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Abstract: Pharmacogenetic variability in drug metabolism leads to patient vulnerability to side effects
and to therapeutic failure. Our purpose was to introduce a systematic statistical methodology to
estimate quantitative dose adjustments based on pharmacokinetic differences in pharmacogenetic
subgroups, addressing the concerns of sparse data, incomplete information on phenotypic groups,
and heterogeneity of study design. Data on psychotropic drugs metabolized by the cytochrome
P450 enzyme CYP2C19 were used as a case study. CYP2C19 activity scores were estimated, while
statistically assessing the influence of methodological differences between studies, and used to
estimate dose adjustments in genotypic groups. Modeling effects of activity scores in each substance as
a population led to prudential predictions of adjustments when few data were available (‘shrinkage’).
The best results were obtained with the regularized horseshoe, an innovative Bayesian approach
to estimate coefficients viewed as a sample from two populations. This approach was compared to
modeling the population of substance as normally distributed, to a more traditional “fixed effects”
approach, and to dose adjustments based on weighted means, as in current practice. Modeling
strategies were able to assess the influence of study parameters and deliver adjustment levels when
necessary, extrapolated to all phenotype groups, as well as their level of uncertainty. In addition,
the horseshoe reacted sensitively to small study sizes, and provided conservative estimates of
required adjustments.

Keywords: pharmacogenetics; dose adjustment; cytochrome P450 enzymes; drug metabolism;
CYP2C19; horseshoe; random effects; shrinkage

1. Introduction

Pharmacogenetic variability in drug metabolism represents an important type of pa-
tient vulnerability brought about by differences in individual drug clearance, with the
consequence of an increased risk of side effects and therapeutic failure [1]. The influence
of pharmacogenetic polymorphism in drug metabolism can be compensated for by adapt-
ing the dose to receive equalized concentration-time curves in individuals with different
pharmacogenetic subtypes. Pharmacogenetic patient-stratification and -dosing has just
recently been applied in clinical drug development [2]. Pharmacogenetic clinical guidelines
summarizing the pharmacogenetic literature and evidence are increasingly used in clinical
practice, but for most drugs on the market these guidelines (such as those issued by the
Clinical Pharmacology Implementation Consortium, CPIC), give qualitative recommen-
dations rather than proposing quantitative dose adjustments [3,4]. However, in clinical
practice, when dealing with a patient with a certain pharmacogenetic profile, quantitative
dose-adjustments may be the most practical tool to avoid vulnerability and personalize
treatment while allowing the administration of the drug or continued therapy.

Developed to address this need, pharmacogenetic dose recommendations provide
quantitative estimates of dose adjustments based on mean differences in oral clearance
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between genotype groups extracted from evidence from clinical studies [5–7]. However,
pharmacogenetic dose recommendations have been suffering from methodological short-
comings deriving from the small sample-sizes of individual studies. The uncertainty and
possible overestimation of effects induced by small sample-sizes have been exacerbated by
computing the dose adjustment in each phenotype group and substance separately. The
purpose of the present work is to evaluate a statistical approach to estimate dose adjust-
ments from multiple studies on different substrates, to quantify and counter uncertainty
introduced by small sample-sizes and study heterogeneity.

The adoption of a statistical model may have several advantages. First, a statistical
model allows the efficient pooling of information from studies. In current pharmacogenetic
dose adjustments, such as those developed by Kirchheiner et al. (2004), these adjustments
are based on weighted means computed on each sampling point (a combination of pheno-
type and substance) [6]. In that work, the weights take effect across studies within each
sampling point, but have no influence between sampling points. Instead of estimating the
mean effects of pharmacogenetics in these phenotypes–substance combinations, we will
estimate the extent to which a substrate is affected by a pharmacogenetic polymorphism
across all phenotypes (poor, intermediate, extensive, rapid and ultrarapid metabolizer-
phenotype), and derive the adjustment score from the combination of this estimate and the
metabolic activity of the phenotype (“activity score”). For example, if one allele (activity
score: −1) leads to a 20% decrease in standard dose, a homozygous genotype with two
equal alleles (activity score: −2) should lead to a 40% decrease, assuming linearity of the
effects of activity scores on adjustments. The verification of the linear effect of activity
scores on dose adjustments needs to be preliminarily carried out from the data.

Second, by modeling all data together, it becomes possible to estimate the effect
of different characteristics of the original studies and adjust for possible effects of their
methodological diversity. Pharmacokinetic studies differ in several respects, such as the
dosage used, the parameter on which the pharmacokinetic adjustment is computed, and
the sample type (patients or healthy volunteers). It is of interest to be able to estimate the
effect of these differences in the execution of the study, hopefully showing them to be of
limited magnitude.

Third, a statistical model may provide an assessment of the uncertainty of the esti-
mated amount of dose adjustments. This provides one guarantee against issuing dose
adjustment recommendations without sufficient empirical data in their support. A fur-
ther guarantee may be given by using statistical estimation techniques that set coefficient
estimates to prudential values when these coefficient estimates are large and were ob-
tained from small samples. Note that these techniques still allow for making efficient use
of sampling points from small samples and including them in pooled estimates, while
avoiding putting too much faith in their individual coefficient estimates. In contrast, when
large amounts of information exist for a specific substance, the estimate will be made with
more confidence.

We will also assume this dataset to be composed of many studies where the drug
is a substrate of CYP2C19, and a smaller number of studies of an exploratory character,
where there is no evidence for metabolism by CYP2C19. This requires allowing a strong
degree of heterogeneity in the effect sizes of CYP2C19 polymorphism on drug metabolism
in the dataset. Unlike a meta-analysis, which assumes that one and the same effect was
investigated with variations in methods and sample recruitment, we may not assume here
that all studies investigated the same effect.

To achieve these multiple aims, we explored the use of a Bayesian approach (the
regularized horseshoe, [8]) to provide conservative estimates of dose adjustments and
assess their merit based on sufficient evidence for individual drugs. This dataset will be
used here more as a test case to develop methodology than as a dataset in which sufficient
information exists to provide reliable guidance for clinical decision making.

The regularized horseshoe was chosen here because of the multiple requirements
for our model. First, the regularized horseshoe may provide prudential estimates of
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adjustments, through its sophisticated implementation of the shrinkage of coefficient esti-
mates. ’Shrinkage’ is a technical statistical term that refers to biasing individual coefficient-
estimates towards a conservative value when the evidence for these estimates is low. This
may be particularly advantageous for drugs where few data exist. Second, it may allow for
greater heterogeneity than other approaches.

To evaluate the performance of shrinkage and the heterogeneity of the regularized
horseshoe, we will compare it with the outcome of other more traditional modeling strate-
gies. In the first, we will obtain shrinkage by modeling the coefficients as normally dis-
tributed. This modeling strategy is related to standard meta-analytic approaches, which
model heterogeneity between studies as a normally distributed random-effect. In compar-
ison, the horseshoe may be viewed as replacing this normal distribution with a Cauchy
(which may be viewed as a distribution with unknown variance). In the second, the effects
of phenotype and individual drugs on the pharmacokinetic parameters will be modelled
as the ‘fixed effect’ of the interaction between phenotype and substance. In this modeling
strategy, data collected for one substance have little influence on estimates of another, and
the relative estimates are essentially separate. Therefore, this modeling strategy allows
for the largest degree of heterogeneity between estimates, but may suffer from giving too
much faith to large estimates from small samples.

2. Materials and Methods
2.1. Literature Search

Study search and inclusion: we performed a search on all the psychotropic drugs that
have been included in prior meta-analyses and reviews [3–8] on CYP2C19 pharmacogenetic
effects on pharmacokinetic parameters. The research terms “drug” and “CYP2C19” were
used to select the relevant studies from the literature in PubMed. Subsequently, the studies
were selected that provided data in humans on dose-related pharmacokinetic parameters
(such as clearance, area under the concentration-time curve, AUC, drug concentrations
at steady-state normalized for dose, Css) separately for the CYP2C19 metabolizer pheno-
types. In the older literature, mephenytoin phenotyping was used to discriminate between
poor metabolizer and normal metabolizer. Since the poor metabolizer phenotype (PM) as
characterized with mephenytoin corresponds to the homozygous CYP2C19*2 or *3 allelic
phenotypes, these were both considered as PM. Intermediate metabolizers (IM) were de-
fined as carriers of one high-activity allele (CYP2C19*1) and one inactive allele (CYP2C19*2
or *3). The rapid metabolizer phenotype (RM) was defined as carrier of one CYP2C19*17
allele in combination with CYP2C19*1. The ultrarapid phenotype (UM) was defined by the
CYP2C19*17/*17 genotype. Single-case reports were not included into the database.

2.2. Data Selection

Dose adjustments may be estimated from percent differences in oral clearance, as
reported in the pharmacokinetic studies for different metabolizer groups defined by CYP
genotype. By assuming that a given population is characterized by certain distributions
of pharmacogenetic metabolizer types, estimation of percent dose-adjustment can be
computed from a standard dosage of 100 percent in the overall population, bearing in mind
that this latter consists of a mixture of poor metabolizers, intermediate, rapid and ultrarapid
metabolizers, with known mixing rates [6]. Differences in pharmacokinetic parameters
proportional to dosage may be calculated as percent differences in oral clearance. These
may be subsequently transformed into dose adjustments in as far as the clearance is directly
proportional to the effective dose (in conditions of linear kinetics).

The approach used so far to calculate dose adjustments consists of computing these
estimates separately for each study and metabolizer group, and estimating for each metab-
olizer group an average percent dose-adjustment as the mean of the adjustments computed
from the study data.

Here, we entered these dose adjustments into a database (see Table 1 and Supplemental
Data File S1) for subsequent modeling (see Section 2.2.1, below). In addition, we noted into
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the database the properties of studies that may have conceivably affected these estimates,
such as pharmacokinetic parameters (AUC, CL, Css), single or multiple dose, healthy
participants or patients, and the pooling of genotypes that would fall into another CYP2C19
phenotype group (see parameters listed in Table 1).

Table 1. Studies included in the analysis and their characteristics.

Drug Parameter Study Subjects/Dosing Dose Identification of Metabolizer Groups Reference

Amitriptyline Css Patients, MD 25–225 mg CYP2C19*2, CYP2C19*3 [9]
Amitriptyline Css Patients, MD 150 mg CYP2C19*2 [10]
Amitriptyline AUC Healthy, SD 50 mg CYP2C19*2 [11]
Amitriptyline Css Patients, MD 150 mg Phenotyping [12]
Amitriptyline Css Patients, MD 100–150 mg CYP2C19*2, CYP2C19*17 [13]
Amitriptyline AUC, MR Patients, MD 25 mg CYP2C19*2, CYP2C19*3 [14]
Amitriptyline AUC Healthy, SD 25 mg CYP2C19*2, CYP2C19*17 [15]
Clomipramine Css Patients, MD 10–250 mg CYP2C19*2, CYP2C19*3 [16]
Clomipramine 1/CL Healthy, SD 100 mg Phenotyping [17]
Clomipramine Css Patients, MD 25–300 mg CYP2C19*2, CYP2C19*17 [13]

Doxepine 1/CL Healthy, SD 75 mg CYP2C19*2 [18]
Imipramine 1/CL Healthy, SD 100 mg Phenotyping [19]
Imipramine Css Patients, MD 70 mg Phenotyping [20]
Imipramine Css Patients, MD 50 mg Phenotyping [21]
Imipramine Css Patients, MD dose adjusted CYP2C19*2 [22]

Trimipramine Css Patients, MD 350 mg Phenotyping [23]
Trimipramine 1/CL Healthy, SD 75 mg CYP2C19*2 [24]

Citalopram AUC Healthy, MD 40 mg Phenotyping [25]
Citalopram Css Patients, MD 10–60 mg CYP2C19*2, CYP2C19*17 [13]
Citalopram CL Healthy, SD 20 mg CYP2C19*2 [26]
Citalopram Css Patients, MD 35 ± 20/34 ± 17 CYP2C19*2 [27]

Escitalopram Css Patients, MD 4.8–7.4 mg CYP2C19*2, CYP2C19*17 [28]
Escitalopram CL Healthy, MD 10 mg Phenotyping [29]
Escitalopram AUC Healthy, SD 5 mg CYP2C19*2, CYP2C19*17 [30]
Escitalopram Css Patients, MD 16 ± 5/21 ± 13 CYP2C19*2 [31]
Escitalopram Css Patients, MD 20 ± 9/22 ± 10 CYP2C19*2 [27]
Escitalopram Css, MR Patients, MD 5–40 mg CYP2C19*2, CYP2C19*17 [32]
Escitalopram Css Patients, MD 10–20 CYP2C19*2, CYP2C19*17 [33]
Escitalopram Css Patients, MD 10 mg CYP2C19*2, CYP2C19*17 [34]
Escitalopram Css Patients, MD 5–20 mg CYP2C19*2, *3, CYP2C19*17 [35]
Escitalopram Css Patients, MD 12.6–18.1 mg CYP2C19*2, CYP2C19*17 [36]
Escitalopram MR Patients, MD 10–80 mg CYP2C19*2, CYP2C19*17 [37]

Fluoxetine AUC, CL Healthy, SD 40 mg CYP2C19*2, CYP2C19*17 [38]
Fluoxetine Css Patients, MD 10–60 mg CYP2C19*2, CYP2C19*17 [39]

Fluvoxamine AUC Healthy, SD 100 mg Phenotyping [40]
Sertraline AUC, CL Healthy, SD 100 mg Phenotyping [41]
Sertraline CL Patients, MD dose–adjusted CYP2C19*2, CYP2C19*17 [42]
Sertraline Css Patients, MD dose–adjusted CYP2C19*2, CYP2C19*17 [43]
Sertraline AUC Healthy, SD CYP2C19*2, CYP2C19*17 [44]

Maprotiline Css Patients, MD 150 mg Phenotyping [45]
Mianserin AUC Healthy, SD 30 mg Phenotyping [46]

Moclobemide 1/Cl Healthy, MD 300 mg; 600 mg Phenotyping [47]
Venlafaxine Css Patients, MD <225 mg; >225 mg CYP2C19*2, CYP2C19*17 [48]
Venlafaxine Css Patients, MD dose–corrected TDM CYP2C19*2, CYP2C19*17 [49]
Venlafaxine Css Patients, MD 150 mg CYP2C19*2, CYP2C19*17 [50]
Clozapine AUC Healthy, SD 10 mg Phenotyping [51]
Clozapine Css Patients, MD 250 (25–800) mg CYP2C19*2, CYP2C19*17 [52]
Clozapine Css Patients, MD 433 mg CYP2C19*2, CYP2C19*17 [53]
Zotepine 1/CL Healthy, SD 25 mg Phenotyping [54]
Etizolam AUC Healthy, SD 1 mg CYP2C19*2, *3 [55]

Diazepam CL Healthy, SD 10 mg Phenotyping [56]

2.2.1. Statistical Analysis

We considered in this study four models for the heterogeneity of the coefficients:
“fixed” effects, modeling the coefficients as a Gaussian distribution, and two versions of the
continuous-shrinkage horseshoe: non-regularized and regularized. The basic model takes
the form

y = Xβ+ Rθ+ ε (1)
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where y is here the vector of the dose adjustments reported in the literature (each sampling
point being the adjustment of a phenotype–substance combination given by a study), and
X is a set of j = 1, 2, . . . D predictors, on whose coefficients β the prior exerts variable
selection and shrinkage. These predictors were here the CYP2C19-activity scores (centered
on the EM phenotype) for each substance, modeling a linear effect of activity scores on
adjustments, one per substance. These coefficients are the focus of the analysis, since they
determine the recommended dose adjustments. R is a set of confounding predictors, whose
coefficients, θ, are estimated outside the Gaussian or the horseshoe prior, i.e., without
shrinkage, here set to properties of studies whose effects we wanted to adjust for. The error
term, ε, modelled residual variability between reported adjustments in the phenotype–
substance combinations of the individual studies. Here, we refer to these combinations in
each study as “sampling points”, since they represent individual observations in the model.

Several properties of this model deserve comment. First, the model had no constant
term. The adjustments computed from the literature are computed by comparing phar-
macokinetic data between an allelic group and the EM phenotype. The adjustment for
the EM phenotype in this computation is zero, as it would be given by the comparison of
the data of the EM phenotype with itself. Depending on the context, we refer below to
this baseline value as “zero adjustment” or “100% adjusted dose”. Omitting the constant
term constrains the data to zero adjustment in the EM group. Second, data for the EM
phenotype are not independent data, as they are used in the literature to compute the
adjustments for the other phenotypes. Hence, these data were not used in the model. Third,
no predictor coded the main effect of activity scores, so that the coefficients of the activity
scores × substances coded in the matrix of predictors X represented the effect of activity
scores in each substance, instead of the deviations from a main-activity-score effect. As a
result, these coefficients were allowed to shrink to zero. In contrast, a model with the main
effect of activity scores shrinks these coefficients toward this main effect. When including a
main effect, when there are few data in support of the role of CYP2C19 in the metabolism
of a given substance, the model predicts an effect approximately equal to this main effect.
This was not desirable, since, as noted, we wished to avoid the assumption that all studies
in the literature reported data on substances that are metabolized by CYP2C19. Instead,
because the extent of shrinkage is determined from the data, we wanted the models to
carry out inference about which substances carried CYP2C19 effects larger than zero by
seeking evidence relative to no effects. Finally, the model contained no random effect for
studies because study variation may be captured by the estimate of the variance between
the individual sampling points given within the studies. Furthermore, the effect of activity
scores in several substances was estimated by one study only, so that variation at the higher
level is modelled by the Gaussian or horseshoe prior itself.

In the “fixed effects” model, the coefficients β and θ were given uninformative priors.
All other models kept the same uninformative priors for the confounder coefficients θ,
but differed in the prior for β. In the standard random-effect model, the prior for β was
given by

β j

∣∣∣τ ∼ N
(

0, τ2
)

, τ ∼ C+(0, 1) (2)

i.e., a Gaussian distribution with variance τ2, which was given in turn a weakly informative
half-Cauchy hyperprior. Alternative distributions, such as a Student’s t with 3 or 4 degrees
of freedom, were explored in the present work, but since they gave results that differed
very little from the Gaussian prior, they were not pursued further.

The prior for β in the horseshoe [57] and its regularized version used here [8] is the
means through which these models implement Bayesian variable selection and shrink
coefficient estimates toward zero:

β j|τ, λj ∼ N(0, τ2ξ2
j )

τ ∼ C+(0, 0.1), ξ j ∼ C+(0, 1)
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The variance of the Gaussian prior for the coefficients, β, is given be the product of
two terms. The first term τ is a global shrinkage parameter. With small estimates of this
parameter, all coefficients are shrunk towards zero, because of its multiplicative effects in
the above expression. The second term, ξj, takes a different value for each coefficient βj
and allows the set of these coefficients to be heterogeneous. These parameters are given
half-Cauchy hyperpriors through λj to allow for outliers modeling substances with little or
no CYP2C19 metabolism.

In the typical application of the horseshoe, the combined effect of the two terms in
the variance of the Gaussian is that of a sparsity prior. The horseshoe approximates to
a model in which the coefficients are drawn from two normally distributed populations,
one of which realizes values close to zero [58]. Hence, these typical applications of the
horseshoe show its capacity to shrink small coefficients in models with many predictors, to
near-zero values. Here, in contrast, we used the horseshoe to model heterogeneity based
on the results of [8], which showed that the prior for τ may be used to encode a wide
range of prior rates of non-zero parameters. We modelled τ with a positive half-Cauchy
prior, implying a 50% positive coefficient rate. This scale parameter is the most sensitive
parameter of the prior model, as it is related to an estimate of positive coefficient rates; in
Supplementary File S3, we conducted a sensitivity analysis to verify its influence.

The regularized horseshoe replaces ξj above with

ξ2
j =

c2λ2
j

c2+τ2λ2
j

λj ∼ C+(0, 1), c ∼ Student-t(0, 2.5, d f = 8)

The parameter c further regularizes the coefficients, thus preventing large coefficient
values arising from small samples. For small c, this parameter moderates the size of the
individual coefficients. When c2 � τ2λ2

j , the regularized horseshoe reverts to the non-
regularized form, where ξ j ∼ C+(0, 1) [8]. Full Bayesian inference for c is provided through
a Student’s t distribution (here with df = 8) and a hyperprior scale parameter.

In most studies, no information was available on the variability of estimates. However,
sample sizes were provided. These varied widely (from N = 1 to N = 507), so that it was
essential to keep this information into account. For this reason, a Bayesian meta-analytic
approach was adopted to weight sampling points according to the reported sample size.
The sampling point variability was modelled as

εi|σw, σb ∼ N(0, 1
ni

σ2
w + σ2

b ),
σw ∼ log -normal(4, 0.25), σb ∼ log -normal(4, 0.25)

(3)

where ni was the known sample size of each sampling point i, whereas σ2
w and σ2

b were the
parameter variance within, and the variance between, the sampling points to be estimated
from the data, respectively. The variance between sampling points provides a bound on
the precision of parameter estimates of studies of increasing sample size; its effect was to
increase the credibility intervals of estimates of effects of activity scores for which large
studies were available. To identify these parameters in this relatively small sample, we
provided informative log-normal priors based on the plausible variability of this kind
of measurements. These priors ensured that both variance parameters were sampled
away from zero, thus avoiding the instability given by one parameter picking up all
variance and leaving the other at zero. It is worth noting that, although these informative
priors suppressed this instability, estimates of other parameters and their intervals in
the model were not much affected by it, since the weighting of sampling points was
determined by the weighted sum of both terms (when one went up, the other went down,
giving similar sums). For this reason, the informativeness of this prior does not result in
artificially narrow credibility intervals of dose adjustments. Information on the parameters
used to fit these models and samples from the posterior for important coefficients are in
Supplementary File S3.
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Before fitting the data to this model, we conducted preliminary analyses on the data,
to establish values of activity scores for the genotype, to verify the linearity of the effects
of activity scores, and to identify the properties of studies affecting the estimates. These
preliminary analyses used models with a set of predictors with uninformative priors as
“fixed” effects, a random effect of studies, and sampling-point variability modelled as the
same sum of variance components as in the main model. Further information on these
models is in Supplementary File S2.

All models were fitted with Stan, a package implementing Hamiltonian Monte Carlo [59]
through the R interface. The Stan code of these models is given in Appendix A.

3. Results
3.1. Selection of Studies

The total number of studies retrieved for information on CYP2C19 genotype-dependent
clearance/AUC or Css data was N = 52. One study was excluded because it did not con-
form to the declaration of Helsinki on good clinical practice. The study details are given
in Table 1. Sixteen studies used phenotyping as the method for CYP2C19 phenotype as-
sessment, and all the remaining studies used genotyping. The *17 allele was determined in
N = 18 studies; phenotypes predicted from all genotypes were available in N = 11 studies.

Earlier studies that used phenotyping substrates only discriminated between PM
and EM. The PM determined by phenotyping corresponds to a genotype consisting of
homozygous alleles with zero CYP2C19 enzyme activity (either coded by the *2 allele or
the *3 allele, denoted as the *null/*null genotype). The IM group consists of one active and
one inactive allele (*1/*null) of CYP2C19. In the case of the *17 allele, the *17/*null genotype
was at times grouped together with the *17/*17 genotype in the IM phenotype. This is
reported in Table 1 as ‘pooling’, since the majority of the (earlier) studies (N = 28) performed
before the identification of CYP2C19*17 in the year 2006 [60] did not discriminate *17/*null
from *1/*null genotypes. One study pooled the PM genotype (homozygous *2 carriers)
into the IM group [33]. While the RM group is defined as genotype *1/*17, five studies
did not discriminate between the UM and RM groups, and pooled possible carriers of the
homozygous *17 genotype into one group.

Variations in study design comprised the pooling of certain genotype groups into one
phenotype group (e.g., the pooling of *17/*1 and *17/*17 alleles into the EM, UM or RM
group), pharmacokinetic outcomes (such as AUC, clearance or Css), studies carried out on
healthy volunteers versus patient studies, and studies on single-dose kinetics or multiple-
dose kinetics. In the following modeling section, these variations will be considered
separately, based on whether they may affect the estimate of dose adjustments in individual
phenotypic groups or the estimate of adjustments generally, across groups. The former will
be considered in the section on estimates of activity scores that follows, and the latter in the
rest of the modeling.

3.2. Estimate of CYP2C19 Activity Score from Dose Adjustments

We preliminarily estimated models of average activity-score, to verify the linearity of
its effect on dose adjustments reported in the literature. For the estimation of the CYP2C19
activity predicted by allelic combinations of the *null (*2 or *3), the *17, and the wildtype
allele, dose adjustments were plotted as a function of phenotype, coded in activity-score
values spaced at equal intervals from the PM to the UM phenotypes (Figure 1A).

Several properties of the data are apparent from this plot. First, the fitted line, which
is a cubic polynomial, shows the effects of the phenotypic groups to be almost linear. There
was a slight inflection in the middle of the curve, suggesting the effects of the RM and UM
groups to be slightly smaller than those of the IM and PM groups. Second, the individual
points are spread upwards, relative to the fitted line, suggesting that the modeling might
profit from a transformation of the input data. Finally, some studies with small sample
sizes provided very strong outliers. One study on mianserine (by Dahl et al., 1994, [46])
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reported an adjustment that strongly contradicts physiological expectations, increasing the
dose by approximately 45% in PMs, instead of decreasing it.
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Figure 1. (A) Estimated dose adjustments were plotted as a function of phenotype, coded in ex-
pression grades of equal intervals from the PM to the UM phenotypes. The fitted line is a cubic
polynomial, and shows the effect to be almost linear, with a slight inflection downwards in the middle.
(B) The same plot, with the phenotypic groups spaced at the intervals of the estimated activity scores.
The fitted line is a cubic polynomial again, this time showing a linear fit.

For use in the models of the next section, we estimated activity scores from the data in
three steps. First, we modelled the mean dose adjustments as the coefficients of a factorial
model, with the phenotype groups as levels. To weigh the sampling points for sample
size, we estimated residual variability with the model expressed in Equation (3). We
excluded studies where no CYP2C19 effect was visible, i.e., drugs that are not metabolized
by CYP2C19 in vivo (mianserine, maprotiline, fluoxetine, and fluvoxamine).

Here, we looked at whether or not phenotypic groups that were investigated while
pooling diverse genotypes, affected estimates of dose adjustments. As one may expect,
studies pooling homozygous *17 carriers into the RM group overestimated the effects;
the large value of this overestimation, 38% (95% credibility interval, 11–66%), was the
difference in dose adjustment between these studies and those that did not pool (the studies
that pool were small, and averaged an adjusted dose of 156%, while those that did not pool
gave an adjustment of 115%). It should be noted, however, that the credibility intervals of
this effect were large, reflecting the uncertainty of its effective size, due to the small number
of studies that were affected by it. In contrast, there were more studies that included *17
carriers in the IM group. However, there was no detectable effect of this inclusion (2%,
credibility interval −16–18%).

We therefore opted to estimate activity scores after excluding studies that pooled the
*17 homozygous carriers into the RM group, to avoid the possible bias arising from this
pooling. We set the baseline adjustment to the EM group (which was then given a score of
zero), and the scale to the estimated adjustment of the IM group (which was given a score
of −1), as this group has one *2 allele (note that the base and scale of a measure are chosen
by convention; we based the scale on the IM group because there were more data in this
group than in the PM and RM groups). The results of this analysis are displayed in Table 2.
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Table 2. Estimates and 90% credibility intervals of activity scores after excluding RM pooling.

Estimate EM IM PM RM UM CYP2C19*17 +

Median 0 −1 −1.96 0.70 1.75 0.79
5% lower 0 −1 2.91 0.26 1.13 0.48

95% upper 0 −1 −1.42 1.28 2.76 1.26
+ The last column is the estimate of the activity score of one *17 allele obtained by averaging the estimates of the
effect of one allele computed in the RM and UM groups.

By averaging the estimates of the allelic effects in the RM and the UM groups, we
obtained an estimate of 0.8 for the activity score of one *17 allele. This gave activity scores
where PM (genotype *null/*null) had an approximate score of −2, RM (genotype *1/*17)
of 0.8, and UM (genotype *17/*17) of 1.6. The fit of the adjustment data on the phenotypic
groups, spaced according to the new activity scores, is displayed in Figure 1B. These results
are broadly consistent with current assumptions on CYP2C19 activity scores [15].

In a further step, we verified the absence of deviations from linearity by testing a
different slope for the *17 carriers in the dataset as a whole, and by adding quadratic and
cubic polynomials to the activity-score predictor. None of these model additions were
significant (further information and details on these models are in Supplementary File S2).

Finally, we evaluated the need of a logarithmic transformation of the data. When con-
sidering a log-transformation of the adjustments, we obtained an effect that was no longer
linear for equally spaced activity-scores (Supplementary File S2). In addition, an examina-
tion of residuals with these activity scores showed no asymmetry (Supplementary File S3).
We concluded that these activity scores could be used in the models that follow, and that
no logarithmic transformation was required on the input data.

3.3. Effects of Study Properties on Estimated Dose Adjustments

We considered here study properties that may affect the estimate of the slope of the
activity-scores effects as a whole. In some studies, the EM allelic group was defined while
pooling it with other alleles, the *2 or the *17. This pooling affects all other phenotypic
groups, because the EM estimate is the reference point in the original studies, affecting all
other phenotypes at once. Pooling heterozygous *2 in the EM group (which happened in
the old phenotyping studies that pooled all genotypes other than *null/*null into one group
of EM), had no effect on the estimate of activity scores in our data. Instead, the pooling
of *17 carriers in the EM group (*1/*17 and *17/*17), which happened in the older studies
that genotyped for the *null alleles but not for *17 alleles, led to smaller effects of activity
scores on adjustments in the UM phenotype (−16% per activity-score point). However,
these effects failed to reach significance (see Supplementary File S2).

We also tested the possible effect of the pharmacokinetic measurement used to esti-
mate the dose adjustments. Some studies (usually performed on healthy participants as a
pharmacokinetic study), used AUC or clearance, while other studies (usually on patients
and in naturalistic conditions), used Css, the dose-corrected plasma concentration at steady
state. We therefore tested the influence of the pharmacokinetic parameter given in the stud-
ies, and the of participants type (healthy versus patients). Studies using AUC or clearance
revealed a slightly lower (but not significant) slope, compared with the studies with Css
(4% to 8% differences in adjustments per activity-score point, see Supplementary File S2).
In these studies, saturation at higher doses may lead to nonlinear kinetics and biased
estimates of the CYP2C19 metabolic pathway. However, another possible source of bias
is that these studies, which were more recent, were conducted prevalently on substances
where the role of CYP2C19 was already known, and therefore do not include substances
where the effect is small.

The study property single- versus multiple-dose did not result in significant differences
in the estimation of the CYP2C19 activity effect on dose. Instead, we investigated the effect
of this study property on the within-study variance, which was lower in studies with single
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dose. However, the large credibility intervals of these estimate did not justify the inclusion
of this study property in the model (see Supplementary Files S2 and S3).

For modeling the substance-specific dose adjustments, only the factor pooling of
*17/*17 carriers to the RM group was considered, because this had a significant effect on the
estimation of the dose adjustments in this group, as shown in the previous section, and this
effect was estimated to be large.

3.4. Modelled Dose Adjustments

We used the activity scores derived in the previous section to model adjustment
as a function of phenotype (Equation (1)), adding the pooling of homozygous *17/*17
carriers into the RM phenotype group as a confounding covariate. In this model, the
coefficient of the activity score gives the adjustment for these phenotypes relative to the
label dose, i.e., the slope of this adjustment. These slopes estimate differences in CYP2C19
affinity for the substrate, the importance of the metabolic pathway, and other unmeasured
sources contributing to the variation in adjustment levels distributed across a population
of substances, of which the substances in the study are a sample.

We first compared the four approaches, to estimate these coefficients slopes, described
in the Methods section: “fixed”, a Gaussian random-effect, and the two versions of the horse-
shoe (non-regularized and regularized). In Figure 2, panel A, the estimated adjustments
obtained with these four methods are displayed, together with their credibility intervals.
One can see that the fixed-effects approach gives the most extreme adjustments, while the
horseshoe approaches provide the most conservative estimates, with litte differences be-
tween both approaches. However, the horseshoe without regularization was more difficult
to fit (the Stan engine gave warnings that estimates may not be reliable). The Gaussian
random-effect provides estimates located in-between the fixed and horseshoe approaches.

When there was evidence from many studies, and with large sample sizes, the ad-
justments (as is the case for escitalopram) were estimated with small confidence intervals
and were nearly identical in all the four methods. The conservativeness of the Gaussian
random-effect and of the horseshoe affected estimates when they were based on few or
single studies, and sample sizes were small. For example, etizolam, doxepine and diazepam
were given adjustment estimates that were almost as large as those of escitalopram by the
fixed-effect approach, but all shrinkage approaches reacted sensitively to small numbers of
studies and small sample sizes, and moved estimates and credibility intervals towards zero.

Panels B and C of Figure 2 show the action of the two mechanisms through which
statistical modeling deviated from the previous approach of dose adjustments, calculated
as weighted means of the adjustments of the single studies (substance-specific phenotype-
group means). The estimates from the weighted-mean approach are shown in orange, while
the adjustments computed with the fixed approach (panel B) and the regularized horseshoe
(panel C) are given by the points of the fitted slopes that correspond to the phenotype
groups on the x axis. Both models (fixed-effect or random-effect) deviate from the earlier
approach, because estimating one slope of activity scores instead of computing separate
estimates in each phenotype group, pools information from all groups. The consequence is
most apparent in the case of amitriptyline, where the UM-adjustment estimates of the fixed
effects and the weighted-mean approach differ. However, the fixed-effects approach gives
large adjustment estimates for small sample sizes, as shown for diazepam and etizolam. In
constrast, these estimates are shrunken towards zero by the horseshoe, where they are also
affected by sample size. Detailed information and diagnostics for these models are in the
Supplementary File S3.
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Figure 2. (A) Comparison of estimated dose adjustments and confidence intervals for the IM pheno-
type in the fixed-effects model, the Gaussian random-effect, and the two versions of the horseshoe.
(B) Fixed-effects model: slopes of effects of activity scores in individual substances (blue), together
with estimates of adjustment computed with the traditional approach of means computed at each
combination of phenotype group and substance, separately (in orange). On the x axis, the four
phenotypic groups for which adjustment was estimated; on the y axis, estimated adjusted dose (in %
of label dose). (C) As in B, regularized horseshoe model.

4. Discussion

In this work, we estimated pharmacogenetic dose adjustments for psychotropic drugs
based on clinical pharmacokinetic data, to account for differences in drug exposure caused
by the CYP2C19 polymorphism. In contrast to earlier approaches, where mean values
provided an overview on the quantitative decrease or increase in drug clearance detected in
the pharmacogenetic CYP2C19 phenotype groups (the means model), we used a statistical
modeling approach to better account for the uncertainty caused by a paucity of data (due
to small sample sizes and few studies, leading to missing values for genotype groups), and
possible methodological confounds across studies in estimated dose adjustments. Our aim
was to provide dose adjustments based on a model where the lack of data, the heterogeneity
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of the studies, and the uncertainty of phenotype–genotype correlation is included and used
for a conservative estimation.

We compiled all the existing data for this study, entering the former dose adjust-
ments [7], together with those from more recent studies for all psychotropic drugs where
the CYP2C19 genotype was characterized. We used this dataset to estimate an activity
score for the CYP2C19 phenotype predicted from the genotype. This estimation approach
resulted in roughly three groups of drugs: those where a strong effect of the CYP2C19 poly-
morphism was evident (escitalopram, citalopram, sertraline and venlafaxine), those where
a tendency was detected but the uncertainty estimation would not allow the issuing of a
quantitative dose adjustment (the tricyclics, clozapine, etizolam, diazepam, moclobemide),
and those where the data did not support any effect of CYP2C19 (mianserine, maprotiline,
fluoxetine, fluvoxamine, zotepine; see Figure 2A). The drugs with the strongest influence
are also mentioned by other reviews on the pharmacokinetics of CYP2C19 [61], but no
quantitative dose adjustments have been issued so far.

4.1. Consequences of Basing Estimates of Pharmacogenetic Effects on Estimates of Pathways:
Comparison with Existing Models

The formulation of guidelines for pharmacogenetic dose adjustments has been the
purpose of previous works of ours and of others [3–7,61]. However, this existing work
has estimated dose adjustments based on the means model, i.e., the evidence from the
comparison of single genotype groups in comparison with the EM group. This model
suffers from several shortcomings. One of theses is exemplified by cases where it was
judged that there was enough evidence to issue dose recommendations for one phenotypic
group, but not for another. However, the extent to which a pharmacogenetic polymorphism
may affect the metabolism of a compound, depends on it being part of the metabolic drug
pathway. Hence, evidence from the pharmacogenetic effects in one phenotypic group
implies the existence of effects in the others. The efficiency of the model can be improved by
including evidence for all phenotype groups at once into one model estimating the slope of
the increase in drug clearance dependent on the CYP2C19 activity score. Because an activity
score is a predictor of genetic effects on enzyme activity, the dose adjustments may be
predicted, based on the slope of the activity estimated for a given drug, extrapolating from
this slope for any pharmacogenetic subgroup, and even for metabolic activity levels that
lie in-between those of the genetic groups, such as those determined by phenotyping [62].
For example, the estimation of CYP2C19 dose adjustments for clozapine is based on
data for PM, IM, and RM, while there are no data on homozygous *17/*17 (UM). Dose
recommendations based on the means model will conclude that there is no evidence for
making a recommendation for the UM phenotype, due to lack of data for this group.
However, the evidence on the pathway is present from the other groups. Since the slope of
that activity score can predict the amount of dose adjustments for all phenotype groups of
CYP2C19, dose adjustments for all phenotypes may be computed for all drugs where data
on clearance differences in at least two phenotypes are available.

In addition to insufficient study data, there are several limitations challenging the
validity of dose recommendations based on pharmacogenetics. One major issue is the
variance in published studies. In our final model, we assumed uniform within-study
variance, which was estimated based on the sample size of each sampling point. However,
differences in pharmacogenetic designs may also result in systematic differences in the
precision of estimates [63]. For example, an observational study on TDM data may have
a large sample size (such as the several hundreds of individuals per genotype group of
the studies by Jukic et al.) [36], whereas a pharmacogenetic panel study performed on
genotype-selected healthy volunteers matched by age, body mass index and dose, and
measured at equal study conditions, may lead to precise estimates, even with very small
sample sizes.
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4.2. Consequences of Modeling Differences between Study Methodologies

A further concern arises from systematic methodological differences in earlier, smaller
studies. Since early studies were based on phenotyping before the discovery of genetic
variants, the historical evolvement of pharmacogenetic knowledge has gradually changed
the classification of phenotype groups. We tried to address the concern of methodological
heterogeneity by formally testing the effects of pooling allelic groups into one phenotype.
However, the outcomes of earlier studies may have influenced which substances were inves-
tigated later on, resulting in a publication bias. For example, if an early small study failed to
detect an influence of the CYP2C19 polymorphism on a substance, this drug may not have
been followed up eventually by more recent studies applying more sophisticated pharma-
cogenetic methods. In our analysis, we verified the fact that methodological differences
were not so large as to affect the outcome of the analysis directly. However, the bias due to
substances being no longer actively investigated shows up in large credibility intervals.

In our analysis of the CYP2C19 activity score, we estimated a smaller slope of the
CYP2C19*17 allele compared with the opposite effect of the *null allele. This is in concor-
dance with previous reports on the review of the evidence, suggesting that the magnitude
of effect of the CYP2C19*17 allele is considerably smaller than that of CYP2C19*2 and
CYP2C19*3 [15,64]. The *17 allele is a variant allele, leading to higher enzyme expres-
sion and activity which, however, may be affected by numerous concomitant individual
factors. The higher expression and activity may not be the same in all individuals and
in all tissues, including the liver. When direct comparisons are made, the magnitude of
the effect of the CYP2C19*17 allele is considerably smaller than that of CYP2C19*2 and
CYP2C19*3 [64]. Our model may therefore overestimate the activity scores of the *17 allele,
due to publication bias.

4.3. Statistical Methodology to Address Variability in the Amount of Data Available for Substances

An important feature of the present work is the adoption of shrinkage approaches,
which were compared to a “fixed effects” approach and to the traditional weighted-mean
approach. Relative to the traditional approach, all others make more efficient use of the
available information if activity scores are available, since they use information from all
phenotypic groups simultaneously. Relative to fixed effects, shrinkage introduces pruden-
tial estimates when these latter are made on the basis of few data. The advantages offered
by shrinkage are widely recognized in the statistical community (see for example [65] and
discussion), but its practical application has been confined to a few areas. For pharma-
cogenetic dose adjustments, we found that shrinkage of any form reacted senstitively to
estimates based on few data, and may be preferable to fixed effects estimates. We con-
sider the regularized horseshoe to be the preferred approach, as it appears to provide the
most prudential estimates. Furthermore, the Gaussian random-effect approach may be
somewhat misspecified, as the coefficients, being heterogeneous, may not be normally
distributed. The horseshoe may accommodate heterogeneity better, as it was developed to
fit a mixture of two distributions of random coefficients.

An argument for the adoption of linear-adjustment estimates and shrinkage of a com-
prehensive statistical model is that the combination of estimates and credibility intervals
may give an actionable summary of the information on dose adjustments. In panel A of
Figure 2, we can see that we have enough data to provide quantitative dose adjustments on
a handful of substances, based on their narrow credibility intervals. Perhaps even more
importantly, for several substances there was clear evidence of a CYP2C19 metabolic path-
way, but the estimation of the effect of the polymorphism was based on so little data that at
present a quantitative dose adjustment cannot be formulated, calling for further research.

5. Conclusions

Pharmacogenetic dose recommendations are a practical tool to address patient vulnera-
bility and improve the benefit–risk ratio of therapy. We used a statistical modeling approach
to better account for the uncertainty caused by the paucity of data and methodological
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confounds across studies. We compared different approaches to address this uncertainty,
and found out that, relative to fixed effects, shrinkage delivered estimates that were more
prudential when the latter were made on the basis of little data. Modeling approaches
provide a rational basis for formulating quantitative dose adjustments in personalized
treatment. This may facilitate the administration of drugs or the continuation of therapy in
patients with vulnerabilities due to pharmacogenetic risk-profiles.
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Appendix A

Below is the Stan code for the models to estimate dose adjustments. Horseshoe models
were based on the Stan code provided in [8].

Appendix A.1 Regularized Horseshoe Model

/** This is the regularized horseshoe model but without the origin and added
dispersion components to weight for number of observations nobs in each
datapoint **/

data {
int N; //number of datapoints
int K; //number of shrunken predictors
int M; //total num predictors
vector<lower=1>[N] nobs; //number of observations within datapoints

//(coded as vector to avoid crash in rmarkdown)
vector[N] y;
matrix[N,M] preds; //hs shrunk first

real<lower=0> beta_scale; //prior scale non-shrunken coefs

real<lower=0> scale_global;
real<lower=1> nu_global;
real<lower=1> nu_local;

https://www.mdpi.com/article/10.3390/pharmaceutics14122833/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14122833/s1
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real<lower=0> slab_scale;
real<lower=0> slab_df;

//informative priors for residuals
real<lower=0> logsigmaloc;
real<lower=0> logsigmascale;

}
parameters {

//residual variance model
vector[K] z;
vector[M-K] b;
real logsigma_within; //variance within datapoints
real logsigma_betw; //variance between datapoints

//hs ridge model
real<lower=0> tau;
vector<lower=0>[K] lambda;
real<lower=0> caux;

}
transformed parameters {

//residual variance model
real sigma_within; //within
real sigma_betw; //between
vector[N] disp; //overall dispersion within + between
real mndisp;

//hs ridge
vector<lower=0>[K] lambda_tilde;
real<lower=0> c; //slab scale

//predictors
vector[M] beta; //regression coefficients
vector[N] f; //predictor
vector[N] fadjust; //predicted adjustment

//computations residual variance components model
sigma_within = exp(logsigma_within);
sigma_betw = exp(logsigma_betw);
disp = sqrt(sigma_within^2 ./ nobs + sigma_betw^2);
mndisp = sqrt(mean(sigma_within^2 ./ nobs + sigma_betw^2));

//hs ridge
c = slab_scale * sqrt(caux);
lambda_tilde = sqrt(c^2 * square(lambda) ./ (c^2 + tau^2 * square(lambda)));
for (i in 1:M) {

if (i <= K)
beta[i] = z[i] * lambda_tilde[i] * tau;

else
beta[i] = b[i-K];

}
f = preds * beta;
fadjust = preds[1:N,1:K] * beta[1:K];

}
model {

//linear model
z ~ normal(0, 1);
for (i in 1:M-K) b[i] ~ student_t(1, 0, beta_scale);
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//model of the residual component variance
logsigma_within ~ normal(logsigmaloc, logsigmascale);
logsigma_betw ~ normal(logsigmaloc, logsigmascale);

// half -t priors for lambdas and tau , and inverse - gamma for c^2
tau ~ student_t(nu_global, 0, scale_global*mndisp);
lambda ~ student_t(nu_local, 0, 1);
caux ~ inv_gamma(0.5*slab_df, 0.5*slab_df);

//likelihood
y ~ normal(f, disp);

}

Appendix A.2 Non-Regularized Horseshoe

/** This is the horseshoe model (no regulrization) but without the origin and
added dispersion components to weight for number of observations nobs in
each datapoint **/

data {
int N; //number of datapoints
int K; //number of shrunken predictors
int M; //total num predictors
vector<lower=1>[N] nobs; //number of observations within datapoints

//(coded as vector to avoid crash in rmarkdown)
vector[N] y;
matrix[N,M] preds; //hs shrunk first

real<lower=0> beta_scale; //prior scale non-shrunken coefs

real<lower=0> scale_global;
real<lower=0> scale_local;
real<lower=1> nu_global;
real<lower=1> nu_local;

//informative priors for residuals
real<lower=0> logsigmaloc;
real<lower=0> logsigmascale;

}
parameters {

//residual variance model
vector[K] z;
vector[M-K] b;
real logsigma_within; //variance within datapoints
real logsigma_betw; //variance between datapoints

//hs ridge model
real<lower=0> tau;
vector<lower=0>[K] lambda;

}
transformed parameters {

//residual variance model
real sigma_within; //within
real sigma_betw; //between
vector[N] disp; //overall dispersion within + between
real mndisp;
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//predictors
vector[M] beta; //regression coefficients
vector[N] f; //linear predictor
vector[N] fadjust; //predicted adjustment

//computations residual variance model
sigma_within = exp(logsigma_within);
sigma_betw = exp(logsigma_betw);
disp = sqrt(sigma_within^2 ./ nobs + sigma_betw^2);
mndisp = sqrt(mean(sigma_within^2 ./ nobs + sigma_betw^2));

//hs ridge
for (i in 1:M) {

if (i <= K)
beta[i] = z[i] * lambda[i] * tau;

else
beta[i] = b[i-K];

}
f = preds * beta;
fadjust = preds[1:N,1:K] * beta[1:K];

}
model {

//linear model
z ~ normal(0, 1);
for (i in 1:M-K) b[i] ~ student_t(1, 0, beta_scale);

//model of the residual component variance
logsigma_within ~ normal(logsigmaloc, logsigmascale);
logsigma_betw ~ normal(logsigmaloc, logsigmascale);

// half -t priors for lambdas and tau , and inverse - gamma for c^2
tau ~ student_t(nu_global, 0, scale_global*mndisp);
lambda ~ student_t(nu_local, 0, scale_local);

//likelihood
y ~ normal(f, disp);

}

Appendix A.3 Fixed Effects Model

/** This is a linear (fixed effects) model but without the origin and
added dispersion components to weight for number of observations nobs
in each datapoint **/

data {
int N; //number of datapoints
int K; //number of predictors for shrinkage
int M; //total num predictors, with confounders
vector<lower=1>[N] nobs; //number of observations within datapoints

//(coded as vector to avoid crash in rmarkdown)
vector[N] y;
matrix[N,M] preds; //first predictors are shrunk

//informative priors for residuals
real<lower=0> logsigmaloc;
real<lower=0> logsigmascale;

}
parameters {

vector[M] beta; //flat prior
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//residual variance model
real logsigma_within; //variance within datapoints
real logsigma_betw; //variance between datapoints

}
transformed parameters {

//residual variance model
real sigma_within; //within
real sigma_betw; //between
vector[N] disp; //overall dispersion within + between
real mndisp;

//predictors
vector[N] f; //predictor
vector[N] fadjust;

//computations residual variance model
sigma_within = exp(logsigma_within);
sigma_betw = exp(logsigma_betw);
disp = sqrt(sigma_within^2 ./ nobs + sigma_betw^2);
mndisp = sqrt(mean(sigma_within^2 ./ nobs + sigma_betw^2));

//linear predictor
f = preds * beta;
fadjust = preds[1:N,1:K] * beta[1:K];

}
model {

//model of the residual component variance
logsigma_within ~ normal(logsigmaloc, logsigmascale);
logsigma_betw ~ normal(logsigmaloc, logsigmascale);

//likelihood
y ~ normal(f, disp);

}
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