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Abstract: Peptides are small biomolecules known to stimulate or inhibit important functions in the
human body. The clinical use of peptides by oral delivery, however, is very limited due to their
sensitive structure and physiological barriers present in the gastrointestinal tract. These barriers can
be overcome with chemical and mechanical approaches protease inhibitors, permeation enhancers,
and polymeric encapsulation. Studying the success of these approaches pre-clinically with imaging
techniques such as fluorescence imaging (IVIS) and optical microscopy is difficult due to the lack
of in-depth penetration. In comparison, nuclear imaging provides a better platform to observe the
gastrointestinal transit and quantitative distribution of radiolabeled peptides. This review provides a
brief background on the oral delivery of peptides and states examples from the literature on how
nuclear imaging can help to observe and analyze the gastrointestinal transit of oral peptides. The
review connects the fields of peptide delivery and nuclear medicine in an interdisciplinary way to
potentially overcome the challenges faced during the study of oral peptide formulations.

Keywords: oral delivery; peptide; gastrointestinal imaging; SPECT; pre-clinical imaging

1. Introduction

One of the most common routes of drug administration is oral delivery, 53% of
FDA-approved drugs from 2015–2020 [1] since it provides better patient compliance and
low manufacturing cost [2,3]. While parenteral drug delivery typically shows 80–100%
bioavailability, rapid onset of drug effect, and most predictable pharmacokinetics, about 5%
of the world’s population is still needle-phobic, and injections generally require medical
training for administration [4]. Thus, oral drug delivery is by far the preferred route of
administration by patients [5]. It plays a major role in the treatment of chronic disorders
such as diabetes, gut infections, irritable bowel syndrome, and hypertension that require
daily administration [6]. Despite many benefits, oral peptides comprise only 4% of protein
and peptide FDA-approved formulations, primarily due to the challenges faced during the
development of oral delivery systems [7]. The harsh environment of the gastrointestinal
tract comprising acidic pH, enzymes, mucus lining, and gut microbiome prevents the
delivery of sensitive drugs, e.g., peptides, into the systemic circulation, thereby reducing
their oral bioavailability [8,9].

Peptides are polymeric biomolecules consisting of approximately 2–50 amino acids
linked by peptide bonds [10]. One of the most commonly administered therapeutic peptides
is insulin, a 51-amino acid long peptide hormone secreted by beta cells in the pancreas [11].
Insulin is used to treat diabetes which affected 537 million adults worldwide and caused
6.7 million deaths in 2021 [12]. In the past, insulin injections were given subcutaneously to
treat diabetes due to low oral bioavailability in the gastrointestinal (GI) tract [13]. How-
ever, in 2019, a clinical Glucagon-like-peptide-1 (GLP-1) receptor agonist called Rybelsus®

(Semaglutide) came into the market that treats Type 2 diabetes by stimulating the secretion
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of insulin from the pancreas [14]. It shows better efficacy compared to other GLP-1 agonists
but has very low bioavailability (~1%) and can cause pancreatitis or thyroid cancer [15,16].

Peptides are very versatile biopharmaceuticals as they exhibit high specificity, bind
to a variety of drug targets, and express low toxicity [17]. Nevertheless, their limitations
exceed their benefits as they show low physiochemical stability, undergo proteolysis, and
may induce immunogenicity [18]. Furthermore, high molecular weight, low lipophilicity,
and the presence of charged functional groups make them poor permeators and reduce
their bioavailability further [7,8,19–22].

The low oral bioavailability of peptides caused by these barriers has adversely affected
the approval of oral peptide formulations, as seen in Figure 1 [7]. In July 2017, there were
380 drug variants (chemically modified analogs) of the total Federal Drug Administration
(FDA) approved peptides in clinical use. Only 13 of these drug variants were delivered
orally, while almost half (158) of them were administered intravenously, 116 were given
subcutaneously, and 49 were intramuscularly [7]. Orally delivered peptides thus comprise
only 4% of total peptide use (Figure 1) [7]. However, there has been a recent increase in the
approval of oral peptide formulations due to innovative interdisciplinary drug delivery
research. Currently, in 2021, there are 26 FDA-approved oral formulations of peptides,
including the already mentioned 13 peptides plus octreotide and their drug variants
(Table 1) [23]. Similarly, the European Medical Agency (EMA) approved 18 peptide drugs
between 2010 and 2019, of which only four were administered orally, and two were retracted
recently [23]. It is thus very apparent that oral delivery of peptides is still an uncommon
method of clinical administration.
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Table 1. Commercially available FDA-approved oral peptide formulations [24,25] (* discontinued
after 2017, # also approved by EMA). ˆ Sodium N-[8-(2-hydroxybenzoyl) amino caprylate.

Therapeutic Peptide Brand Application Additional Components Bioavailability

Aliskiren * Tekturna®, Tekamlo®,
Amturnide® Treat hypertension

Boceprevir # [24] Victrelis® Treat chronic hepatitis C Protease inhibitor Up to 65%

Colistin [26] Koolistin® Treat multi-drug resistant
bacterial infections Local

Cyclosporine [27] Neoral®/Sandimmune® Suppress immune system Non-ionic surfactant 25–30%

Desmopressin [28] DDAVP® tablets,
DDAVP® Melt, Minrin®

Treat central diabetes
insipidus, primary

nocturnal enuresis, blood
disorders

Desmopressin acetate hydrate or
Arginine Vasopressin 0.08–0.16%

Glutathione Reduced L-Glutathione
Reduce gut inflammation

in cystic fibrosis
patients [29]

Curcumin, no excipients [30] Not documented

Linaclotide # Linzess®, Constella® Treat irritable bowel
syndrome [31]

Microcrystalline cellulose
spheres, enteric coating, hard

gelatin capsules
Local

Octreotide [32] Mycapssa® Treat acromegaly

Polyvinylpyrrolidone (PVP-12),
polysorbate 80, co-emulsifiers
(glyceryl caprylates), gelatin

capsules, and Acryl-EZE®

(methacrylate)

53–88%

Ombitasvir [33] Viekirax® Treat Chronic hepatitis C
Combination of dasabuvir,

ombitasvir, paritaprevir, and
ritonavir

48–53%

Pancrelipase [24]
Pancrecarb®, Viokace®,

ULTRESA®, PERTZYE®,
ULTRASE®, ZENPEP®

Improve food digestion Pancreatic amylase, pancreatic
lipase, and chymotrypsin 27–29%

Ragweed [24] Ragwitek® Treat ragweed allergy Pollen extract Not documented

Sacrosidase Sucraid® Hydrolyze sucrose Sucrase [34] Local

Semaglutide [35,36] Rybelsus® Induce insulin secretion
Enzyme inhibitor, enteric

coating, Absorption enhancer
(SNAC) ˆ

~1%

Taltirelin [37] Ceredist®

Ceredist OD®

Protect thyrotropin
releasing hormone from

enzyme hydrolysis
75%

Tyrothricin [38] Several brands
Treat infected skin and
oro-pharyngeal mucus

membranes
Local

Vancomycin [39] Vancocin® Treat pseudomembranous
colitis Local

1.1. Barriers to Oral Delivery of Peptides

The first barrier for peptides (Figure 2) is potential degradation by gastric juices in
the stomach, which is low in pH (~1 to 3) and high in proteases, e.g., pepsin [40]. As
peptides leave the stomach, the pH gradually increases in the small intestine (5.5–7), large
intestine (5.5–7.5), and colon (6.5–7.5) [3,41]. These changes in pH can chemically and
functionally alter the 3D structure of peptides. The next barrier is enzymes such as trypsin
and chymotrypsin present in the intestine, especially in the first segment of the small
intestine (duodenum), that degrade peptides into small non-functional fragments. The
thick mucus covering the intestinal wall acts as the third barrier and hinders the drug
uptake process. Underlying the mucus is the last barrier made up of special epithelial cells
called enterocytes that allow selective permeation of molecules into the systemic circulation
but overall reduce drug penetration through the intestinal membrane [8].
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Protease inhibitors, permeation enhancers, and polymeric encapsulation are some
of the approaches that improve the pharmacological effect and oral bioavailability of
peptides [25,42]. For example, Tarsa’s oral recombinant salmon calcitonin (TBRIATM) has
shown encouraging safety and efficacy results in Phase 3 ORACAL trial for the treatment of
postmenopausal osteoporosis by incorporating the approaches mentioned above. The tablet
contains an outer layer of pH-lowering agent (citric acid) and an inner layer of peptide
calcitonin along with the permeation enhancer lauroyl l-carnitine. An enteric coating of
hydroxypropylmethylcellulose helps bypass the acidic stomach pH to achieve intestinal
delivery. TBRIATM was less immunogenic but similarly effective and safe compared to
commercially available nasal calcitonin sprays [43].

Nanoparticle and microsphere encapsulation is also effective in protecting peptides
during oral delivery and increasing pharmacological effect [8]. For example, researchers
have shown that the peptide insulin loaded in microspheres using a 1:1 ratio of poly(fumaric
anhydride) and poly(lactide-co-glycolide) successfully penetrated the intestinal epithelium
in rats and promoted the glucose uptake in cells, while the controls (saline or insulin
solution given orally) increased blood glucose as expected to non-significantly different
levels from each other [44].

1.2. Observing Oral Delivery of Peptides

Although oral delivery has been well studied clinically, scientists still struggle to
accurately quantify drug uptake and distribution in the GI tract pre-clinically due to the
smaller size and dimensions of the organs in animals [45,46]. In addition, physiological
and anatomical barriers such as gastric juices, enzymes, and intestinal mucus membranes
present in the GI tract reduce the bioavailability of drugs considerably [2,5]. Peptides, such
as other biomolecular drugs, have sensitive 3D structures that get degraded easily in the
GI tract and thus are not delivered orally (further discussed in the next section) [5,47,48].
Drug delivery systems (DDS) have been formulated to overcome this degradation by pro-
tecting/encapsulating peptides in excipients that improve the amount of intact functional
peptides reaching the systemic circulation after oral administration [17,47,49,50].

The amount and rate of drug delivered from the oral DDS to the systemic circula-
tion, i.e., the pharmacokinetic properties of the DDS, can be studied using different tech-
niques such as traditional biodistribution studies, histological analyses, blood sampling
techniques, and more recently, optical and fluorescent microscopy, and nuclear imaging
techniques [51–54].

Over a period, new techniques have emerged, overcoming the limitations of earlier
techniques, but each technique has its advantages and limitations. Biodistribution studies
give an accurate quantitative analysis of drug distribution in the body but require a large
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number of animals for each time point to study drug uptake in different organs over
time [55]. Whereas histology provides drug uptake at specific locations such as tissue layers
at different time points after sacrificing the animals, thereby requiring discrete animals for
each data point leading to large standard deviations [56–58]. Blood sampling overcomes
this challenge since blood can be collected from the same animal at different time points,
but it does not provide any data regarding drug uptake in tissues or organs. On the
other hand, microscopy provides a good understanding of cellular uptake and reduces
animal variability but lacks the depth of penetration [59]. Nuclear imaging overcomes all
these challenges through real-time 3D images. It clearly shows the depth of penetration
of drug uptake in the same animal since the drug is conjugated with a radioisotope that
can be detected on a gamma camera while the drug is moving through the body [59–61].
However, nuclear imaging has its own drawbacks, such as low resolution at the cellular
level (limitation of current gamma cameras) and the difficulty in observing the stability of
radioisotope-bound peptides during GI transit and uptake into circulation [62].

This review, in addition to giving an update on the current clinically available oral pep-
tide formulations and drug delivery systems, also discusses the potential of nuclear imaging
techniques to study the oral biodistribution of biopharmaceutical peptide drugs with a
special focus on Single Photon Emission Computed Tomography (SPECT) and Positron
Emission Tomography (PET) imaging, as they are the most sensitive and quantitative
in vivo nuclear imaging methods.

2. Existing Systems of Oral Delivery of Peptides

As mentioned briefly in the section above, to overcome physiological barriers present
in the GI tract, components such as enzyme inhibitors, enteric coatings, and permeation
enhancers are employed in DDSs such as liposomes, nanoparticles, micelles, and hy-
drogels (Figure 3) [47]. While microspheres and dendrimers are also being investigated
pre-clinically as possible carriers for oral delivery of peptides [63–67], they are not discussed
in this review.

2.1. Liposomes

First elucidated by Alec D Bangham in 1961, liposomes are the most common and
well-studied type of nanocarrier used for drug delivery [68]. They are defined as vesicles
composed of one or more phospholipid bilayers that self-assemble to enclose an aqueous
interior space, typically between 50–150 nm in diameter (Figure 3A) [63]. Researchers’
fascination with the oral administration of therapeutic molecules via liposomes began in
the 1970s incorporating insulin for managing blood glucose levels [57,69]. Patel and Ryman
(1976) showed that liposomal formulations made up of lecithin, cholesterol, and diacetyl
phosphate could successfully deliver insulin orally, reducing the blood glucose level of
diabetic rats to approximately one-third of its initial value 3 h after administration [11].
They concluded that adopting a liposomal drug delivery system allowed insulin. A peptide
previously believed to lose its therapeutic effects when orally administered to survive
the harsh environments of the GI tract. Although the results were promising, it was later
found that they were neither reproducible nor consistent, with only 54% of spontaneously
diabetic rats and 67% of alloxan-induced diabetic rabbits responding to treatment [70].
These inconsistencies may have been in part due to the challenges faced by the early
liposomal delivery systems that resulted in low circulation time due to uptake by the
reticuloendothelial system and opsonization [71].
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There are several advantages of using liposomes for the oral delivery of peptides.
First, liposomes are biocompatible due to their lipid composition being similar to biological
membranes [72]. Additionally, they are unparalleled among nanocarriers in their ability
to encapsulate both hydrophobic and hydrophilic drugs, allowing for a diverse range of
therapeutic molecules to be shielded from the external environment and successfully deliv-
ered [73]. Furthermore, they can be improved with a wide variety of physicochemical and
biophysical functionalities, such as targeting ligand molecules, PEGylation, and polymeric
coatings that might enhance peptide delivery and reduce the barriers faced by other oral
DDS (Figure 3A) [74,75]. A pioneering liposomal polymerization technique introduced
by Dr. Robert Langer’s lab composed of cross-linked 1,2-di (2,4-octadecadienoyl) phos-
phatidylcholine showed 50% more gastrointestinal stability than regular cholesterol-based
liposomes and could deliver 75% of its contents intact to the intestine [76].

Overall, liposomal delivery systems are able to stabilize and protect therapeutic
compounds from enzymatic degradation, prevent premature inactivation, and increase
absorption through the GI tract [74].

2.2. Nanoparticles

Nanoparticles are particles typically sized from 1 to 100 nm and made from inorganic
materials, such as silicates, carbon, silver, iron, titanium, and cerium, or organic materials,
such as lipids, polymers, and proteins [77]. Nanoparticles have multiple benefits, such
as efficient delivery of cargo to the blood circulation and the lymphatic system, thereby
increasing the drug’s circulation time and concentration at the target site, for example, a.
tumor (Figure 3B) [8]. Nanoparticles protect peptides during oral delivery by encapsulating
biomolecules inside their core and preventing mechanical or physiological damage to the
peptide [78]. Furthermore, bioadhesive nanoparticles assist in increasing the retention and
residence time of peptides at target sites, such as under the tongue or in the gastrointestinal
tract, increasing their uptake. In particular, mucoadhesive polymers such as chitosan,
Carbopol, polymethacrylates, and carboxymethyl cellulose, mixed with or coated onto
nanoparticles, promote strong adhesive interactions with mucus and increase the interac-
tion with the intestinal epithelium [8,79]. This prolongs nanoparticles’ time in the intestinal
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lumen, increases a drug’s concentration in the systemic circulation, and reduces plasma
fluctuations and side effects, thus overall improving drug bioavailability and efficacy [63].

As an example of nanoparticles used for oral peptide delivery, Zhang et al. in 2006
showed that insulin could be successfully delivered orally via solid lipid nanoparticles
with a bioavailability of 4.99% to 7.11% in rats [80]. Another report by Sung et al. con-
firmed these findings and showed that nanoparticles sized between 110 nm to 250 nm and
composed of chitosan and poly (γ-glutamic acid) incorporating 15% insulin resulted in an
oral bioavailability of 15.1 ± 0.9% and a visible decrease in blood glucose levels of diabetic
rats [81,82]. Mucoadhesive polymers such as chitosan contribute to the opening of tight
junctions between the epithelial cells of the lining of the small intestine [82]. However, prac-
tical applications of chitosan are limited as it is poorly soluble in the intestine, and chemical
modifications to its structure can affect the functionality of peptides being delivered [83].
Another type of polymeric nanoparticles composed of poly(-ε-caprolactone) and Eudragit®

RS was found to be more biocompatible and effective but showed low oral bioavailability
of 13% in diabetic rats after oral delivery [84].

2.3. Micelles

Polymeric micelles are spherical structures composed of amphiphilic copolymers
which self-assemble in aqueous solutions (Figure 3C) [85]. They are typically under 100 nm
in size and possess a hydrophobic core into which lipophilic therapeutic compounds may
be loaded [85]. They protect incorporated drugs from degrading factors during circulation,
and their altered physicochemical properties can increase membrane permeability [86]. In
addition, micellar DDS avoid clearance by the reticuloendothelial system due to their small
size and improve its systemic exposure [87].

Most successfully, micellar delivery systems were experimentally tested and revealed
to be applicable for both ocular drug delivery [88] and delivery of anti-cancer drugs [89].
A wide variety of formulated copolymers have also been tested for use in oral drug
delivery. For example, polyanionic copolymer mPEG-grafted-alginic acid (mPEG-g-AA)-
based polyion complex (PIC) micelles were shown to increase the intestinal permeability
of the 32-amino-acid peptide salmon calcitonin by 2.24-fold across a Caco-2 monolayer
without affecting the cell integrity [90].

In 2020, for the first time, Han et al. developed zwitterionic micelles that can success-
fully deliver oral insulin in animals [91]. The micelles made up of DSPE-PCB (DSPE-1,
2-distearoyl-sn-glycero-3-phosphoethanolamine, PCB-poly(carboxybetaine) mimic the sur-
face of capsid viruses, thereby penetrating the epithelial cell layer of GI tract by proton-
assisted amino acid transporter 1 (PAT1) [92–94]. A key benefit of these micelles is their
ultra-low critical micelle concentration (CMC) of ~10-6 mM that prevents the tight junctions
from opening [95]. Thus, peptides delivered in DSPE-PCB micelles are only delivered
by transcellular pathway and show a unique safety profile by maintaining gut health.
The researchers also fabricated a prototype of oral insulin by encapsulating freeze-dried
DSPE-PCB/insulin in an enteric-coated capsule and administering it in diabetic rats [91].
The formulation showed an oral bioavailability of 42.6% and a prolonged hypoglycemic
effect of up to 6 h, depending on the loading ratio of DSPE-PCB and insulin [91].

2.4. Hydrogels

Another DDS under consideration for oral drug delivery of peptides is hydrogels.
They are defined as polymers consisting of hydrophilic components cross-linked together,
forming a 3D structure that can swell and hold a large amount of water [96]. In a compre-
hensive review by Sharpe et al., the authors noted that hydrogels are good candidates for
oral drug delivery due to their biocompatibility, ability to be modified, and the wide range
of materials, either synthetic or natural, that can be used in their fabrication [97]. A range of
hydrophilic polymers is used to cross-link and form mesh-like structures that can be loaded
with different drug moieties. An advancement in this field comes in the form of smart
polymeric composite carriers such as carboxylated chitosan grafted nanoparticles (CCGN)
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combined with bilaminated films consisting of a hydrophilic alginate-Ca2+ mucoadhesive
layer and a hydrophobic ethylcellulose backing layer [98]. Calcein was entrapped in the
nanoparticles and loaded into the hydrogel alginate film. In vitro release studies showed
no release in simulated gastric fluid at pH 1.2 (similar to humans) and 100% release within
30 min at intestinal pH due to the complete dissolution of the alginate layer [98].

3. Nuclear Imaging

To study the movement and ability of DDS to reach the target site, scientists have
invented a variety of imaging techniques ranging from optical techniques to nuclear
imaging. Optical techniques include light, electron, bioluminescence, and fluorescence
microscopy for cells, in vivo imaging systems (IVIS) (includes fluorescence and biolumi-
nescence imaging), and optical coherence tomography (OCT) for tissues/animals [99]. The
optical techniques provide an easy, cost-effective in vitro quantification of the drug concen-
tration within cells [100]. However, pre-clinical optical imaging is often challenging due
to a lack of light absorption into the tissue/organ, making the imaging non-quantitative.
The shortcomings of the optical techniques can be overcome by nuclear imaging, also
known as radionuclide scanning, as it provides real-time analysis, high resolution, and
fully quantitative results in 3D [59]. This section discusses the current applications and
future potential of nuclear imaging in the field of oral peptide delivery for pre-clinical and
clinical studies.

Nuclear medicine imaging, by the use of radiotracers and different radioisotopes,
identifies abnormalities in the body at molecular levels, such as cancer, infectious and
inflammatory disorders, neurodegenerative conditions, amongst others [59,101]. The
tracers are administered intravenously or orally in millicurie (1 mCi = 37 MBq) doses. They
accumulate in target organs over time, and through the emission of gamma, beta rays, or
positrons, they can be detected by gamma camera systems or PET systems to display an
image of the diseased site [102]. Nuclear imaging scans include gamma camera systems
and PET systems. They provide a non-invasive, real-time imaging modality that can be
validated with an ex vivo biodistribution study wherein the organs are harvested, and
radioactivity is measured in each organ at different time points throughout the study or at
the end of an experiment [103,104]. A recent advancement in the field of nuclear imaging is
fusion imaging, consisting of PET/SPECT imaging combined with Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI) which allows the concurrent assessment of
both functional/physiological and morphological/anatomical conditions in a patient. Thus,
a dual-modality imaging system such as PET/CT, PET/MRI, and SPECT/CT provides the
radiation signal overlaid on an accurate visual background of a patient’s target organs and
anatomy [60].

The steps toward the clinical development of a radiolabeled peptide for optimal tar-
geting, as seen in Figure 4, include (1) Identification of the receptor or molecular target.
Receptor homogeneity, density, and incidence play an important role in targeting receptors.
(2) To improve the biological half-life of the peptides, occasionally, a more metabolically sta-
ble peptide analog is synthesized, which preserves the functionality and molecular structure
of the natural peptide. (3) Radiolabeling process. The peptide is covalently coupled, with
or without a spacer and/or chelator that can bind a radioisotope (e.g., 18F) or a radiometal
(e.g., 111In) accordingly. For example, the peptide can be directly conjugated to radioiodine
or 18F using a prosthetic group with a high labeling efficiency (>95%) and specific activity.
(4) In vitro radiopeptide binding to study the affinity of the altered radiolabeled peptide
to bind to cell receptors and produce the desired effect. (5) In vivo biodistribution and
imaging to study the pharmacokinetic and pharmacodynamic properties of the radiopep-
tides in established animal models. (6) Testing of successful radiopeptide candidates for
safety and efficacy in at least two animal models before going through clinical trials in
humans [105,106].



Pharmaceutics 2022, 14, 2809 9 of 23

Pharmaceutics 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 

or Magnetic Resonance Imaging (MRI) which allows the concurrent assessment of both 
functional/physiological and morphological/anatomical conditions in a patient. Thus, a 
dual-modality imaging system such as PET/CT, PET/MRI, and SPECT/CT provides the 
radiation signal overlaid on an accurate visual background of a patient’s target organs 
and anatomy [60]. 

The steps toward the clinical development of a radiolabeled peptide for optimal tar-
geting, as seen in Figure 4, include (1) Identification of the receptor or molecular target. 
Receptor homogeneity, density, and incidence play an important role in targeting recep-
tors. (2) To improve the biological half-life of the peptides, occasionally, a more metabol-
ically stable peptide analog is synthesized, which preserves the functionality and molec-
ular structure of the natural peptide. (3) Radiolabeling process. The peptide is covalently 
coupled, with or without a spacer and/or chelator that can bind a radioisotope (e.g., 18F) 
or a radiometal (e.g., 111In) accordingly. For example, the peptide can be directly conju-
gated to radioiodine or 18F using a prosthetic group with a high labeling efficiency (>95%) 
and specific activity. (4) In vitro radiopeptide binding to study the affinity of the altered 
radiolabeled peptide to bind to cell receptors and produce the desired effect. (5) In vivo 
biodistribution and imaging to study the pharmacokinetic and pharmacodynamic prop-
erties of the radiopeptides in established animal models. (6) Testing of successful ra-
diopeptide candidates for safety and efficacy in at least two animal models before going 
through clinical trials in humans [105,106]. 

 
Figure 4. Conjugation of the drug molecule, e.g., an antibody, to a radioisotope using a chelator 
followed by oral gavage of the radiopharmaceuticals and biodistribution study in mice using 
SPECT/CT imaging in a preclinical scanner. 

One of the first radionuclide imaging studies on the (non-oral) delivery of peptides 
was carried out by Hassan et al. in 1999 [41] and showed the biodistribution of Iodine-131 
(131I) radiolabeled Glucagon-like-Peptide-1 (GLP-1) (7–36) in rats after intravenous admin-
istration (Figure 5) using a gamma camera. It confirmed a very short half-life (~3.3 min), 
a high clearance rate (~117 mL/min) of GLP-1 and showed major accumulation in the kid-
neys after enzymatic degradation.  

Figure 4. Conjugation of the drug molecule, e.g., an antibody, to a radioisotope using a chelator fol-
lowed by oral gavage of the radiopharmaceuticals and biodistribution study in mice using SPECT/CT
imaging in a preclinical scanner.

One of the first radionuclide imaging studies on the (non-oral) delivery of peptides
was carried out by Hassan et al. in 1999 [41] and showed the biodistribution of Iodine-
131 (131I) radiolabeled Glucagon-like-Peptide-1 (GLP-1) (7–36) in rats after intravenous
administration (Figure 5) using a gamma camera. It confirmed a very short half-life
(~3.3 min), a high clearance rate (~117 mL/min) of GLP-1 and showed major accumulation
in the kidneys after enzymatic degradation.
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Clinically, radiolabeled somatostatin analogs are successfully used for cancer therapy
after intravenous injection. For example, Somakit TOC is a diagnostic medicine approved
by EMA, used to image gastroenteropancreatic neuroendocrine tumors (GEP-NETs). The
kit contains the somatostatin analog, edotreotide, that binds to somatostatin receptors
present in the GI tract and pancreas. The peptide is radiolabeled with the PET isotope
gallium-68 before injection so that specific cancer cell receptor binding can be imaged.
After confirming cancer diagnostically, Lutathera is used to treat GEP-NETs by irradiating
the tumors with the beta-emitter lutetium-177. For this purpose, the somatostatin analog
DOTA-TATE is radiolabeled with 177Lu to form a radiopeptide that specifically binds to the
somatostatin receptors present in the tumor cells. While these radiolabeled peptides have
been available commercially for a while now, no oral formulation has been reported.

3.1. Single Photon Emission Computed Tomography (SPECT) Imaging

Due to multiple barriers faced during the oral delivery of peptides, as stated in
Section 1.1, the real-time imaging of peptides reaching the target site requires high sensitiv-
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ity. SPECT imaging provides this high sensitivity and is additionally a great alternative
to optical imaging, as it provides truly quantitative detection of radioactivity in compar-
ison to the easily attenuated fluorescent or bioluminescent probes in live animals. For
example, Niu et al. developed a nanocomplex between insulin as the model peptide and
octaarginine as a cell-penetrating peptide, enveloped by the protecting polymer poly (glu-
tamic acid)-poly (ethylene glycol) (PGA-PEG) that provided intestinal stability and much
penetration [107]. Octaarginine was chemically conjugated with cholesterol or lauric acid
to increase electrostatic/hydrophobic interaction with insulin. In vitro studies using a
Caco-2 cell monolayer showed high cellular uptake of insulin (47.6 ± 5.8%) into epithe-
lial cells. However, only 2.1% of the radioactive insulin went across the Caco-2 cell line
monolayer [107].

Despite the low penetration, the researchers performed an in vivo pharmacokinetic
study in Wistar rats using SPECT imaging (Figure 6). The authors radiolabeled the PGA-
PEG-conjugated insulin nonspecifically with 99% labeling efficiency on the polymer end,
using stannous chloride using pertechnetate (99mTcO4

−). GI transit across the small intes-
tine between 2 to 4 h and accumulation in the cecum for 11 h were observed [107]. Although
the imaging method was not sensitive enough to measure the nanocomplex in the systemic
circulation, the GI transit of the radiopharmaceutical could be studied properly over time,
with the caveat that it likely formed 99mTc-oxides possibly not reflecting the fate of insulin.
Furthermore, glucose levels in the blood did not change, pointing to minimal delivery of
intact insulin into the systemic circulation.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 6. Oral biodistribution of 99mTc-enveloped nanocomplexes (ENCPs) and 99mTc pertechnetate 
(control) at 1, 2, 4, 8, 11, and 26 h using SPECT/CT imaging (A,B) and gamma counting (C,D) in 
Wistar rats (s = stomach, i = intestine, c = cecum, cl = colon, r = rectum, b = bladder). Reprinted with 
permission from Niu et al. (2018) [107]. 

More recently, the in vivo biodistribution of the peptide PYY3-36 radiolabeled with 
111In (Table 2) was determined in mice after subcutaneous administration using non-inva-
sive SPECT/CT imaging. The organ-specific uptake of acetylated PYY3-36 activity over 24 
h was compared to PYY3-36 functionally modified with a bipyridine (bipy) group. The 
standardized uptake value (SUV) in the kidneys and injection site after 1 h was found to 
be double in the case of PYY3-36-bipy (23.4 ± 2.6%) compared to acetylated PYY3-36 (11.3 
± 2.5%) (Figure 7) [108].  

Figure 6. Oral biodistribution of 99mTc-enveloped nanocomplexes (ENCPs) and 99mTc pertechnetate
(control) at 1, 2, 4, 8, 11, and 26 h using SPECT/CT imaging (A,B) and gamma counting (C,D) in
Wistar rats (s = stomach, i = intestine, c = cecum, cl = colon, r = rectum, b = bladder). Reprinted with
permission from Niu et al. (2018) [107].

More recently, the in vivo biodistribution of the peptide PYY3-36 radiolabeled with
111In (Table 2) was determined in mice after subcutaneous administration using non-
invasive SPECT/CT imaging. The organ-specific uptake of acetylated PYY3-36 activity
over 24 h was compared to PYY3-36 functionally modified with a bipyridine (bipy) group.
The standardized uptake value (SUV) in the kidneys and injection site after 1 h was found
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to be double in the case of PYY3-36-bipy (23.4 ± 2.6%) compared to acetylated PYY3-36
(11.3 ± 2.5%) (Figure 7) [108].

In addition to real-time imaging, nuclear imaging also provides an opportunity for
studying the pharmacokinetics of a peptide and its carrier at the same time, whereby one
isotope (e.g., 67Ga) is conjugated to the peptide and a second isotope with a different energy
peak (e.g., 111In) is conjugated to the carrier. This allows for a co-localization study of
the entire drug delivery system and verifies the in vivo stability of both the peptide and
the carrier. An example of this was illustrated by Sonaje et al. in 2010 with dual-isotope
imaging, wherein the biodistribution of 99mTc-labeled chitosan as drug carrier and 123I-
labeled as part-insulin as the drug was studied. The DDS was orally administered in rats as
a nanoparticle formulation [55]. Using SPECT/CT imaging, the researchers observed the
permeation of the radiolabeled aspart-insulin (analog of natural insulin) from the stomach
into the systemic circulation, eventually leading to an accumulation in the kidneys and
bladder 30 min after administration. However, the 99mTc-labeled chitosan (carrier) moved
through the GI tract and remained in the intestinal lumen. The superimposition of both
images shows the ability of SPECT/CT imaging to study the anatomical and functional
properties of the DDS (Figure 8).
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Figure 7. Coronal view of SPECT/CT scans after subcutaneous administration of (A) 111In-DTPA-
PYY3–36-bipy and (B) 111In-DTPA-PYY3–36-Ac in mice (n = 3). (C) Biodistribution (%ID/g) of
radioconjugates 24 h post-injection. Reprinted with permission from Kalomoiri et al. (2020) [108].

The same research group conducted another study in 2013 where they modified the
previous nanoparticle formulation by conjugating chitosan to ethylene glycol tetraacetic
acid (EGTA) [109] and encapsulated insulin within these nanoparticles to increase its oral
bioavailability by 21% [110]. EGTA is known to chelate Ca2+ and provide protection
to insulin from proteases such as trypsin and chymotrypsin, which are Ca2+ dependent
enzymes and present inside the intestinal tract [111,112]. A decrease in Ca2+ also leads to
a reversible opening of the apical junctional complex, thereby increasing the paracellular
permeability of insulin through the Caco-2 cell monolayers [113]. The researchers showed
that orally delivered 123I-labeled chitosan-EGTA nanoparticles circulated through the heart,
renal cortex, renal pelvis, and liver leading to a prolonged hypoglycemic effect (~5 h) in
diabetic rats (Figure 9) [110].
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Figure 8. (A) Oral biodistribution of 99mTc-labeled-chitosan nanoparticles (green) containing 123I-
labeled aspart-insulin (red) using SPECT/CT imaging in a rat model. Percentage dose of aspart-
insulin observed over time in the urinary bladder, injection site/GI tract, and peripheral tis-
sue/plasma after (B) subcutaneous injection and (C) oral gavage in rats. Reprinted with permission
from Sonaje et al. (2010) [55].
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Figure 9. (A) Organ activities and (B) SPECT images of orally ingested 123I-labeled insulin loaded in
nanoparticles, superimposed with soft-tissue contrast CT images at different time points; (C) Blood
glucose change vs. time profiles of diabetic rats treated with different formulations of insulin. Oral
gavaged 123I-labeled insulin loaded in nanoparticles are in red. Reprinted with permission from
Chuang et al. (2013) [110].
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Table 2. Summary of SPECT radionuclides and reaction parameters used in the preparation
of radiolabeled peptides for pre-clinical and clinical imaging [105,114–117]. a Hydrazinoni-
cotinic acid; b diethylenetriaminepentaacetic acid; c 1,4,7-triazacyclononane-1,4,7-triacetic acid;
d 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; e glucagon-like-phosphate-1 peptide.
RT = room temperature.

Radionuclide Half-Life (h) Chelator/Prosthetic
Group Reaction Temperature Reaction pH

Associated
Preclinical/Clinical

Peptide

99mTc 6.01
Amidethiols,

tetraamines (N4)
or HYNIC a

RT for N4
80–100 ◦C for HYNIC

Octreotide, demobesin,
sulfated cholecystokinin,

demogastrin, exendin

111In 67.31 DTPA b, NOTA c
RT for DTPA,

60–65 ◦C for NOTA
[118]

4–5
Octreotide, bombesin,

neuropeptide Y, AMBA,
minigastrin, GLP-1 e

67Ga 78.28 DTPA b, NOTA c,
DOTA d

RT for DTPA, NOTA
85–100 ◦C for DOTA 2–11 PESIN

123I 13.22 Bolton-Hunter
reagent RT 7–8 GLP-1

3.2. Positron Emission Tomography (PET) Imaging

For pre-clinical research, SPECT provides a slightly higher resolution (~1 mm) and
more isotopes for radiotracer chemistries. However, for clinical imaging, PET scanners
have a better spatial resolution (3–5 mm) compared to SPECT scanners (5–12 mm) [119].
Moreover, PET isotopes offer better image quality at lower injected radioactivity doses due
to higher sensitivity and shorter half-lives of the radionuclides [120]. Thus, PET imaging is a
commonly used clinical imaging technique to diagnose tumors, infections, and neurological
function [121].

One of the most exploited PET radiopharmaceutical is glucose fluorinated with the
PET-isotope Fluorine-18 (18F-FDG), which functions as a glucose analog and is used to di-
agnose cancer [122,123], inflammation and infection [124], and neurodegenerative diseases
such as dementia [125]. 18F-FDG displays changes in glucose metabolism and tissue accu-
mulation in both animals and humans. Chuang et al. have developed an oral combination
therapy with nanoparticles loaded with insulin and exendin-4 (an analog of GLP-1) to treat
type 2 diabetes in rats [126]. When released from the nanoparticles, the drugs stimulate the
glucose transporter 4 to translocate from its intracellular location to the plasma membrane
and facilitate glucose diffusion into the cells. The researchers used 18F-FDG to image and
quantify the glucose uptake into the heart and muscle 2 h after oral ingestion of the combi-
nation nanoparticles. Dynamic PET scans (Figure 10) show high utilization of 18F-FDG in
the nanoparticles containing insulin or a combination of insulin and exendin-4, validating
the pharmacodynamic efficacy of these nanoparticle DDS [126].

18F-FDG PET imaging has also been used to study the effects of different small pro-
teins after oral administration [127]. For example, chemotherapy-induced neutropenia can
be reduced and recovery accelerated in cancer patients by orally administering granulo-
cyte colony-stimulating factor (G-CSF) in chitosan nanoparticles. As an increased glucose
uptake is often observed in the bone marrow during and after G-CSF therapy, Su et al. in-
vestigated this in rats after giving the drug subcutaneously, orally, and orally encapsulated
in nanoparticles (Figure 11A) [128]. Packing G-CSF into nanoparticles and giving them
orally increased the glucose metabolism in the bone marrow more than two-fold over the
orally given free G-CSF (Figure 11B) [128]. However, a significantly larger (9-fold) dose
had to be given orally to reach similar effects to the subcutaneous administration.
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Figure 10. Oral biodistribution and utilization of 18F-FDG was studied in type 2 diabetic rats using
(A) PET/CT imaging and (B) standard uptake value (SUV) measurements in the heart and skeletal
muscles. 2-API NPs are the combination nanoparticles of insulin and exendin-4. Reprinted with
permission from Chuang et al. (2013) [126].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 11. (A) PET/CT images show 18F-FDG accumulation in rats following G-CSF treatment given 
subcutaneously (SC), orally, or orally within nanoparticles (NPs). (B) Radioactive 18F-FDG concen-
trations are graphed over 2 h in the bone marrow for the different application modalities. Reprinted 
with permission from Su et al. (2014) [107,128]. 

To investigate antimicrobial compounds in small animals, researchers from Stanford 
University labeled peptoids with 64Cu (Table 3) and determined the biodistribution of the 
peptoids by PET imaging [129]. Peptoids, or oligo-N-substituted glycines, are a novel class 
of polymers that mimic peptides and proteins but have a more stable molecular structure 
and higher bioavailability compared to natural peptides [130,131]. They also display in-
creased cell permeability and can avoid immune recognition [132,133]. After developing 
three novel cationic amphipathic peptoids and studying their biodistribution after intra-
venous injection, the first peptoid termed 64Cu-1 was chosen for further study after oral 
and intraperitoneal administration in mice. It consisted of a cationic amphipathic peptoid 
conjugated with N-terminal 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 
(DOTA) and labeled with 64Cu. Peroral 64Cu-1 showed only gastrointestinal activity and 
eventual elimination after 24 h, with almost no systemic absorption (Figure 12) [129].  

A

B

Figure 11. (A) PET/CT images show 18F-FDG accumulation in rats following G-CSF treatment
given subcutaneously (SC), orally, or orally within nanoparticles (NPs). (B) Radioactive 18F-FDG
concentrations are graphed over 2 h in the bone marrow for the different application modalities.
Reprinted with permission from Su et al. (2014) [107,128].
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To investigate antimicrobial compounds in small animals, researchers from Stanford
University labeled peptoids with 64Cu (Table 3) and determined the biodistribution of
the peptoids by PET imaging [129]. Peptoids, or oligo-N-substituted glycines, are a novel
class of polymers that mimic peptides and proteins but have a more stable molecular
structure and higher bioavailability compared to natural peptides [130,131]. They also
display increased cell permeability and can avoid immune recognition [132,133]. After
developing three novel cationic amphipathic peptoids and studying their biodistribution
after intravenous injection, the first peptoid termed 64Cu-1 was chosen for further study
after oral and intraperitoneal administration in mice. It consisted of a cationic amphipathic
peptoid conjugated with N-terminal 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA) and labeled with 64Cu. Peroral 64Cu-1 showed only gastrointestinal activity
and eventual elimination after 24 h, with almost no systemic absorption (Figure 12) [129].
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Table 3. Summary of PET radionuclides and reaction parameters used in the preparation of radi-
olabeled peptides for pre-clinical and clinical imaging [105,114,116,117,134–136]. a N-succinimidyl
4-[18F]fluorobenzoate; b 4-[18F]fluorobenzaldehyde; c 2-[18F]fluoro-2-deoxyglucose; d diethylenetri-
aminepentaacetic acid; e 1,4,7-triazacyclononane-1,4,7-triacetic acid; f 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid; g 1,4,8,11-tetraazacyclotetradecane, 1,4,8,11-tetraacetic acid; h cross-bridged-
cyclam with TETA; i 3,6,10,13,16,19-hexaazabicyclo [6.6.6]icosane; j N-succinimidyl-5-[*I]iodo-3-
pyridine carboxylate; k N-succinimidyl-3-[*I]iodobenzoate; l Arginine-Glycine-Aspartate probe.

Radionuclide Half-Life (h) Chelator/Prosthetic
Group

Reaction
Temperature Reaction pH

Associated
Preclinical/Clinical

Peptide

18F 1.83 FSB a, FBA b, FDG c RT ~7 Octreotate, bombesin
analog BAY, GLP-1, RGD l
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Table 3. Cont.

Radionuclide Half-Life (h) Chelator/Prosthetic
Group

Reaction
Temperature Reaction pH

Associated
Preclinical/Clinical

Peptide

68Ga 1.13 DTPA d, NOTA e,
DOTA f

85–100 ◦C for
DOTA 2–4, 7–11 Somatostatin, exendin,

RGD l

64Cu 12.70 NOTA e, TETA g,
CB-TE2A h, Sar i

RT for NOTA,
TE2A

25–37 ◦C for Sar
5–8 Octreotide, bombesin,

exendin, RGD l

124I 100.22 Bolton-Hunter reagent,
SIPC j or SIB k RT 7–8 GLP-1

86/90Y 14.74 DOTA f 80–85 ◦C 4–5 Somatostatin, RGD l

4. Conclusions and Future Developments

In this review, we established that studying the oral delivery of peptides in animals
is difficult and should be conducted more often with nuclear imaging techniques which
are highly sensitive at low therapeutic doses, quantifies organ activity (percentage of dose
per organ) in real-time, provides early physiological information, allows for easy study
of disease progression, and detects abnormalities during GI transit and/or circulation
reliably [137]. Commonly used techniques such as biodistribution studies, microscopy,
and MRI either do not allow for real-time analysis over extended time periods or do not
provide accurate quantification of peptide uptake [138].

Additional benefits of nuclear imaging include the possibility of dual isotope imaging,
theranostic applications, and obtaining immediate feedback on the success of the treatment
(Figure 13). Dual isotope imaging helps to concurrently image the carrier as well as the
peptide after radiolabeling them with radioisotopes of different gamma radiation ener-
gies. Subsequently, the peptide uptake mechanism and DDS clearance can be investigated
in vivo fully quantitatively, leading to an improved understanding of peptide pharma-
cokinetics [55]. In theranostic applications, α- and β-emitting radioisotopes can be orally
delivered to impart site-specific radiotherapy, in combination with γ-radioisotopes that pro-
vide diagnostic information about the molecular environment and report the success of the
therapeutic intervention [139]. A milestone in nuclear imaging has been the development
of fusion imaging, whereby SPECT and/or PET is superimposed with CT or MRI images
to display anatomical and functional pharmacological properties of peptides concurrently
in the same animal over time [139]. PET and SPECT imaging thus helps to translate work
from pre-clinical to clinical research and speeds up getting to first human trials.

While nuclear imaging has many benefits, there are some limitations as well [140].
For instance, the spatial resolution of PET and SPECT imaging is lower than MRI and
optical techniques; however, recent scanners are starting to bridge this gap [141]. Another
drawback of nuclear imaging is the handling and exposure to ionizing radiation that
requires radiation safety precautions [141]. Recent PET technology provides whole-body
imaging at 40× lower radiation doses with shorter acquisition times, hence reducing
potential tissue damage in humans significantly [142,143]. Furthermore, peptide pre-
targeting followed by in vivo ‘click chemistry’ also reduces the radiation exposure as the
peptide DDS is first delivered to the target site followed by the administration of a short
half-life radioisotope which clicks covalently to the peptide in vivo, and can then be imaged
or deliver treatment with minimal exposure [144].

In summary, oral delivery of peptides can be well studied and quantified with nuclear
imaging and should be used more during early pilot studies and the development of novel
peptide DDS. However, the literature review discussed in this review makes it evident that
very limited nuclear imaging research has been performed until now. One major reason for
this could be that the radiolabeling of drugs and DDS and its imaging in SPECT or PET
cameras are rather specialized. While availability is limited, collaborating with experts in
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the field might yield excellent results [59]. Another reason for not using nuclear imaging to
study oral peptide delivery could be that contrast of the gastrointestinal tract is low and
prevents precise localization of the peptide in the different GI tract areas. The application
of Artificial Intelligence (AI) is an ingenious way to solve this problem as the entire GI
tract can be mapped, giving the exact location of peptide uptake, its quantification, and
analysis within minutes. This is very similar to already existing techniques such as brain
mapping of PET images [145]. Many recent examples from medical imaging support the
notion that we are only at the beginning of gaining additional information from the use of
AI, information that adds valuable data points to the trained eye of radiologists [146] and
should be applied in the near future for gastrointestinal imaging.
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When faced with a plethora of parameters and challenges during oral delivery, nuclear
imaging can help to understand early on the in vivo path of a novel oral peptide DDS over
time in groups of small numbers of animals. Nuclear imaging thus contributes an effective
and fully quantitative tool to study the pharmacokinetic and pharmacodynamic profile of
oral peptide formulations.
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