,
either in pristine form, functionalized with targeting moieties or coated with biocompatible
layers. Such nanosystems have been proven to enhance in vivo stability, increase drug
accumulation in the tumor site, improve the therapeutic effectiveness of carried drugs,



Pharmaceutics 2022, 14, 435 9 of 29

and reduce systemic toxicity. Moreover, they can ensure sustained/programmable or on-
demand drug release by responding to internal or external stimuli, respectively [128–130].

In order to emphasize the versatility of metal-based NPs for drug delivery, Table 2 has
gathered several top-recent developments in the field. Moreover, Figure 8 offers a visual
perspective over the discussed nanostructures.

Table 2. Examples of recently developed metal-based drug delivery systems for cancer therapy.

Material Morphology Carried Drug Properties Results Ref.

Gold

PEG-modified
nanospheres (with

Arg-Gly-Asp (RGD)
peptide as

targeting agent)

L-asparaginase
� Average size:

29.24 ± 5.38 nm

� NPs improved drug bioavailability and
anticancer activity

� Significant antioxidant effects
� High tumor-targeting efficacy and

distribution in MCF-7 cells
� Initiation of apoptosis and promotion of

cell cycle arrest at the G2/M
� Upregulated pro-apoptotic p53, while

downregulating antiapoptotic Bcl-2

[131]

Silver Nanospheres Paclitaxel
� Average size:

~10 nm

� Nontoxic to noncancerous HUVEC cells
� More effective than paclitaxel alone in

all tested cells (i.e., MDA-MB-231,
MCF-7, 4T1, Saos-2)

� Saos-2 cells were ~10 times more
sensitive to paclitaxel-bonded Ag NPs
that to the bare drug

[132]

Silver Nanospheres (coated
with starch)

Euphorbia
dracunculoides

Lam. (EDL) plant
extract

� Average size:
42.5 ± 1.54 nm

� Loading capacity:
up to 82.5%

� Encapsulation
efficiency: up
to 85%

� Zeta potential:
−29.64 ± 0.09 mV

� The surface modification increased
biocompatibility

� pH-triggered drug release
� Enhanced antioxidant potential
� Accumulation in cancer cells and

induction of early and late apoptosis in
RAW264.7 and SCC7 cells

[133]

Magnetite

Nanospheres (coated
with polyvinyl

alcohol-
zinc/aluminum-
layered double

hydroxide)

Sorafenib

� Average size:
~95 nm

� Saturation
magnetization:
57 emu/g

� Remanent
magnetization:
2.706 emu/g

� No cytotoxicity against 3T3 fibroblasts
� More potent than bare drug against

HepG2 liver cancer cells
� The drug was more easily released

under an acidic environment

[134]

Magnetite

Nanospheres (surface
modified with

Pluronic F127 and
branched

polyethylenimine)

Doxorubicin

� Size range:
10–20 nm

� Zeta potential:
−20.5–4.87 mV

� Saturation
magnetization:
54.5–65.5 emu/g

� pH-/thermo-responsive drug delivery
system

� Sufficient magnetic strength to allow
navigation towards the desired site

� Enhanced the therapeutic effect of the
drug

[135]

Maghemite
Hollow nanospheres
(functionalized with
polyethylene glycol)

Doxorubicin

� Average
hydrodynamic size:
~175 nm

� Specific surface
area: 266.1 m2/g

� Saturation
magnetization:
16.3 emu/g

� Highly sensitive to alternating magnetic
field and pH

� Precise drug release to desired tissues
[136]
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Table 2. Cont.

Material Morphology Carried Drug Properties Results Ref.

Nickel oxide

Honeycomb-
structured

nanoparticles (coated
with folic

acid-decorated
polydopamine)

Quercetin

� Average size:
35 nm

� Average pore
volume:
0.312 cm3/g

� Average pore size:
11.44 nm

� Loading capacity:
up to 51%

� Encapsulation
efficiency: 51%

� Surface modification increased
biocompatibility and reduced hemolysis

� Highly controlled drug release in
physiological system compared to TME

� Strong anticancer activity at very low
concentration

� Cytotoxic effects against Vero cells and
MDA-MB-231 in a dose-dependent
manner

[137]

Zinc oxide Hexagonal shaped
nanoparticles Quercetin

� Average size:
21–39 nm

� pH-dependent drug-release, with higher
releasing rate in acidic medium

� Stable under physiological pH,
indicating that the nanosystem can be
retained in the blood stream up to
particular time point without causing
considerable side effects

� High biocompatibility with 3T3-L1 cells
� Effective inhibition of breast cancer cells

(MCF-7) growth

[138]

Cobalt ferrite

Polygonal
nanoparticles
(coated with

chitosan)

Doxorubicin

� Average size:
38 nm

� Saturation
magnetization:
50 emu/g

� Drug loading: up
to ~89%

� Excellent biocompatibility
� Non-toxic nanosystem
� High drug-release at the pH of cancer

tissue
� Good cell death rates in breast cancer

cell line MCF-7 cells

[139]

Copper
oxide

Nanospheres (coated
with bovine serum

albumin)
Methotrexate

� Average size:
23.78 ± 1.52 nm

� Loading efficiency:
8.70 ± 2.11%

� Significant cytotoxicity against
MDA-MB-231 cell line

� Faster drug release in the presence of
proteinase K enzyme

[140]

As it can be observed from Table 2, not only the classic trio of metal-based nanomateri-
als (i.e., gold, silver, and iron oxide) have resulted in promising drug delivery applications,
but also less investigated materials (e.g., cobalt ferrite, cobalt oxide, and nickel oxide) can be
successfully employed in cancer therapy. The tested particles showed enhanced anticancer
activity compared to bare chemotherapeutic drugs (even up to 10 times for silver NPs
in certain cell lines [132]). Furthermore, the harmful potential of the carrier metals and
carried drugs towards healthy tissues was reduced by adding biocompatible polymers,
proteins, and targeting agents. Moreover, the differences in the biological activity of the
presented nanosystems can be explained by their size and shape variability, nanospheres of
smaller diameters being preferentially taken up by the target cells compared to their larger
counterparts with different morphologies.

Another interesting novel approach is the use of supramolecular drug self-delivery sys-
tems (SDSDSs), which comprise active drug-building blocks linked through supramolecular
interactions. One metal-based SDSDS is proposed by Liu et al. [141], who have developed
platinum-containing supramolecular drug self-delivery nanomicelles (SDSDNMs) able to
inhibit tumor growth while preserving good safety towards normal organs (Figure 9). The
authors concluded that the newly designed system might provide promising opportunities
in the field of synergistic combination chemotherapy.
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Figure 8. (A) Schematic representation of the formation of Gold NPs–PEG-RGD-Asparaginase
(conjugate) and cellular uptake. Adapted from [131], Elsevier B.V., 2020. (B) Schematic representation
of formation of honeycomb structured nickel oxide nanoparticles and intracellular drug release
mechanism. Reproduced with permission from [137], Elsevier B.V., 2021. (C) Schematic representation
of the preparation and final structure of cobalt ferrite NPs for doxorubicin delivery. Reproduced
with permission from [139], Elsevier B.V., 2021. (D) Schematic representation of EDL-encapsulated
AgNPs oral administration and cancer therapy mechanism of AgNPs-EDL@Starch. Reproduced with
permission from [133], Elsevier B.V., 2021.

One more drug delivery strategy gaining interest in recent years is the use of im-
plantable systems for targeted delivery without involving an external magnet. Specifically,
implants can be employed as delivery vehicles of drugs, antimicrobial, anti-inflammatory,
and immunomodulatory agents to desired sites, including surgery cavities to prevent
potential cancer recurrence. Nonetheless, specific requirements must be fulfilled by these
implants, counting drug release at a proper concentration and distance from the tumor,
biocompatibility, antibacterial activity, and ability to surpass immune system recogni-
tion [142]. In this respect, Ge et al. [143] have created an iron oxide/poly(lactic-co-glycolic
acid) implant scaffold with high magnetism (up to 40% w/w magnetic beads). The de-
signed scaffold is biocompatible, durable, and effectively attracts nanodrugs to its surface,
achieving targeted delivery without the application of an external magnetic field. Thus, it
aids in the accumulation of drugs to tumor cells, improving therapeutic outcomes. This
approach holds great promise for developing more precise medical treatments in the future.
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Chemical Society, 2021.

3.2. Vaccine and Gene Delivery

In addition to the use of chemotherapeutic agents, cancer vaccination represents
another effective method for preventing or curing cancers. Cancer vaccines are based on
tumor antigens administered as nucleic acids, tumor lysates, full proteins, or short peptides
that can induce strong cellular and humoral immunity. Nonetheless, vaccines necessitate
adjuvants to reach their maximum efficacy potential, improve the strength and longevity
of immune responses, and reduce doses and side effects [144–147].

In this respect, metalloimmunology has the potential to revitalize cancer vaccines, as
nutritional metal ions (e.g., Ca2+, K+, Fe2+/3+, Zn2+, and Mn2+) play important roles in
many biological activities, including key immune processes. Thus, a wide variety of metals
can be considered good adjuvants for nanovaccines, enhancing the generated immune
responses through transcellular or intracellular signaling cascades against neoplastic trans-
formation. More specifically, metal ions are suitable candidates for ensuring abrupt and
timely immune responses, achieving effective immune regulation, and producing fewer
toxicity concerns than conventional therapies [144]. Moreover, metallic NPs can be used as
antigen delivery vehicles, being able to improve their uptake by dendritic cells (DCs) (or
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other antigen-presenting cells); this is further reflected in an increased antitumor cytotoxic
T cell response [8].

Table 3 comprises several examples of metal-containing formulations for cancer vac-
cines delivery, highlighting the variety of tested materials.

Table 3. Examples of metal-based nanomaterials for cancer vaccine delivery.

Material Morphology Immunogen Results Ref.

Aluminum
hydroxide

Nanospheres
(modified with

polyethylenimine)
Ovalbumin

� Easily internalized into DCs, ensuring antigen release
into their cytoplasm

� Significantly inhibited tumor growth
� Considerably increased cytokine IL-12 secretion and

expression of surface molecules CD80 and CD86
� Promoted the activation of tumor-associated T cells

[148]

Iron oxide Nanospheres Ovalbumin

� Considerably promoted activation of immune cells
� Significantly increased cytokine production
� Induced potent humoral and cellular immune

responses

[149]

Iron oxide
Nanospheres

(coated with a lipid
bilayer)

Endogenous tumor
antigens (ETAs)

� Able to capture ETAs from tumors and transport
them to lymph nodes

� In combination with anti-PD-L1 checkpoint blockade
could eliminate primary tumors, suppress distant
tumors, inhibit metastasis, and prolong the survival
of model animals

[150]

Zinc oxide Mesoporous nanocapsules Ovalbumin

� Enhanced expression of antigen-specific T-cells
� Induced IFN-γ producing effector CD4+ and CD8+

T-cells
� Increased antigen-specific IgG levels

[151]

Zinc oxide
Radially grown nanowires

on poly-L-lactide
microfibers

Carcinoembryonic
antigen

� Mild cellular toxicity
� Effective delivery to DCs, stimulating them to express

inflammatory cytokines and activation surface
markers

� Induced tumor antigen-specific cellular immunity
� Significantly inhibited tumor growth
� Reduced immune suppressive TReg cells
� Enhanced the infiltration of T cells into tumor tissues

[152]

Magnesium-
aluminum-

layered double
hydroxide

Nanospheres Tyrosinase-related
protein 2

� Induced strong cytotoxic T-lymphocyte responses
� Significantly inhibited melanoma tumor growth
� The NPs allow loading of multi-antigens and immune

stimulants, being promising for developing
personalized therapeutic cancer vaccines

[153]

Calcium
phosphate

Nanospheres
(functionalized with

lipids)

p-AH1-A5 peptide
antigen

� Reduced primary colon cancer growth rate
� Arrested liver metastasis
� Boosted the adaptive CD8+ T-cell population,

without inciting increased populations of immune
suppressive cell types (e.g., T-regulatory cells and
myeloid derived suppressor cells)

[154]

According to the studies presented in Table 3, it can be concluded that metal-based
nanoformulations hold great promise for vaccine development in various forms, including
nanospheres, nanocapsules, and nanowires. By delivering immunogens in a controlled
manner, metal derivative nanoconstructs were observed to promote the activation of
immune cells and significantly inhibit tumor growth. Moreover, in order to enhance the
compatibility and stability of the particles in the biological media, researchers chose to coat
them with polymer or lipid layers.

Following similar considerations of protecting the freight and enhancing induced
cytotoxicity, metal nanoparticles can be used as carriers of negatively charged nucleotides
(DNA and RNA), particularly due to their high positive surface charge. One specific
phenomenon for which metal-based NPs hold great promise is gene silencing. They can
carry antisense nucleotides that downregulate specific gene expression in tumor cells. As
the strength and duration of the silencing response depends on the amount of siRNA
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delivered to the target site, metal NPs protective capacity can be enhanced by lipid or
polymer coatings. Consequently, the load is not affected by RNase, increasing the half-life
of siRNA and decreasing the required dose [6].

3.3. Magnetic Hyperthermia

A valuable tool in cancer management that uses the unique properties of metallic NPs
is ablative hyperthermia [72]. This general term covers therapeutic approaches in which ap-
plied energy is transformed into heat by certain biocompatible metal-based nanomaterials.
Increasing the temperature of tumor tissues kills cancer cells or sensitizes them to radiation
or chemotherapeutic agents. Moreover, these therapeutic approaches increase blood flow in
tumors, induce cytotoxicity, and disrupt tumor vasculature, further releasing tumor-specific
antigens and danger signals that alert the immune systems. Thus, despite being only locally
applied, ablative therapies may result in systemic immunity, exhibiting abscopal effects.
In addition, ablative hyperthermia can be produced by external stimuli, including local
external magnetic field (magnetic hyperthermia), radiofrequency (radiotherapy), and light
of specific wavelength (photothermal therapy) [1,8,155,156]. Each of these therapies is
further discussed in distinct consecutive sections.

Magnetic hyperthermia is the noninvasive technique in which an alternate magnetic
field (AMF) remotely induces local heating through magnetic energy losses of magnetic
nanoparticles. By ensuring precise uptake of magnetic NPs by tumor cells, the adverse
effects in surrounding normal tissues can be significantly reduced. Generally, iron oxide
NPs can be delivered intratumorally and heated at 41–50 ◦C under an AMF [1,71]. Nonethe-
less, other iron-containing nanoconstructs have been recently developed for application in
cancer magnetic hyperthermia (Table 4, Figure 10).

Table 4. Examples of recently developed metal-based nanosystems for application in cancer magnetic
hyperthermia.

Material Morphology Properties Ref.

Carbothermal treated
iron oxide

Nanospheres with oxygen
vacancies

� Size range: 5.1–225.6 nm
� Saturation magnetization: 5.8–31.3 emu/g
� Specific absorption rate: up to 71.6 W/g

[157]

Magnetite Nanospheres
(coated with dextran)

� Average size: 10 nm
� Saturation magnetization: 40–60 emu/g
� Specific power absorption: 132 W/g

[158]

Zn-substituted
magnetite

Irregular hexagonal nanoparticles
(coated with citric acid and

pluronic F127)

� Mean hydrodynamic size: 436–626 nm
� Specific loss power: up to 539 W/g
� Intrinsic loss power: up to 7.26 nHm2kg−1

[159]

Gd-doped maghemite
Nanoparticles of almost spherical

shape along with some
aggregation

� Size range: 8.73–11.06 nm
� Saturation magnetization: 39.35–52.13 emu/g
� Specific absorption rate: up to 140 W/g

[160]

Silver-iron oxide
composite

Irregular-shaped particles
agglomerated to some extent

� Size range: 2–24 nm
� Specific loss power: up to 43 W/g
� Intrinsic loss power: up to 0.81 nHm2kg−1

[161]

Iron oxide Cuboidal-shaped nanoparticles
(functionalized with CTAB)

� Average edge length: ~80 nm
� Saturation magnetization: 71 emu/g
� Specific loss power: up to ~1036 W/g

[162]

Cobalt ferrite Nanospheres
(coated with chitosan)

� Average size: 13 nm
� Saturation magnetization: ~62 emu/g
� Specific absorption rate: up to 105 W/g

[163]

Copper ferrite Mesoporous spherical structures
� Hydrodynamic size: ~91.2 nm
� Saturation magnetization: ~32.7 emu/g
� Specific absorption rate: up to ~192 ± 7 W/g

[164]
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Table 4. Cont.

Material Morphology Properties Ref.

Copper ferrite Pseudo-cubical shaped particles
� Hydrodynamic size: ~25.6 nm
� Saturation magnetization: ~24.5 emu/g
� Specific absorption rate: up to ~116 ± 6 W/g

[164]

Manganese ferrite Uniform nanospheres with some
agglomeration

� Average size: ~25 nm
� Saturation magnetization: 54.18–59.67 emu/g
� Specific absorption rate: 217.62 W/g
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3.4. Radiotherapy

The inherent optical, electrical, and conductive properties of metal-based nanoparti-
cles have rendered them appealing for use in radiotherapy. Metal NPs can increase the
specificity of radiations to the desired site in such a manner that the maximum dose is
delivered to the tumor tissue, while toxicity and damage are avoided in healthy tissues.
Metal-based NPs were reported to increase intracellular ROS production from the ionizing
radiations, increase oxidative stress levels in tumor cells, increase apoptosis rates, and
reduce clonogenic survival [5,6].

A variety of metals and metal derivatives can be used in radiotherapy, including gold,
silver, platinum, titanium oxide, zinc oxide, and more. Metallic materials with atomic
number between 22 and 83 have been researched in radiation therapy for a broad range of
purposes, such as radiation dose enhancement, hyperthermia induction, controlled drug
delivery, and theranostic applications [166]. In particular, the high atomic number and
mass-energy coefficient of Au NPs and Ag NPs make them suitable candidates for radiosen-
sitization in cancer imaging and therapy, while the unique physicochemical properties and
high X-ray absorption efficiency of platinum-based or hafnium-based NPs recommend
these nanoplatforms as ideal radiosensitizers [6,167].

Despite the physical concepts, the role of biological mechanisms has also started being
investigated in recent years for radiosensitization purposes. Specifically, gold nanoparticles
have been investigated whether they could influence cell response to radiation by five
“R” factors (i.e., repair, redistribution, repopulation, reoxygenation, and intrinsic radiosen-
sitivity) [46]. For instance, it has been reported that the presence of Au NPs produces a
downregulation of thymidylate synthase, which is essential for DNA damage repair in the
radioresistant S-phase cells [168]. Au NPs radiosensitisation ability has also been associated
to a decrease in thioredoxin reductase (one of the main redox reactions regulators) activity,
weakening the detoxification system [169].
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Tumor tissues generally lack a proper amount of oxygen; thus, special strategies
(Figure 11) must be considered for hypoxic conditions, as they contribute to chemoresistance
and metastasis [142,170]. One interesting example is proposed by Chen et al. [171], who
have prepared folic acid-modified enzyme-like hafnium-based manganoporphyrin metal–
organic framework nanoparticles (MnTCPP–Hf–FA MOF NPs). The overall goal of the
nanosystem was to overcome hypoxia-induced radioresistance and prevent a postoperative
recurrence. Hf was chosen particularly due to its high atomic number and ability to absorb
X-ray energy and convert O2 and H2O into ROS, while the MnTCPP ligand was included
owing to its enzyme-like ability to decompose endogenous H2O2 into O2 for enhancing
radiotherapy in hypoxic conditions. The as-designed MOF NPs were reported to effectively
inhibit melanoma growth and prevent recurrence with only one X-ray irradiation after
intravenous injection. Therefore, the nanosystem has great potential for overcoming the
radioresistance challenge of hypoxic tumors.
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3.5. Phototherapy

Light has been long used for its healing potential in the treatment of various diseases.
In the context of cancer treatment, two major therapeutic alternatives exploit light, namely
photothermal therapy (PTT) and photodynamic therapy (PDT) [172]. These phototherapies
attracted attention for various combinations with light-responsive or light-triggered NPs
towards enhancing treatment efficiency and specificity [173].

PTT can be considered a form of ablative hyperthermia in which photothermal agents
(PTAs) are used for the conversion of light into heat, resulting in the selective death of cancer
cells under laser application [17]. More specifically, radiative excitation excites PTA, moving
it to a higher level and resulting in thermal vibration emissions that kill tumor cells [174].
Therefore, tight control over temperature and temperature gradient is mandatory in order
to avoid damaging surrounding normal tissues. Consequently, research started to focus on
designing new nanostructures with optimized thermoplasmonic properties [22]. Particular
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attention has been drawn to Au NPs due to their SPR properties resulting from energy
excitation achieved by irradiating them with specific wavelength light [16].

Nonetheless, recent studies also directed their investigations towards designing and
evaluating PTAs made of other less-explored metal-based nanomaterials. For instance,
Sharker and colleagues [175] reported the preparation of biocompatible tungsten oxide NPs
functionalized with dopamine-conjugated hyaluronic acid. Under in vitro NIR irradiation,
the particles displayed a rapid and significant rise in photothermal heat against MDAMB
and A549 cancer cell lines, whereas in vivo studies proved long-term biocompatibility and
efficient photothermal conversion with time-dependent tumor target accumulation. More
recently, Sun et al. [176] developed tunable liquid metal nanoparticles with sphere-to-rod
morphologies. Out of the tested shapes and compositions, gallium nanorods exhibited
outstanding photothermal conversion efficiency and showed distinct temperature rise
compared to gallium nanospheres and gallium-indicum alloy nanorods. These smart nano-
liquid metals enhanced PTT in model animals, paving the way for further applications in
tumor therapy and imaging. Alternatively, Yang et al. [177] have fabricated heterogeneous
NPs with gallium-indicum alloy cores and metal shells (platinum, gold, silver, or copper).
Particularly promising results have been obtained for GaIn@Pt NPs as they considerably
increased photothermal conversion efficiency and improved thermal stability under NIR
irradiation. These nanoconstructs also displayed a good Fenton-like catalytic effect, result-
ing in the conversion of endogenous tumor H2O2 into ROS. Moreover, NPs were further
optimized by modification with polyethylene glycol, resulting in improved biocompat-
ibility, efficient tumor homing after intravenous injection, and effective NIR-triggered
photothermal-chemodynamic synergistic outcomes in a mouse tumor model.

PDT is another promising cancer treatment that can benefit from advancements in
the field of metal-based NPs. PDT requires the use of light with specific wavelengths
for the activation of photosensitive chemicals (known as photosensitizers PS) towards
generation of ROS and further destruction of cancer cells. However, conventional PS may
face a poor specific uptake in tumor cells, posing a threat on healthy neighboring tissues.
Thus, involving nanotechnology in this type of therapy became fundamental for obtaining
maximum results while avoiding side effects [11,16,178].

In order to improve PS accumulation in the target tissue, these substances can be
carried and delivered to the site by metal-based NPs. Compared to bare PS, such nanoplat-
forms exhibit long cycle time, slow degradation, and targeted and controlled release,
benefiting also form enhanced permeability and retention effect [172]. Au NPs of many
forms (e.g., nanocages, nanorods, nanoshells, and nanoclusters) can enhance PDT perfor-
mance by sensitizing singlet oxygen formation, generating ROS, providing spatiotemporal
control, and diminishing the undesirable effects of clinically used PS [16,179–181]. Titanium
oxide has also attracted interest in PDT for treating malignant tumors, especially due to
its adjustable bandgap, band position, and excellent photostability. Similarly, due to its
electronic structure, zinc oxide has been investigated as a photo- or sonosensitizer for
cancer therapy, displaying cytotoxic effects when exposed to appropriate external stimuli.
Another metal derivative that has been demonstrated to be effective in PDT is manganese
oxide. Manganese oxide-based nanoconstructs can generate O2 in situ by reacting with
H2O2 from TME, while also consuming glutathione. Thus, it represents an interesting
delivery vehicle for PSs, especially in hypoxic tumors [172,181,182].

3.6. Diagnosis

Early detection and thorough monitoring of cancer evolution are essential processes
in controlling and preventing the disease [183]. Thus, despite advancements in various
therapies, special focus is also required in developing more performant imaging and
diagnosis modalities.

As there is only a low content of cancer biomarkers in the early phase of cancer,
ultrasensitive and selective tools are mandatory for their detection. In this context, metal
NPs have emerged as convenient solutions due to their unique optoelectronic properties
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and ease of functionalization. Materials such as gold, silver, and copper represent appealing
candidates for developing analytical scaffolds, especially because their SPR bands are in the
visible region. However, copper use is limited by its ease of oxidation, most of the studies
involving Au and Ag-based nanoconstructs [184].

One innovative example of ultrasensitive surface-enhanced Raman scattering (SERS)
immunoassay was recently developed by Yang et al. [183]. The scientists fabricated a
core-shell nanostructure of Au@Ag that could detect α-fetoprotein (AFP), a biomarker of
liver cancer. The nanoplatform exhibited excellent analytical performance of the SERS
immunoassay in the range from 0.5 to 100 pg/mL with a limit of detection of 0.081 pg/mL
(3σ), demonstrating potential applications in clinical diagnosis.

3.7. Imaging

Interesting possibilities also arise from the use of Au NPs in the dual detection of
prostate cancer via optical imaging (OI) and positron emission tomography (PET). In
this respect, Pretze et al. [23] developed a complex nanosystem consisting of Au NPs
decorated with a NIR dye and NODAGA chelator, which were further radio-labeled with
64Cu. The as-designed metal-based nanoplatform displayed favorable diagnostic properties
concerning detection, biodistribution, and clearance, recommending these constructs for
future therapeutic concepts.

Superparamagnetic iron oxide nanoparticles (SPIONs) represent another extensively
researched metal derivative extensively studied for imaging applications. More specifically,
SPIONs are investigated as contrast agents for visualizing tumors and metastatic cancer in
different tissues, including the liver, spleen, and lymph nodes. SPIONs are attractive for
such applications as they can reduce the relaxation time of the surrounding protons owing
to their superparamagnetic behavior, being particularly suitable candidates for MRI [73].

3.8. Theranostics

In the continuous effort to create better tools for cancer management, multifunctional
nanoparticles, called theranostics, emerged as performant alternatives to conventional
therapeutics and imaging agents. Thus, numerous studies have recently investigated a
myriad of nanomaterials that can encapsulate and co-deliver drugs, imaging moieties and
genes, and even detect tumor cells by binding to specific receptors. In order to emphasize
the developments encountered for metal-based NPs as theranostics, several examples have
been gathered in Table 5 and Figure 12.

Table 5. Examples of recently developed metal-based theranostics.

Material Morphology Properties Observations Ref.

Silver Quasi-spherical
nanoparticles

� Average size: <50 nm
� Hydrodynamic

diameter: ~95 nm
� Zeta potential: −14 mV

� NPs were biosynthesized using the leaf extract of
Zinnia elegans

� No anticancer drug, targeting moiety, or fluorescent
molecule(s) were added to the NPs

� Demonstrated anticancer activity in vitro
� Illustrated NIR-based bioimaging when

intraperitoneally injected in C57BL6/J mice

[128]

Silver Spherical and rod-like
nanoparticles

� Average size of NPs
obtained with ethylene
glycol: 15.58 ± 8.28 nm

� Average size of NPs
obtained with
tetraethylene glycol:
72.44 ± 21.82 nm

� NPs were stabilized with polyvinylpyrrolidone
� NPs entered cancer cells, exhibiting intense green

fluorescence in tested cell lines (MCF-7 and U87-MG)
� NPs efficiently internalized in tumor cells through

enhanced permeability and retention effect, without
causing hemolysis in red blood cells

[185]
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Table 5. Cont.

Material Morphology Properties Observations Ref.

Iron oxide
Nanospheres (coated

with boiling rice
starch extract)

� Average size:
86 ± 3.6 nm

� Zeta potential: −2.1 mV
(at pH 4.5), −4.2 mV (at
pH 7.2), and −7.2 mV
(at pH 9.0)

� Saturation
magnetization:
~70.65 emu/g

� Drug loading: ~78%

� NPs were loaded with doxorubicin
� Exhibited excellent photothermal stability, with a

high photothermal conversion efficiency
� Showed high NIR absorption for photoacoustic

imaging-guided PTT
� Doxorubicin was preferentially released at acidic

environment, specifically targeting cancer cells

[186]

Iron oxide
Nanospheres (coated
with porous calcium

phosphate)

� Size range: 10–20 nm
� Relaxivity:

845.71 mM−1S−1

� Drug loading: 89.6%
after 48 h

� NPs were loaded with curcumin
� Ensured a slow release of the anticancer agent
� Strong shortening in the T2 relaxation time
� Potential negative contrast agent for MRI

[187]

Iron oxide
Nanospheres (coated

with amorphous
silica)

� Average diameter
(bimodal distribution):
70.8 ± 5.8 and
116.8 ± 21.8 nm

� Saturation
magnetization: 9 emu/g

� Drug loading: up to 34%
� Specific absorption rate:

24 W/g

� NPs were functionalized with curcuminoids
� Good colloidal stability, dispersibility and magnetic

properties
� Suitable for magnetic hyperthermia, fluorescence

imaging, and drug delivery

[188]

Gold-iron
oxide

Core (Fe3O4)-shell
(Au) structure

� Size range: 5–10 nm

� NPs induced ROS production
� Efficiently internalized into PC3 cells
� Exhibited cytotoxicity in cancer cells under

X-ray radiations
� Dose-dependent anticancer activity, reaching ~95%

cell deterioration for a concentration of 20 µg/mL
� The specific accumulation of NPs in cancer cells

prevented destruction of healthy cells

[189]

Iridium oxide Sphere-like structure

� Average diameter:
30 nm

� Hydrodynamic
diameter: ~55 nm

� Zeta potential:
−0.407 mV

� NPs were functionalized with split DNAzyme
precursor and doxorubicin

� Fluorescence imaging studies proved the specificity
and feasibility of the NPs

� Drug release was photothermally controlled
� Excellent synergistic effects against cancer cells

under NIR
� In vivo studies demonstrated great inhibition of

tumor growth

[190]

Copper(II)
diethyldithio-

carbamate
(CuET)

Complex loaded with
ultrasmall melanin

dots

� Average size (of M-dots):
~8 nm

� Hydrodynamic
diameter (of M-dots):
87.3 ± 3.1 nm

� Zeta potential (of the
system): 18 mV

� Excellent biosafety and biocompatibility
� CuET significantly enhanced the water solubility of

melanin dots
� Good photoacoustic and chemo/photothermal

therapy properties
� Good tumor accumulation and excellent tumor

proliferation inhibition
� Combined with PTT, the nanosystem produced a

tumor growth inbition of 78.6%

[191]

Copper
sulfide Nanospheres

� Average size:
11.8 ± 2.23 nm

� Longitudinal relaxivity:
up to 12.9 mM−1·s−1

� Zeta potential:
−18.0 ± 3.0 mV

� NPs were surface-functionalized with gadolinium
and modified with folic acid (FA)

� FA enabled NPs targeting, consequently enhancing
cellular uptake and therapy efficacy

� The system integrates MR/IR dual-modal imaging
and PTT/PDT into one nanoplatform

� Great potential in anti-breast cancer therapy

[192]

Bismuth
sulfide-gold Nanospheres

� Average size:
~8.5 ± 3.0 nm

� Hydrodynamic
diameter:
152.30 ± 8.90 nm

� Zeta potential:
−28.50 mV

� NPs were conjugated with methotrexate and
curcumin

� Enhanced contrast of CT images
� Increased free radical generation via the Schottky

barrier
� Exhibited intrinsic radiosensitizing ability

[193]
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Figure 12. (A) Schematic representation of the synthesis of M-Dots-CuET and the process of PAI-
guided chemo/photothermal therapy using M-Dots-CuET. Reproduced with permission from [191],
Elsevier B.V., 2021. (B) Schematic representation of the preparation of dual-modal MR/IR imaging-
guided synergistic PTT/PDT with Cu1.96S-Gd@FA nanoparticles. Reproduced with permission
from [192], Elsevier B.V., 2022. (C) Schematic representation of the synthesis process and tumor
ablation mechanism of Bi2S3@BSA-Au-BSA-MTX-CUR. Reproduced from [193], Elsevier B.V., 2022.

As described in Table 5, a variety of metal-based theranostics with different degrees of
structural complexity and anticancer functionality has been tested. For instance, the sim-
plest nanosystem included in the table (Ag NPs developed by Haque et al. [128]) required
no anticancer drug, targeting moiety, or fluorescent molecule to work as an anticancer
agent while also exhibiting NIR imaging potential. However, the encapsulation of various
drugs (e.g., curcumin, melanin, doxorubicin, and methotrexate), the addition of different
coatings (e.g., starch, calcium phosphate, and amorphous silica), and functionalization with
certain biomolecules (e.g., folic acid, polyvinyl pyrrolidone, and split DNAzyme precursor)
were demonstrated to significantly boost antitumor activity, ensuring specific targeting
ability and controlled drug-release. Furthermore, these complex nanosystems allowed
the simultaneous use of several approaches for fighting tumor growth. Specifically, there
have been reported synergistic combinations integrating two or more of the following
therapeutic and imaging modalities: chemotherapy, radiotherapy, PTT, PDT, magnetic
hyperthermia, fluorescence imaging, MRI, NIR-based imaging, photoacoustic imaging, and
CT imaging. Hence, metal-based theranostics have tremendous potential in developing
highly performant chemotherapeutics, being expected to revolutionize cancer management
in future years.

4. Conclusions

In summary, the development of metal nanoparticles is rapid and multidirectional,
providing alternative treatment strategies and enhancing the outcomes of many cancer
therapies. An increasing number of in vitro and in vivo studies has emerged in the specialty
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literature, showing promising results in the treatment of various cancers when using metal-
based NPs with intrinsic anticancer properties or metallic nanoplatform in combinatorial
approaches with other therapeutic options. In particular, the use of controlled-release
systems triggered by pH, temperature, electromagnetic waves, light, and enzymes brings
critical precision to the delivery of chemotherapeutics, improving accumulation in tumor
tissues and strengthening therapeutic results.

However, most metal-based formulations have not yet been translated to clinical
settings, mainly due to toxicity concerns. The abilities of metallic NPs to generate ROS,
induce oxidative stress, disturb cytoskeleton integrity, and damage DNA, which are the
main reasons for choosing them as cytotoxic agents, also represent obstacles in their
approval. Thus, it is important that future tests also focus on enhancing the biocompatibility
of these platforms in healthy tissues, gathering more evidence on their safety profiles
and long-term outcomes. Another significant concern related to metallic nanoparticles
is their stability in biological media, which must be carefully tailored by using surface
functionalization with various organic molecules, macromolecules, or noble metal coatings.

In conclusion, metal-based nanoconstructs hold great promise for developing more
performant anticancer therapies, and they deserve further special interdisciplinary research
efforts towards overcoming current limitations.
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