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Abstract: The solubility of active pharmaceutical ingredients is a mandatory physicochemical charac-
teristic in pharmaceutical practice. However, the number of potential solvents and their mixtures
prevents direct measurements of all possible combinations for finding environmentally friendly,
operational and cost-effective solubilizers. That is why support from theoretical screening seems to be
valuable. Here, a collection of acetaminophen and phenacetin solubility data in neat and binary sol-
vent mixtures was used for the development of a nonlinear deep machine learning model using new
intuitive molecular descriptors derived from COSMO-RS computations. The literature dataset was
augmented with results of new measurements in aqueous binary mixtures of 4-formylmorpholine,
DMSO and DMF. The solubility values back-computed with the developed ensemble of neural
networks are in perfect agreement with the experimental data, which enables the extensive screening
of many combinations of solvents not studied experimentally within the applicability domain of
the trained model. The final predictions were presented not only in the form of the set of optimal
hyperparameters but also in a more intuitive way by the set of parameters of the Jouyban–Acree
equation often used in the co-solvency domain. This new and effective approach is easily extendible
to other systems, enabling the fast and reliable selection of candidates for new solvents and directing
the experimental solubility screening of active pharmaceutical ingredients.

Keywords: acetaminophen; phenacetin; solubility; screening; machine learning; artificial neural
networks; aqueous organic solvents

1. Introduction

Acetaminophen (N-(4-hydroxyphenyl)acetamide, CAS: 103-90-2), also known under
the name paracetamol, was synthesized as early as 1878 [1] and was later used clinically [2].
Since then, acetaminophen has become one of the most often used and prescribed drugs in
the world. Paracetamol mainly acts as an analgesic and antipyretic, has a very weak anti-
inflammatory effect and has a low risk of side effects compared to aspirin and nonsteroidal
anti-inflammatory drugs [3]. The importance of this drug and its widespread occurrence
are the reasons that it is still the subject of many research papers dealing with all aspects of
its usage [4,5].

Phenacetin (N-(4-ethoxyphenyl) acetamide, CAS: 62-44-2) is structurally similar to
acetaminophen but contains an alkoxy group instead of the hydroxyl substituent. It was
widely used together with acetaminophen as a pain-relieving and fever-reducing drug until
its withdrawal from medicinal usage. Even though phenacetin was, for a long time, used
more often than acetaminophen, it was banned by different organizations due to its adverse
effects on human health, including carcinogenic and kidney-damaging properties [6,7].
Interestingly, nowadays, it has been found to be one of the main cocaine adulterants
worldwide [8,9].
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One of the main concerns of the pharmaceutical industry is the utilization of appro-
priate solvents for all stages of creating a pharmaceutical formulation. This is not a trivial
task, since the limited solubility of various active pharmaceutical ingredients (APIs) is
widely recognized as a major obstacle [10–12]. One of the strategies used to overcome
this problem is the selection of a proper solvent system for the studied pharmaceutical
formulation, which can be a tedious task. Therefore, a screening stage can be very helpful
in order to obtain preliminary data and limit resource-consuming experiments. In this
context, the utilization of machine learning can be a very useful approach for solubility
predictions and solvent design. The growing awareness in the scientific community about
the nonprecedential value of this methodology is associated with expanding the range of
free programming ecosystems for direct use, including Scikit-learn [13], TensorFlow [14],
PyTorch [15], Keras [16], OpenNN [17] or DeterminedAI [18], to mention only a few repre-
sentative examples. Bearing this in mind, it is not surprising that many different approaches
were used for inferring solubility from different representations of molecular structures.
Indeed, recently, Panapitiya et al. [19] assessed the current deep learning architectures for
solubility predictions and molecular representations used for depicting patterns between
structural molecular properties and measured molecular solubility. Despite great efforts
made in the development of deep machine learning models (DMLM) devoted to solubility
predictions, there are still serious limitations prohibiting the general use of already devel-
oped models [20]. First of all, they concentrate mainly on aqueous solubility [19,21–27],
with few exceptions [21,28–30] devoted to studying organic solvents. An additional limita-
tion comes from the fact that the temperature dependence is often not explicitly defined.
Moreover, the applicability domain is not always defined, which makes difficult generaliza-
tions and predictions for new systems. On the other hand, DMLM requires a huge number
of data, which are unavailable for many potentially interesting but sparingly explored
solvents or their mixtures. Hence, screening for new and green solvents is limited.

The aim of this paper is threefold. First of all, the theoretical tool for screening effective
and environmentally friendly solvents for acetaminophen and phenacetin dissolution was
developed. For this purpose, a nonlinear DMLM was developed using a newly developed
ensemble of neural networks (ENN). For learning purposes, the curated experimental
solubility data taken from the literature and new measurements were used. Molecular
descriptors computed within the COSMO-RS [31] framework were used as a molecular
representation of the physicochemical properties of the studied systems in saturated solu-
tions. Finally, the applicability of the developed model for screening for new effective, neat
and binary solvents mixtures was documented and discussed.

2. Materials and Methods
2.1. Solubility Data Collection and Curation

The results of solubility measurements of acetaminophen (A) and phenacetin (P) were
searched in the literature. Both active pharmaceutical ingredients were the subjects of
quite intensive investigations in an extended range of neat solvents and multicomponent
solvent mixtures. Unfortunately, due to differences in the applied methodology, in some
cases, quite large deviations could be noticed between the reported values. Since nonlinear
models are very sensitive to the quality of the dataset used for training, the observed
discrepancies need to be resolved prior to the application of DMLM. Hence, in the very
first step, the data have been meticulously analyzed for removing incongruences. This
step was done by a careful inspection of the back-computed data obtained after fitting
to the Buchowski–Ksiazczak equation [32] and the Jouyban–Acree model [33] in the case
of neat and binary solvents, respectively. The former model, also known in the literature
as the λh-model, is a two-parameter equation that is often used for fitting of the solid–
liquid equilibrium data. Formally, the mole fraction of the solute is defined and computed
as follows:

xi =
λ

exp(λ·h·
(

1
T −

1
Tm

)
− 1 + λ

(1)
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where λ and h are adjustable parameters, and Tm stands for the melting temperature.
This equation is very popular and is often used for solubility data interpretation due to
its high flexibility and the ability to adequately represent temperature-related solubility.
Very often, the accuracy of the back-computed mole fraction is within the experimental
uncertainty. The popularity of the λh-model is also related to the fact that the parameters
have physical meaning, since h represents the energetics of the solubilization, and λ is an
indicator of the solute association. The curation procedure was performed in a two-step
manner. Initial fitting was done using the whole set of data reported for the given solution.
Then, outliers were identified by finding cases with a percentage error deviating higher
than 10% from the computed values. After removing these points, the final fitting was
done, and the obtained parameters of the applied theoretical models were collected in the
Supplementary Materials S2 in “neat solvents”. In all cases where data needed to be cured,
the ones back-computed with the aid of Equation (1) were used as experimental points. If
only single measurements were available, the original experimental data were used. As an
illustration of this step, the solubility of A and P in neat water is provided in Figure 1. It is
visible that a cloud of points was collected for saturated water solutions of A. The points
annotated with open circles are those that were excluded from the pool of data due to not
fulfilling the inclusion criterion. The details of all the considered systems are provided in
the Supplementary Materials S1 in Tables S1 and S2.
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Figure 1. The example of the solubility data curation of acetaminophen (A) [34–48] and phenacetin
(P) [49–51] in neat water. Open circles represent data points with percentage deviations from back-
computed values higher than 10% and were excluded from the analysis.

In principle, the Buchowski–Ksiazczak model is also applicable to multicomponent
systems, provided that every solvent composition is considered as a new solvent. How-
ever, the solubility of A and P in binary solvent mixtures was determined for different
compositions, which makes it difficult to fit the data coming from different authors. Thus,
another very popular and accurate model was used instead. In the co-solvency literature,
the Jouyban–Acree model [33] was proven to be quite accurate. This approach models the
excess solubility by fitting with an aid of a polynomial in the following form:

ln(x1) = x∗2 ·ln
(
xsat

12
)
+ x∗3 ·ln

(
xsat

13
)
+

x∗2 ·x∗3
T
·

2

∑
i=0

Ji·(x∗2 − x∗3)
i (2)

The three parameters, J0, J1 and J2, are regressed against experimental data. The curation
procedure was similarly applied as for neat solvents. Details of the studied systems are
provided in the Supplementary Materials S1 in Tables S3 and S4. Additionally, the values
of the obtained parameters with statistical measures of accuracy were collected in the
Supplementary Materials S2 in “binary solvents”.
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2.2. Solubility Measurements
2.2.1. Materials

The following analytical-grade compounds were used without any initial procedures.
Acetaminophen (A, CAS: 103-90-2) and phenacetin (P, CAS: 62-44-2) were purchased from
Sigma-Aldrich (Poznań, Poland), as well as dimethyl sulfoxide (DMSO, CAS: 67-68-5),
N,N-dimethylformamide (DMF, CAS: 68-12-2) and 4-formylmorpholine (4FM, CAS: 4394-
85-8). The 5.0-grade nitrogen was obtained from Linde (Warsaw, Poland) and used during
the DSC experiments.

2.2.2. Solubility Measurement Protocol

First, an excess amount of either of the APIs was placed in a test tube, which was
then filled with 10 mL of solvent, which enabled to obtain saturated solutions. The binary
mixtures were prepared by mixing the organic solvent with water in appropriate molar
fractions. For each system, three samples were prepared. Samples prepared in such a
manner were placed in an Orbital Shaker ES-20/60 incubator from Biosan (Riga, Latvia) and
incubated for 24 h at four different temperatures ranging from 20 ◦C to 40 ◦C with intervals
equal to 5 ◦C. The temperature was adjusted with ±0.1 ◦C accuracy, and its daily variance
was ±0.5 ◦C. Shaking of the samples at 60 rev/min was applied together with heating.
The next step involved the filtration of the samples using syringes with 0.22 µm pore size
PTFE filters. In order to avoid precipitation, the test tubes, syringes and filters were heated
before the filtration at appropriate temperatures, matching the ones of the solutions. Next,
a small volume of the filtrate was transferred using an automatic pipette to a tube filled
with methanol in order to conduct spectroscopic measurements. For the calculation of mole
fractions of the solute, the density of the samples was also determined by weighing a fixed
amount of the solution in a 10 mL volumetric flask. The calibration curve was prepared with
the use of stock solutions of acetaminophen and phenacetin in methanol with concentrations
equal to 2.00 · 10−5 mg/mL and 1.89 · 10−5 mg/mL, respectively. Small amounts of these
stock solutions were successfully diluted with methanol in 10 mL volumetric flasks in order
to obtain solutions with decreasing concentrations. The absorption of these solutions was
measured using an A360 spectrophotometer from AOE Instruments (Shanghai, China). The
analytical wavelengths were selected as 249 nm for both acetaminophen and phenacetin.
Three separate curves were prepared, and the final curve used for solubility determination
was the result of their averaging. The spectra of the prepared samples were measured
using the same device with a wavelength range from 215 to 500 nm with a 1 nm resolution.
In order to ensure that the absorbance values do not exceed 2.5, the samples were diluted
with methanol accordingly. The solubility of acetaminophen and phenacetin in the samples
was determined based on the calibration curves, and their mole fractions in the solutions
were calculated.

2.2.3. FTIR and DSC Characteristics of Solid Residues

The Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorime-
try (DSC) techniques were utilized to analyze the solid residues left after solubility mea-
surements. Before the actual analysis, the samples were left to dry by air. A FTIR Spectrum
Two spectrophotometer from Perkin Elmer (Waltham, MA, USA) was used with a dia-
mond attenuated total reflection (ATR) device. For the DSC measurements, the DSC 6000
calorimeter, also from Perkin Elmer (Waltham, MA, USA), was used. The parameters were
set as the heating rate of 5 K/min and the nitrogen flow of 20 mL/min. Zinc and indium
reference standards were used for calibration, and the samples were placed in standard
aluminum pans.

2.3. Deep Machine Learning Approach (DML)

Among many available algorithms developed for DML, artificial neural networks
(ANNs) are one of the most universal, flexible and effective ways of model development.
For the purpose of this project, the simplest form of neural network architecture was
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implemented, which comprised just one hidden layer in-between the input and output
ones. Despite its simplicity, such ANNs can be very effective [28] if an ensemble of neural
networks model (ENNM) is constructed. The effectiveness of the network is boosted by
tuning the ANN hyperparameters for the most accurate reproduction of the experimental
data. Such properties as the number of neurons in the hidden layer, the form of activa-
tion functions and the error function were optimized. The training procedure was done
after splitting the whole dataset into three subsets, namely training (70%), test (15%) and
validation (15%), with the proportions indicated in parentheses. An ensemble of neural
networks was constructed by collecting the best ANNs fulfilling the inclusion criteria:
(1) accuracy (RMSD < 0.06), (2) precision (number of outliers ≤ 2%) and (3) reliability
(predicted solubility within the formal range of log(x) between 0 and 1 for at least 99% of
computed values). The applicability domain (AD) [52–54] was analyzed for each ANN and
the whole ensemble.

2.4. Molecular Descriptors
2.4.1. Affinity Descriptors

Despite the very large number of available molecular descriptors, their application
to the temperature-related solubility models is not straightforward, and many developed
parameters are not intuitive [55]. It seems to be preferable to use such physicochemical
properties, which are directly related to the chemical structures in multicomponent systems
at defined external conditions. Fortunately, the COMOS-RS framework offers a very intu-
itive set of chemical system characteristics that might be used for DMLM development. For
example [28], the σ-chemical potential trends, µs(σ), are rich in information characterizing
the chemical diversity of a given compound in varying environments. It represents the
summarized σ-profiles with the inclusion of the mixture composition. It is derived [56] by
iteratively solving the exact equation:

µs(σ) = −
RT
aa f f

ln
[∫

Ps
(
σ′
)
exp
{ aa f f

RT
[
µs
(
σ′
)
− e
(
σ, σ′

)]}
dσ′
]

(3)

where σ represents the charge density; Ps(σ) is the so-called σ-profile representing the
histogram of charge densities; aeff is an average molecular contact area; e(σ, σ′) is the sum
of the three (misfit, hydrogen bonding and dispersion) contributions to the intermolecular
interaction and RT is the multiplication of the temperature and the gas constant. In Figure 2,
there are presented exemplary plots of descriptors derived using µσ of A and P in pure
water at room temperature. For data reduction purposes, the descriptors are defined
as averaged values in the ranges defined in Figure 2 for three meaningful subregions
quantifying fundamental affinity properties. It is assumed [56] that the electronegative
charge distribution region, σ ∈ <−0.03, −0.01>, characterizes the affinity for HB donors,
HBA (hydrogen-bonding acceptability). On the opposite scale, there is the electropositive
polarity interval σ ∈ <0.01, 0.03> to which the affinity for HB acceptors is associated, HBD
(hydrogen bond donicity). The intermediate range, σ ∈ <−0.01, +0.01>, characterizes
contributions to nonpolar interactions and is regarded as a measure of hydrophobicity,
HYD. In Figure 2, there are the lines plotted for the pure solute and the solute at an infinite
dilution in a given solvent or solvent mixture. Additionally, there are provided plots of
relative values of an inverse plot of the solute and solution [28]. These values represent
the area between the former plots and were used as molecular descriptors. Hence, the
following measures of mutual affinity were used for model training:

1. HBD = HBDsolute(inversed) − HBAsolvent—the relative solute donicity with respect to
solute acceptability;

2. HBA = HBAsolute(inversed) − HBDsolvent—the relative value of solute acceptability
with respect to solvent donicity D;

3. HYD = HYDsolute(inversed) − HYDsolvent—the relative hydrophobicity measure.
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The above definition can be used for deriving the temperature-dependent values
of the molecular descriptors for any solute in any solvent or solvent mixture. However,
prior to the application of Equation (3), it is necessary to properly represent the molecular
structure. This is done after performing a full conformational analysis and identifying the
most energetically favorable conformations. For these calculations, COMSOconf software
(version 20.0.0, BIOVIA, San Diego, CA, USA) utilized TURBOMOLE (revision V7.5.1,
TURBOMOLE GmbH, Karlsruhe, Germany) interfaced with TmoleX 2021 (version 21.0.1,
BIOVIA, San Diego, CA, USA). The RI-DFT BP86 (B88-VWN-P86) level of theory was
used. The geometry optimization utilized the def-TZVP basis set, while the single point
calculations were conducted using the def2-TZVPD basis set. Additionally included were
the fine grid tetrahedron cavity and the parameter sets with a hydrogen bond interaction
and van der Waals dispersion term based on the “D3” method of Grimme et al. [57]. The
final solubility calculations were done with COSMOtherm (version 22.0.0, BIOVIA, San
Diego, CA, USA) [58], and the BP_TZVPD_FINE_21.ctd parametrization was used.

2.4.2. Estimated Solubility as a Molecular Descriptor

The COSMO-RS (Conductor-like Screening Model for Real Solvents) [59–62] is a
commonly applied approach for the theoretical characteristics of liquid multicomponent
systems. It takes advantage of both quantum chemistry and post-quantum statistical ther-
modynamics for computing many fundamental properties, including chemical activity.
Although this approach cannot deal with solids, the solubility can be still computed pro-
vided that fusion properties are known. Fortunately, for both studied aromatic amides,
these quantities were measured and reported several times in the literature [63]. For the pur-
pose of solubility computations, the following averaged values were used: Tm(A) = 442.2 K,
Tm(P) = 408.1 K, Hfus(A) = 26.90 kJ/mol and Hfus(P) = 30.70 kJ/mol. These values are
indispensable, since the activity of the solute in the saturated state and the value of the pure
solid phase chemical potential are identical. The latter depends on the fusion properties:

ln(as
i ) = ln

(
γsat

i xsat
i
)
= −

∆ f usGm
i

RT
(4)

where ∆ f usGm
i stands for the partial molar Gibbs free energy of melting at conditions

corresponding to the solubility measurements. By definition, this term for the pure solute
at its melting point equals zero. The actual solubility computations conducted using
COSMO-RS rely on iteratively solving the following equation:

ln
(

γsat,i+1
i xsat,i+1

i

)
=

1
RT

(
µ

o,liq
i − µ

(i)
i

(
γsat,i

i xsat,i
i

)
+ max

(
0, ∆ f usGm

i

))
(5)

Superscripts, i and i + 1 in the above equation correspond to the values obtained in
the two subsequent iterations. The repetition of the iterative cycle lasts until convergence
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is achieved. The computation completes itself when the computed solubility difference is
below a certain threshold value.

It is worth admitting that, for many systems already studied, the solubility compu-
tations within the COSMO-RS framework are often only qualitatively accurate [64–66].
Nevertheless, despite the discrepancies between measured and computed solubility values,
they still capture an important part of system information, since the computed values of
solubility are quite well correlated with the experimental ones (R2 = 0.907). However, in
the studied population, the value of the mean average percentage error (PE) exceeds 53%
of the mole fraction solubility, and there are cases with PE > 1000%. This means that the
accuracy of the computed solubility is not sufficient for screening purposes but can be very
effective if used as molecular descriptors for nonlinear modeling. There is also another im-
portant issue related to solubility computations using the COSMO-RS approach. For some
systems, the complete miscibility of the solute with solvent is obtained. This is illustrated
in Figure 3 for acetaminophen. Dotted lines with crosses represent results obtained using
COSMOtherm. Unexpectedly, at higher concentrations of DMSO (x2* > 0.6), the program
fails in solubility computations, indicating complete miscibility. These artificial results
were observed also for DMF and 4-formylmorpholine. For the consistent application of
computed solubility, extrapolation was used in such cases, as indicated in Figure 3 by plots
with open symbols. This prevents from using nonphysical values of solubility as molecular
descriptors. Despite these shortcomings, it happened that the selection of the computed
solubility as a molecular descriptor is appropriate, since neural networks associate a high
contribution to this parameter.

Pharmaceutics 2022, 14, x FOR PEER REVIEW  7  of  19 
 

 

at  its melting  point  equals  zero.  The  actual  solubility  computations  conducted  using 

COSMO‐RS rely on iteratively solving the following equation: 

𝑙𝑛 𝛾 , 𝑥 ,   1
𝑅𝑇

𝜇 , 𝜇 𝛾 , 𝑥 ,   𝑚𝑎𝑥 0, ∆ �̅�   (5)

Superscripts, i and i + 1 in the above equation correspond to the values obtained in 

the two subsequent iterations. The repetition of the iterative cycle lasts until convergence 

is achieved. The computation completes itself when the computed solubility difference is 

below a certain threshold value. 

It is worth admitting that, for many systems already studied, the solubility compu‐

tations within  the COSMO‐RS framework are often only qualitatively accurate  [64–66]. 

Nevertheless,  despite  the  discrepancies  between  measured  and  computed  solubility 

values,  they still capture an  important part of system  information, since  the computed 

values  of  solubility  are  quite well  correlated with  the  experimental  ones  (R2  =  0.907). 

However, in the studied population, the value of the mean average percentage error (PE) 

exceeds 53% of  the mole  fraction solubility, and  there are cases with PE > 1000%. This 

means  that  the accuracy of  the computed solubility  is not sufficient  for screening pur‐

poses but can be very effective if used as molecular descriptors for nonlinear modeling. 

There  is  also  another  important  issue  related  to  solubility  computations  using  the 

COSMO‐RS  approach.  For  some  systems,  the  complete miscibility  of  the  solute with 

solvent is obtained. This is illustrated in Figure 3 for acetaminophen. Dotted lines with 

crosses represent results obtained using COSMOtherm. Unexpectedly, at higher concen‐

trations  of DMSO  (x2*  >  0.6),  the  program  fails  in  solubility  computations,  indicating 

complete  miscibility.  These  artificial  results  were  observed  also  for  DMF  and 

4‐formylmorpholine. For the consistent application of computed solubility, extrapolation 

was used in such cases, as  indicated in Figure 3 by plots with open symbols. This pre‐

vents from using nonphysical values of solubility as molecular descriptors. Despite these 

shortcomings,  it happened  that  the selection of  the computed solubility as a molecular 

descriptor is appropriate, since neural networks associate a high contribution to this pa‐

rameter. 

 

Figure 3. Example of computed solubility extrapolation in the case of the (1) A + (2) DMSO + (3) 

water system. Lines with crosses correspond to results generated by the COSMOtherm program, 

and the ones with open symbols were used as a linear interpolation of the last five points. 

Figure 3. Example of computed solubility extrapolation in the case of the (1) A + (2) DMSO + (3)
water system. Lines with crosses correspond to results generated by the COSMOtherm program, and
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2.4.3. Intermolecular Interactions as Molecular Descriptors

The final set of molecular descriptors comes from the inspection of the solubility
files and extraction of the three major contributions to the intermolecular interactions.
Within the COSMO-RS framework, bulk systems are modeled as an association of closely
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packed molecules that are ideally screened and enclosed within a virtual conductor. The
Coulomb interactions are the results of the screening of two contacting segments by their
surroundings and, in turn, the back-polarization of the solute molecule. This “misfit”
results in a specific interaction energy per unit area that represents the electrostatic part of
the total energy:

EMF
(
σ, σ′

)
= ae f f

a′

2
(
σ + σ′

)2 (6)

where aeff stands for the effective contact area between two surface segments, with α′ being
the adjustable parameter. Similarly, hydrogen bonding (H-Bond) can be described by the
charge density of the screening of neighboring strongly negative and positive centers for
donors and acceptors, respectively. Such interactions are assumed to take place when
contact occurs between two sufficiently polar surface pieces with opposite polarity, which
is formally defined as:

EHB
(
σ, σ′

)
= ae f f cHBmin(0; min(0; σdon + σHB); min(0; σacc − σHB)) (7)

where σHB and σ′HB are adjustable parameters. Additionally, the Van der Waals (vdW)
interactions occurring between surface segments have to be included in the COSMO-RS
model, which can be defined by the following relation:

EvdW
(
σ, σ′

)
= ar f f cvdW

(
σ, σ′

)
= ae f f

(
τvdW + τ′vdW

)
(8)

where τvdW , τvdW′ and cvdW are element-specific adjustable parameters. The Van der
Waals energy is related only to the type of element present in the atoms experiencing
surface contact.

Any prediction made within the COSMO-RS framework results in obtaining these
contributions, which makes them directly available from output files of a given computed
property. Therefore, such energetic information can be utilized as a set of universal descrip-
tors characterizing the properties of different systems. Here, the values of the total energy,
Etot, of A or P in the given system were used as a molecular descriptor. In addition, the
relative values of the contributions to the interaction energies were used. These energetic
molecular descriptors were computed for the ith components as follows:

∆Ei
j =

Ei
j

∑j Ei
j

(9)

where j corresponds to misfit, HB or vdW contributions. The descriptor values for mul-
ticomponent systems were computed as sums weighted by molar fractions. This set
of molecular descriptors, taking advantage of intermolecular interactions, was already
demonstrated [67] as adequate for solubility modeling.

2.5. Predictive Models Used for Data Curation and the Presentation of the Final Predictions

Although DML models offer very valuable help in predicting physicochemical proper-
ties, the direct application of the obtained model is prohibited by the necessity of demon-
strating at least some elementary programming skills in Python or another high-level pro-
gramming language. For overcoming this limitation, the final predictions were provided
in a more intuitive way of application in terms of the parameters of the Jouyban–Acree
model. For this purpose, the final ENNM was used for solubility data predictions, and the
obtained values were fitted with an aid of Equation 2 (see Supplementary Materials S2 in
“screening A” and “screening P”).
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2.6. Statistical Measures

The three following commonly used statistical measures were used in this paper.
Firstly, the percentage error, PE, with the following general formula:

PE =

∣∣xexp−xest
∣∣

xexp ·100% (10)

where xexp is the experimental value, and xest is the estimated value. Secondly, the mean
averaged percentage error, MAPE, described as:

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣∣
(

xest
i − xexp

i

)
xexp

i

∣∣∣∣∣∣·100% (11)

where x1
est is the estimated mole fraction value, x1

exp is the experimental mole fraction value
and N is the number of experimental points. Finally, the root means squared deviation,
RMSD, defined as:

RMSD =

√√√√ 1
N

N

∑
i=1

(
xest

i − xexp
i

)2
(12)

3. Results and Discussion
3.1. Experimental Solubility Screening

Inspired by previous successes in the solubility screening of such active pharmaceutical
ingredients (APIs) as sulfamethizol [28], phenacetin [64], sulfanilamide [68] and benzamide
analogs [69], three aqueous binary mixtures of DMSO, DMF and 4FM were used for solu-
bility measurements. Noteworthy, 4FM is considered a green solvent, which can be used in-
stead of DMF [28,70–74]. All temperature-related solubility profiles measured in this study
for pure solvents (acetaminophen in DMSO, DMF and 4FM, phenacetin in 4FM), along
with the literature data [34–51,75–80], were presented in the Supplementary Materials S1
in Tables S1 and S2. The solubility profiles determined for the corresponding aqueous bi-
nary mixtures are summarized in the Supplementary Materials S1 in Tables S3 and S4. The
exact solubility values are tabularized below in Table 1. DSC and FTIR-ATR analyses were
performed for the solid residues obtained after the solubility measurements, and the results
were compared with pure acetaminophen and phenacetin (see Supplementary Materials S1
in Figures S1 and S2). As it can be inferred, solubility measurements did not induce any
polymorphic or pseudo-polymorphic transitions of acetaminophen and phenacetin.

3.2. Characteristics of the Dataset

The whole collection of acetaminophen and phenacetin solubility is provided in
detail in the Supplementary Materials. The solubility of acetaminophen was measured
in twenty neat solvents, including water [34–48], methanol [38,79], ethanol [35,37,46],
1-propanol [41,79], 2-propanol [42,43,75,79], 1-butanol [79], 1-octanol [75,77], propylene gly-
col [35–37], transcutol [37], ethyl acetate [46,76,79], isopropyl myristate [51],
acetone [43,76,79], acetonitrile [34,79], 1,4-dioxane [45], hexane [77], cyclohexane [51]
and chloroform [51], augmented with measurements conducted in this work for DMF,
DMSO and 4-formylmorpholine. Saturated systems of phenacetin are available for such
neat solvents as water [49–51], methanol [49,78,80], ethanol [78,80], 1-propanol [78,80],
2-propanol [78], 1-butanol [78,80], 2-butanol [78], 1-pentanol [80], 1-octanol [77], ethyl
formate [78], ethyl acetate [78,80], n-propyl acetate [78], isopropyl myristate [51], acetoni-
trile [49,78], 1,4-dioxane [49,50], DMF [49,78], DMSO [49], N,N-dimethylacetamide [78],
THF [80], hexane [77], cyclohexane [51], benzene [80] and chloroform [51], supplemented
by new measurements reported here in 4-formylmorpholine. Additionally, binary solvents
were also explored as potential solubilizing media. The collection for acetaminophen en-
compasses the following systems: methanol + water [38], ethanol + water [35,37,46,48,81],
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acetaminophen + propanol [41], isopropanol + water [42], propylene glycol + water [35–37],
transcutol + water [39], acetonitrile + water [34], 1,4-dioxane + water [45], ethanol + propy-
lene glycol [47] and ethanol + ethyl acetate [46], enriched with the data reported here for
the 4-formylmorpholine + water, DMF + water and DMSO + water systems. Moreover, the
following six binary solvent mixtures were used for solubility measurements of phenacetin,
namely methanol + water [49,82], 1,4-dioxane + water [49,50], acetonitrile + water [49] and
DMF + water [49], supplemented with the 4-formylmorpholine + water system studied here.
Noteworthy, in the case of acetaminophen in aqueous acetonitrile, aqueous 1,4-dioxane,
ethanol-propylene glycol and ethanol-ethyl acetate, a characteristic significant co-solvation
effect occurred. In the case of phenacetin, this effect can be noted for 1,4-dioxane–water
and acetonitrile–water binary solvents.

Table 1. The solubility values (mole fractions) of acetaminophen (A) and phenacetin (P) determined
in this study for aqueous–organic binary solvents at different temperatures (x2* stands for a mole
fraction of the organic component in the binary aqueous–organic solvent).

x2* 25 ◦C 30 ◦C 35 ◦C 40 ◦C

A + DMSO + water (xA × 102)

0.0 0.20 ± 0.01 0.24 ± 0.01 0.28 ± 0.01 0.32 ± 0.01

0.2 5.17 ± 0.05 7.22 ± 0.38 9.98 ± 0.17 13.66 ± 0.51

0.4 13.65 ± 0.37 18.37 ± 0.21 23.79 ± 0.92 31.47 ± 1.15

0.6 26.47 ± 0.89 31.69 ± 0.99 37.95 ± 0.67 45.23 ± 0.79

0.8 31.61 ± 0.95 37.03 ± 0.96 43.38 ± 0.54 51.08 ± 0.78

1.0 30.30 ± 0.55 35.76 ± 0.71 42.22 ± 1.02 48.92 ± 0.62

A + DMF + water (xA × 102)

0.2 5.99 ± 0.35 7.65 ± 0.26 9.43 ± 0.40 11.81 ± 0.65

0.4 16.13 ± 0.39 19.38 ± 0.46 23.60 ± 1.18 28.88 ± 0.44

0.6 31.07 ± 0.28 34.57 ± 1.19 39.04 ± 0.74 44.62 ± 1.60

0.8 35.26 ± 0.90 38.58 ± 0.55 43.15 ± 1.19 49.31 ± 1.40

1.0 28.69 ± 0.60 31.85 ± 0.56 36.14 ± 0.68 42.73 ± 0.46

A + 4FM + water (xA × 102)

0.2 5.18 ± 0.34 7.10 ± 0.38 9.56 ± 0.26 12.54 ± 0.71

0.4 9.63 ± 0.19 13.07 ± 0.43 16.68 ± 0.5 20.48 ± 0.47

0.6 12.97 ± 0.50 16.89 ± 0.28 21.58 ± 0.82 26.16 ± 0.85

0.8 15.41 ± 0.46 19.46 ± 0.55 24.45 ± 0.84 29.54 ± 0.22

1.0 16.73 ± 0.55 20.80 ± 0.73 25.89 ± 0.27 31.11 ± 0.73

P + 4FM + water (xp × 102)

0.2 0.59 ± 0.03 0.79 ± 0.02 1.08 ± 0.05 1.54 ± 0.04

0.4 2.53 ± 0.01 3.02 ± 0.14 3.64 ± 0.19 4.67 ± 0.16

0.6 4.19 ± 0.09 4.80 ± 0.01 5.78 ± 0.22 7.11 ± 0.32

0.8 5.33 ± 0.07 6.03 ± 0.15 6.94 ± 0.17 8.20 ± 0.07

1.0 6.19 ± 0.18 6.89 ± 0.14 7.90 ± 0.13 9.12 ± 0.21

It is necessary to emphasize that this collection, although rich and diverse, is inad-
equate for the direct use for the training of DMLM. As detailed in the Supplementary
Materials, in many cases, the data needed to be cured. The final dataset is synthesized in
Figure 4. The diversity of the solubility of acetaminophen and phenacetin is of four orders
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of magnitude due to the inclusion of highly polar, proto-donating solvents and, also,
nonpolar aprotic ones.
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included in the dataset for model development presented in the form of violin plots. The horizontal
lines denote quartiles.

The distributions of the molecular descriptors are documented in Figure 5. The
three types of molecular descriptors characterize the solute activity in saturated systems
expressed by computed solubility, the energetics of intermolecular interactions and charge
density distributions interpreted in terms of solute–solvent affinities.

3.3. Developed Model of Solubility

The performed training of the ANNs resulted in an ensemble model, the performance
of which is documented in Figure 6. An acceptable accuracy was obtained with R2 = 0.996.
The number of outliers was less than 2%, defined by three normalized standard deviations.

3.4. Solubility Screening

For screening purposes, hypothetical aqueous binary mixtures of green organic sol-
vents were tested. As the measure of environmental friendliness, the values of the indices
defined by Harten et al. [83] were used. Solvent substitution is possible using PARIS III
(Program for Assisting the Replacement of Industrial Solvents III, Version 1.4.0) software
supported by the U.S. Environmental Protection Agency (EPA). PARIS III utilizes a se-
ries of computed indices assessing human toxicity potential upon ingestion or inhalation,
as well as potentials arising from terrestrial, aquatic, ozone depletion, global warming,
photochemical oxidation and acid rain toxicity. In particular, the environmental index
(EI) was used as an indicator of the overall relative measure of hazardous properties. For
screening purposes, only such solvents were selected that are characterized by EI < 0.5 [83].
This tight criterion unexpectedly excludes DMSO, despite that it is generally considered
a green solvent. The reason for this is a very high EI = 11.7 value of DMSO coming from
the photochemical oxidation potential contribution. Hence, the selection was done by
arbitrarily excluding this contribution, which resulted in the reduction of the EI value
of DMSO down to 0.26. It is worth noting that the final list of potential green solvents
does not include some commonly used alcohols, starting from methanol and ending on
1-octanol. Additionally, many often-used esters are not included. 4-formylmorpholine is
characterized by EI = 0.51, so it can be considered almost green using the criterion adopted
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for the purpose of this study. The final list of solvents used for screening was shortened
from all 5200 available in PARIS III down to 50. The results of the screening are provided in
the Supplementary Materials S2 in “screening A” and “screening P”.
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Figure 5. The collection of histograms of normalized values of molecular descriptors used for DMLM
development. The following notation is used: HBA and HBD denote hydrogen-bonding affinity and
donicity, respectively. HYD denotes hydrophobicity. ∆Ej describes relative interaction energies of the
solute with respect to the solvent, where j = tot stands for the total energy, j = HB for the hydrogen
bonding, j = vdW for the dispersion contribution and j = misfit for the electrostatic contribution.
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points using eight molecular descriptors. The top panel characterizes the predictive abilities by split-
ting them into train, test and validation subsets. Additionally, a comparison between experimental
and COSMO-RS-derived solubility is shown. The bottom panel provides an applicability domain
analysis done for the final model.

The experimentally observed acetaminophen solubility was proven to be the highest
in the case of DMF + water (x2*(opt) = 0.8, log(xA

exp,25◦C) = −0.45, EI = 2.0), followed by
DMSO + water (x2*(opt) = 0.8, log(xA

exp,25◦C) = −0.50, EI = 0.2) > neat 4FM (log(xA
exp,25◦C)

= −0.78, EI = 0.5), 1,4-dioxane + water (x2*(opt) = 0.5, log(xA
exp,25◦C) = −0.87, EI = 0.8) >

neat transcutol (log(xA
exp,25◦C) = −0.95, EI = 0.7). Among these top-best solvents, only

DMSO and 4FM can be regarded as green ones, according to the tight criteria set for the
purpose of this study. Theoretical screening confirmed the above sequence and additionally
enabled the identification of greener alternatives. It happened that the highest solubility
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of acetaminophen was found for DMSO, which was followed by neat ethyltriglycol and
aqueous solutions of methyltriglycol and 2-pyridin-2-ylethanol. The exemplary solubility
profiles are collected in Figure 7.
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Figure 7. Results of the theoretical green solvents screening inferred from ENNM (T = 25 ◦C). Electron
density scales are the same as in Figure 2. The red line represents solubilities predicted based on
parameters fitted with Equation (2), while the dashed one stands for average ENNM solubility data.

In general, the solubility of phenacetin is slightly lower compared to acetaminophen,
and the experimentally observed sequence includes the following neat solvents:
N,N-dimethylacetamide (log(xP

exp,25◦C) = −0.67, EI = 1.6), DMF (log(xP
exp,25◦C) = −0.93,

EI = 2.2) and 4FM (log(xP
exp,25◦C) = −1.21, EI = 0.5). Additionally, 1,4-dioxane + water

(x2*(opt) = 0.65, log(xA
exp,25◦C) = −1.33, EI = 0.8) has a relatively high potential of P disso-

lution. Unfortunately, the solvents that have been used so far are hardly green, with the
exception of 4FM. Hence, it is interesting to inspect the results of the theoretical screening.
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In the case of phenacetin, the screening procedure pointed to aqueous solutions of oleic
acid, linoleic acid and octanoic acid as the potentially most-suited solvents. Unfortunately,
these solvents are immiscible with water and cannot be used in practice. The aspect of
miscibility was not a part of the model development. Probably the replacement of water
with DMSO might help in obtaining the homogeneous mixture, which would also result
in a green solvent (EI ≈ 0.2). Fortunately, the next solvents found on the prediction list
are the same as the ones identified for acetaminophen. Hence, as documented in Figure 7,
ethyltriglycol, methyltriglycol and pyridine-2-ethanol are suggested as first-choice solvents
for future experiments with acetaminophen and phenacetin.

4. Conclusions

The study was aimed at finding green and effective solvents adequate for
acetaminophen and phenacetin processing in pharmaceutical practice. This goal was
achieved via both the experimental and theoretical screening of binary aqueous solvent
mixtures. The latter was achieved by formulating the ensemble neural network model,
ENNM, which was derived after representing the molecular features of the studied com-
pounds by using COSMO-RS-derived molecular descriptors. However, the experimental
pool of data was cured prior to model development and extended with newly measured
data. The considered aqueous binary solutions in which A and P were measured followed
the previously observed high solubilizing potential of 4-formylmorpholine, which can also
be considered a green solvent (EI = 0.51). This intuition was correct, since acetaminophen
is highly soluble in neat 4FM, although the solubility in such solvents as DMF and DMSO
is slightly higher. 4-formylmorpholine was also identified as a fairly effective solvent for
phenacetin dissolution, although the absolute solubility values are much lower compared
to acetaminophen. A closer inspection into the type of solvents used so far for solubility
studies of both considered aromatic amides revealed that environmentally friendly solvents
were sparingly used. This was the direct motivation for the extensive screening of greener
solvents, which are purchasable at a reasonable price. After shortening the list of candidates
included in the PARIS III database, comprising 5200 solvents, by applying these criteria,
the final screening was done for 50 solvents and their mixtures with water. It was found
that both aromatic amides studied here can be effectively dissolved in such green solvents
as ethyltriglycol, methyltriglycol and pyridine-2-ethanol. It is very tempting to perform
appropriate measurements in the future for confirming these findings. Finally, it is worth
adding that the newly developed model for the solubility prediction of acetaminophen
and phenacetine relies on three types of criteria for the selection of the neural networks
into an ensemble. The first one addresses the model accuracy, which is evaluated using
the RMSD measure of every ANN. The second criterion is the model precision, which is
meant as a minimization of the number of outliers lying beyond three times the normalized
standard deviation. The third criterion addresses reliability, including restrictions on the
formal range of the predicted values. In the case of solubility expressed as logarithmic
values of mole fractions, this range restricts the predicted values to the span between 0 and
1. Hence, this triple combination of accuracy–precision–reliability criteria is an essential
part of the developed ENNM.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics14122828/s1: Supplementary Materials S1:
Figure S1. The FTIR-ATR spectra (A) and DSC thermograms (B) measured for acetaminophen
solid residues and pure reagent. Figure S2. The FTIR-ATR spectra (A) and DSC thermograms
(B) measured for phenacetin solid residues and pure reagent. Table S1. The results of data curation
for acetaminophen in neat solvents. Data points were excluded from fitting the λ h-equation if
PE > 10%. The optimized values of the parameters of the Buchowski–Ksiazczak model applied
to acetaminophen solubility in neat solvents are provided in the table in an additional supporting
file (see Supplementary Materials S2 in “neat solvents”). Table S2. The results of the data cura-
tion for phenacetin in neat solvents. Data points were excluded from fitting the λ h-equation if
PE > 10%. The optimized values of the parameters of the Buchowski–Ksiazczak model applied to
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phenacetin solubility in neat solvents are provided in the table in an additional supporting file (see
Supplementary Materials S2 in “neat solvents”). Table S3. The data collection of acetaminophen
solubility in binary solvent mixtures. The optimized values of the parameters of the Jouyban–Acree
model applied to acetaminophen solubility in binary solvents are provided in the table in an addi-
tional supporting file (see Supplementary Materials S2 in “binary solvents”). Table S4. The data
collection of phenacetin solubility in binary solvent mixtures. The optimized values of the parameters
of the Jouyban–Acree model applied to phenacetin solubility in binary solvents are provided in
the table in an additional supporting file (see Supplementary Materials S2 in “binary solvents”).
Supplementary Materials S2: The obtained model parameters with statistical measures of accuracy
for neat and binary solvents, and the screening results for acetaminophen and phenacetin.
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