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Random effects substances 

We explore here the use of shrinkage to model adjustments for the allelic phenotypes, 
starting with a standard random effect. The random effects models the interaction between 
substances and activity scores. This assumes that variation ensuing from differences in 
CYP2C19 affinity for the substrate, from the importance of the metabolic pathway, and from 
other unmeasured sources contributed to variation in adjustment levels distributed across 
a population of substances, from which the substances in the study are a sample. 

The assumption is that the dose adjustments for the CYP2C19 phenotype group in a given 
substance depends on a coefficient expressing the linear increase of the adjustment for a 
given CYP2C19 activity score. The slope of the activity score effect predicting dose 
adjustments may be determined based on the fit of a linear model for the phenotype groups 
that have been measured. Based on this fit, we are able to extrapolate dose adjustments also 
for the phenotype groups where we had no measurements. 

We model the interactions between substances and activity, without including a mean effect 
of activity scores. As a result, shrinkage takes place in the direction of null effects. 

In all these models, data about the EMs have been removed because thy do not provide 
independent observations (they are used in the computation of the adjustment for the other 
groups). We ignored the size of the EMs when computing the weighting of the residuals, as 
there are usually many observations in this group. We omitted the intercept from the model 
to constrain the fitted adjustment to zero for the EM group. 

We do not model studies as a random effect as we do not have an intercept. We should 
model the slope in this random effect, but there are many substances where only one study 
was carried out. For this reason, the random effect of studies in slopes is not identifiable 
relative to the random effect of substances. 

In summary, to model adjustment as a function of phenotype, we followed the following 
strategy: 

• we omitted the constant term to constrain the coefficient for EMs to zeros, reflecting 
the fact that all modeled adjustments were computed by comparing 
pharmacokinetic data to those of the EM group; 

• we added random effects for the interaction activity scores x substances, but no 
random effect for the intercept; 

• we coded the activity scores as -2 (PM), -1 (IM), 0 (EM), 0.8 (RM), and 1.6 (UM): 



𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑖 = 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑖: 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑗[𝑖] + 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑖 + 𝜖𝑖 , 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑖: 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑗[𝑖] ∼ 𝑁(0, 𝜏2) 

with residuals modelled as in the activity scores models as a mixture of two components: 

𝜖𝑖 ∼ 𝑁(0, 𝜎𝑤
2/𝑛𝑖 + 𝜎𝑏

2) 

where 𝜖𝑖 is the residual error, 𝑛𝑖 is the known number of observations in the datapoint in 
the 𝑖𝑡ℎ sample, and 𝜎𝑤

2  and 𝜎𝑏
2 are the within-datapoint and between-datapoint variances to 

be estimated from the data, and 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑀, where 𝑖 indexes the 𝑁 datapoints 
and 𝑗 the 𝑀 studies. The confounder is given by the datapoints on the RM group where 
homozygous *17 carriers where pooled within this group (this model is in the file 
rnd_noipct_wght.stan). 

#parameters for dispersion model of datapoints in studies 
adddisppars <- function(lst) { 
  lst$logsigmaloc <- 4 
  lst$logsigmascale <- 0.25 
  lst 
} 

Because we do not assume here that all substances in the literature were substrates of 
CYP2C19, we include in the sample all compounds on which data were published, for 
example including also compounds such as mianserine where there is clearly no 
metabolism by CYP2C19. 

In all models below, we checked that the stan diagnostics reported no problem in sampling 
from the posterior. We note when this is not the case. 

preds <- cypsel %>%  
  pivot_wider(names_from = Substance, values_from = Activity,  
              values_fill = 0) %>% 
  select(Ami:Mians) %>% as.matrix() 
covs <- select(cypsel, RM_1717) 
mednames <- colnames(cypsel %>%  
  pivot_wider(names_from = Substance, values_from = Activity,  
              values_fill = 0) %>% 
  select(Ami:Mians)); 
 
meds_dat <- list( 
  N = nrow(preds), 
  K = ncol(preds), 
  M = ncol(preds) + ncol(covs), 
  nobs = cypsel$Size, 
   
  y = cypsel$Adjustment - 100, 
  preds = preds, 
  covs = covs 
) 
meds_dat <- adddisppars(meds_dat) 



 
rndfit <- stan("rnd_noipct_wght.stan", data = meds_dat, seed = 142) 
plot_mikado(rndfit) 

 

plot_intervals(rndfit, "IM") 

 



This fit shows some shrinkage towards zero effects, but considerable spread of fitted effects 
of activity scores for substances. This model picked up several substances as not being 
substrates of CYP2C19 in that we do not sufficient evidence to exclude a null effect (based 
on 95% credibility intervals, these compounds include: fluoxetine, fluvoxamine, 
maprotiline, mianserine, zotepine). 

Note that we would have different predicted adjustments if we had modelled the data with 
a mean activity scores effect, i.e. 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑖 = 𝑚𝑒𝑎𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 + 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑖: 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑗[𝑖] + 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑖 + 𝜖𝑖 , 

In this case, the coefficients of 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑖: 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑗[𝑖] encode the difference of the 

strength of CYP2C19 metabolism of 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑗[𝑖] from 𝑚𝑒𝑎𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒. When there is 

little information on a substance, shrinkage of these difference estimates to zero leads to 
predicting average activity score effects, not zero effects as in the model adopted in the 
present study (these average effects are shown in Supplementary File S2 as the fits of 
activity scores). 

Regularized horseshoe 

In the regularized horsehoe model, the distribution of the random effect is modelled as a 
sophisticated ridge (see main paper for details): 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑖: 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑗[𝑖] ∼ 𝐻𝑆(0, 𝜏2𝜉𝑗[𝑖]
2 ) 

The rest of the model is the same as in the random effect model above. We set the prior for 
𝜏2 to have approximately 50% of non-zero effects, following the derivation of Piironen & 
Vehtari (2017) (the model is in the rhs_noicpt_wght.stan file). 

#Horseshoe settings. We use the resulty by Vehtari et al. to set 
#the prior for nonnull coefficients at a 50% rate. 
p0 <- 9 
p <- 18 
 
addhspars <- function(lst, data) { 
  #to set a more pessimistic prior, set 
  #global_scale <- 0.001 
  lst$scale_global <- p0/(p-p0) / sqrt(nrow(data)) 
  lst$nu_global  <- 1  #Cauchy for tau 
   
  lst$nu_local   <- 1  #Cauchy for lambdas 
  lst$slab_scale <- 2.5 
  lst$slab_df    <- 8 
  lst 
} 

#named list for stan. Confounding covariates at the end. 
preds <- cypsel %>%  
  pivot_wider(names_from = Substance, values_from = Activity,  
              values_fill = 0) %>% 
  mutate(Activity = get_activity(Phenotype)) %>% 



  dplyr::select(Ami:Mians, RM_1717) %>% as.matrix() 
mednames <- colnames(cypsel %>%  
  pivot_wider(names_from = Substance, values_from = Activity,  
              values_fill = 0) %>% 
  dplyr::select(Ami:Mians)) 
 
meds_dat <- list( 
  N = nrow(preds), 
  K = 18, 
  M = ncol(preds), 
  nobs = cypsel$Size, 
   
  y = cypsel$Adjustment - 100, 
  preds = preds, 
  beta_scale = 8 
) 
meds_dat <- addhspars(meds_dat, preds) 
meds_dat <- adddisppars(meds_dat) 
 
rhsfit <- stan("rhs_noicpt_wght.stan", data = meds_dat, seed = 142) 
plot_mikado(rhsfit) 

 

plot_intervals(rhsfit, "IM") 



 

According to this plot, for several substances there is evidence of a CYP2C19 metabolic 
pathway, but the estimation the effect of the polymorphism is based on so little data that an 
adjusted dose cannot be formulated precisely. There is good evidence for an adjustment of 
80% of the dose label in citalopram, sertraline, venlafaxine, and of 70% in escitalopram. 

Below, we display the estimated fit for each substance (in blue), together with the data from 
the studies and the resulting boxplots; for comparison, we display adjustments computed 
with the traditional method (separate averages in each substance-phenotype group) in 
orange. One can see that substances from studies with small samples have coefficients that 
are much smaller than in the study data. In comparison to the adjustments with the 
traditional method, they are much more conservative except when there are many data 
from which the adjustment may be estimated. 



 

As in the previous model, stan diagnostic were fine here. Because this is the main model of 
the study, we show samples for the posterior for key variables. 

df <- as.data.frame(rhsfit) 
hist(log(df$tau)) 

 



hist(log(df$c)) 

 

hist(df$sigma_within) 

 

hist(df$sigma_betw) 



 

mcmc_intervals(rhsfit, regex_pars = "^sigma") 

 

mcmc_intervals(rhsfit, regex_pars = "lambda\\[", transformations = log) 



 

mcmc_intervals(rhsfit, regex_pars = "lambda_tilde", transformations = log) 

 

rm(df) 



The distribution of the fitted 𝜆𝑗[𝑖] suggests that the regularized horseshoe is penalizing all 

parameters equally. Note also the sampling of sigma2 suggests the existence of variability 
between studies that is not quenched by increasing sample size, in effect setting a bound to 
precision attainable to large samples. The effect of modelling residuals as the sum of two 
components, within- and between-datapoints variance, is to moderate the contribution of 
very large studies in the estimation of credibility intervals, which are wider than they would 
be when modelling residuals by weighting directly by sample size. 

The residuals are fairly symmetrical around zero, indicating no need to take logs of 
adjustments: 

plot_mikado_res(rhsfit) 

 

Horseshoe model, without regularization 

This model replaces the horsehoe prior for the random effect activity scores x substances 
with a ridge without regularization (see text for details; the model is in the 
hs_noicpt_wght.stan file). 

meds_dat$scale_local <- 1   #Cauchy+(0, 1) 
hsfit <- stan("hs_noicpt_wght.stan", data = meds_dat, seed = 142,  
              control = list(adapt_delta=0.99, stepsize=0.001)) 

## Warning: There were 31 divergent transitions after warmup. See 
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup 
## to find out why this is a problem and how to eliminate them. 



## Warning: There were 12 transitions after warmup that exceeded the maximum 
treedepth. Increase max_treedepth above 10. See 
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded 

## Warning: Examine the pairs() plot to diagnose sampling problems 

plot_mikado(hsfit) 

## `summarise()` has grouped output by 'Substance'. You can override using 
the 
## `.groups` argument. 

 

plot_intervals(hsfit, "IM") 



 

The outcome of this model is similar to the previous model, but there were divergent 
transitions when sampling from the posterior that we could not eliminate. However, since 
the results were similar with thouse of the regularized model, we considered the fit as 
acceptable. 

df <- as.data.frame(hsfit) 
hist(log(df$tau)) 



 

hist(df$sigma_within) 

 

hist(df$sigma_betw) 



 

mcmc_intervals(hsfit, regex_pars = "^sigma") 

 

mcmc_intervals(hsfit, regex_pars = "lambda\\[", transformations = log) 



 

rm(df) 

“Fixed” effects 

The model for the fixed effects replaces the horseshoe prior with separate flat priors for the 
interactions of activity scores with substances. The model for weighting for sample size is 
the same as in the horseshoe model (the model is in the fixed_noipct_wght.stan file) 

meds_dat$preds <- cypsel %>%  
  pivot_wider(names_from = Substance, values_from = Activity,  
              values_fill = 0) %>% 
  select(Ami:Mians, RM_1717) %>% as.matrix() 
meds_dat$M <- ncol(meds_dat$preds) 
 
fixfit <- stan("fixed_noipct_wght.stan", data = meds_dat, seed = 142) 
plot_mikado(fixfit) 

## `summarise()` has grouped output by 'Substance'. You can override using 
the 
## `.groups` argument. 



 

plot_intervals(fixfit, "IM") #+ scale_x_continuous(limits = c(40, 140)) 

 

This model essentially fits the groups separately (no shrinkage), so it follows the data 
closely. The plot of the estimated fit for each substance (in blue), together with the data 



from the studies and the resulting boxplots (below) shows the adjustments following the 
data irrespective of data size. The adjustments computed with the traditional method 
(separate averages in each substance-phenotype group) in orange follow the original data 
even more closely. This is due to the fact that here the adjustments are computed from the 
estimated strength of the metabolic pathway, so even the fixed effects approach leads to 
more consistent estimates from pooling all data about one substance. 

 

Plotting models together 

We plot adjustments for all these models together to compare their performance. 

plot_multiple_intervals(c(fixfit, rndfit, hsfit, rhsfit),  
                        c("fixed", "gauss", "horseshoe", "reghorsesh"), "IM") 



 

One can see here that the Gaussian model leads to intermediate shrinkage values between 
the fixed effects model and the horseshoe. The regularized and the non-regularized 
horseshoe give similar results, but the former is much easier to fit and we therefore prefer 
it. 

Sensitivity analysis 

We conducted a sensitivity analysis for the model we considered the best to model dose 
adjustment, i.e. the regularized horseshoe (with pooled *17 homzygotes in the RM group as 
confounder). 

The most important parameter is the prior for 𝜏. Based on a prior setting 50% effects away 
from zero, we set in the main analysis the prior for 𝜏 to 𝜏 ∼ 𝐶+(0,0.1). We now conduct a 
sensitivity analysis where we set this prior to a much more prudential value, 𝜏 ∼
𝐶+(0,0.001). 

# change only global scale for tau 
meds_dat$scale_global <- 0.001 
rhsfit_001 <- stan("rhs_noicpt_wght.stan", data = meds_dat, seed = 142) 
plot_mikado(rhsfit_001) 



 

plot_intervals(rhsfit_001, "IM") 

 

One can see that the outcome is very similar to the original model, showing that the data 
identify 𝜏: 



df <- as.data.frame(rhsfit_001) 
hist(log(df$tau)) 

 

As a result, estimates of dose adjustments are not affected by this prior setting: 



 

In blue, predicted adjustments of the original model (prior 50% true effects); in yellow, 
conservative prior 

In Supplementary file S2, we showed that study properties (pharmacokinetic method, 
single/multiple dose studies) were associated with each other, mainly depending on when 
the study was carried out. Because more recent studies tended to investigate substances 
with known effects, effects of these properties are confounded by this knowledge and are 
likely not appropriate confounders. However, we may estimate differences in variability, 
which may be lower in older models after adjusting for pooled genotypes. For a sensitivity 
analysis, we only consider single/multiple dose as a proxy for these properties, and model 
residual errors as follows, replacing variance within 𝜎𝑤

2  with 𝜎𝑘
2, 

𝜖𝑖 ∼ 𝑁(0, 𝜎𝑘
2/𝑛𝑖 + 𝜎𝑏

2), 𝑘 = 1,2 

where 𝑘 indexes single and multiple dose, and 𝑖 indexes the datapoints as before, 𝑖 =
1,2, … ,𝑁. We keep the adjustment for RM pooling in the model (in file 
rhs_noicpt_wghtex.stan). 

#named list for stan. Confounding covariates at the end. 
preds <- cypsel %>%  
  pivot_wider(names_from = Substance, values_from = Activity,  
              values_fill = 0) %>% 
  mutate(Activity = get_activity(Phenotype)) %>% 
  dplyr::select(Ami:Mians, RM_1717) %>% as.matrix() 
mednames <- colnames(cypsel %>%  
                       pivot_wider(names_from = Substance, values_from = 
Activity,  
                                   values_fill = 0) %>% 



                       dplyr::select(Ami:Mians)) 
 
meds_dat <- list( 
  N = nrow(preds), 
  K = 18, 
  M = ncol(preds), 
  nobs = cypsel$Size, 
  #MD modelled at index 1, SD at index 2 
  sigmaidx = as.integer(cypsel$Dosage == "SD") + 1, 
   
  y = cypsel$Adjustment - 100, 
  preds = preds, 
  beta_scale = 8 
) 
meds_dat <- addhspars(meds_dat, preds) 
meds_dat <- adddisppars(meds_dat) 
 
rhsfitex <- stan("rhs_noicpt_wghtex.stan", data = meds_dat, seed = 142) 
print(rhsfitex, par = c("sigma_within", "sigma_betw")) 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##                  mean se_mean   sd  2.5%   25%   50%   75% 97.5% n_eff 
Rhat 
## sigma_within[1] 47.73    0.14 8.38 31.98 41.85 47.49 53.31 64.70  3517    
1 
## sigma_within[2] 37.62    0.13 7.73 24.95 32.03 36.85 42.38 54.57  3359    
1 
## sigma_betw      16.52    0.04 2.27 12.35 14.93 16.43 17.98 21.37  2685    
1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 06:06:35 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

As expected, the variance of studies with single dose (sigma_within[2]) is lower than in 
multiple dose studies (sigma_within[1]). The plot for the estimated variance for different 
sample sizes is similar to the one of the model in Supplementary File S2: 

disp <- as.data.frame(rhsfitex) %>% select(matches("^disp")) %>% 
map_dbl(median) 
plot(disp + runif(nrow(cypsel)) ~ log(cypsel$Size), pch = "o", col = 
ifelse(cypsel$Dosage == "SD", "blue", "red"), xlab = "log sample size", ylab 
= "dispersion") 



 

In blue, estimated within datapoint standard deviation of single dose studies, in red, the 
multiple dose studies, plotted as a function of datapoint sample size. Jitter was added to 
identify samples. 

However, when we compare estimated dose adjustments, there are hardly differences: 



 

In blue, predicted adjustments of the original model; in yellow, heteroscedastic model 
(single/multiple dose) 

This may be due to the fact that single studies are fewer and conducted with few subjects; 
the large variance-within of multiple dose studies is compensated by the large number of 
participants. 

We conclude the model to be appropriate without modelling heteroscedasticity. 


