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Abstract: Research on the use of biodegradable polymers for drug delivery has been ongoing since
they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug
delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise
among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are
physically strong and highly biocompatible and have been extensively studied as delivery vehicles
of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion
times and mechanical properties that can be modified. Many innovative platforms have been widely
studied and created for the development of methods for the controlled delivery of PLGA. In this
paper, the various manufacturing processes and characteristics that impact their breakdown and
drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and
clinical applications for different diseases and the PLGA platform types and their scale-up issues will
be discussed.

Keywords: nanotechnology; nanomedicine; PLGA; polymeric nanoparticles; theranostic; drug delivery

1. Introduction

Over the last decade, the number of materials used or as adjuncts in controlled drug
delivery has expanded considerably [1]. Poly-lactic-co-glycolic acid (PLGA) is one of these
materials. The biodegradable synthetic polymers poly-(glycolic acid) (PGA) and poly-
(lactic acid) (PLA), as well as the copolymer poly-(lactic-co-glycolic acid) (PLGA), were
identified as surgical sutures and monofilament in the 1960s [2]. Following the success of
these polymers as surgical sutures, their usage as polymeric biomaterials has grown. Since
then, the PLGA copolymer is now the most studied and widely used polymer in controlled
release systems [3], and regarded as the “gold standard” of biodegradable polymers for
controlled release delivery platforms [4].

Microparticles of PLGA have been widely scouted as carriers in cosmetics, food, drug
delivery systems, and agriculture; they can store cargoes of both small molecules and
macromolecules facilitated by hydrolysis-mediated PLGA degradation, and effectively con-
trol their release kinetics [5]. PLGA has outstanding biocompatibility and is biodegradable
in the human body; also, its degradation products are CO2 and H2O, which are eliminated
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from the body through the Krebs cycle, and non-toxic [5]. Due to its adjustable degradation
rate through variation of its monomer ratios or molecular weights, PLGA is widely used as
scaffolding materials for regenerative medicine and in various biological carriers to control
drug release in the field of precision therapy [5].

Moreover, PLGA has broad application prospects in gene transfer [6,7], drug delivery [8–11],
tissue engineering [12–14], and molecular imaging [6,15,16]. For instance, biomedical
applications have increased interest in polymeric nanoparticles as imaging systems [17].
One of these is PLGA nanocapsules (NCs), which turned into a substantially sensitive,
MRI/photoluminescence dual-modal theranostic imaging platform for drug delivery by
incorporating superparamagnetic iron oxide nanoparticles (SPIONs), as well as by combin-
ing the biocompatible and photoluminescent polyester (BPLP) into the PLGA molecular
structure. The NCs adorned with SPIONs can be exploited for magnetic retention and
guiding [18].

Small molecule pharmaceuticals, peptides, and proteins, such as fertility regulating
hormones, anti-inflammatory medicines, growth hormones, chemotherapeutics, steroid
hormones, antibiotics, cytokines, insulin, narcotic antagonists, and vaccines have been
released using PLGA [19–23]. PLGA is very easy to manufacture into varied device
morphologies such as injectable micro-/nanospheres, compared with other polymers that
have been studied for controlled release [24,25].

The research and development of several cutting-edge platforms has led to the dis-
covery of numerous strategies for the controlled distribution of PLGA. In this study, drug
release and bioavailability are discussed in detail, along with the numerous production pro-
cedures and features that affect them. Preclinical and clinical applications of PLGA-based
nanoparticles for various illnesses are explored, as are the many PLGA platform types and
the challenge of scaling them up.

2. Poly(lactide-co-glycolide) (PLGA) Chemistry and History in Drug Delivery
2.1. History of PLGA Utilization in Drug Delivery

Biodegradable materials can be either natural or synthetic. They are metabolized
in vivo, either enzymatically, non-enzymatically, or both, to yield biocompatible, toxico-
logically safe Byproducts removed by ordinary metabolic pathways. Polymeric synthetic
microparticles have long been used to improve the bioavailability and biodistribution
of both lipophilic and hydrophilic medicines [26]. As drug delivery techniques, these
microparticles are becoming increasingly popular. This success can be attributed to several
factors, including straightforward techniques and the potential for industrial scale-up [27].
Polymeric synthetic microparticles have many advantages as a drug delivery system,
including the ability to use several administration routes and encapsulate a variety of
compounds, including proteins [28]. Polymeric synthetic microparticles, in particular, can
be employed for the controlled release of pharmaceuticals, with the kind of polymer and
its chemical and molecular properties being adjusted [29].

The focus here is on a polyester copolymer, PLGA (poly-lactic-co-glycolic acid), which
is the best-defined biomaterial due to the ability to produce controlled medication release
by regulating its biodegradation. As shown in Figure 1, due to the presence of ester
linkages that are degraded by hydrolysis in aqueous environments, it is controlled by
polymer chemistry, such as glycoside unit content, initial molecular weight (MW) [30–32],
stereochemistry (d and l composition) [1], or end-group functionalization [33]. PLGA’s
advantages as an ideal controlled drug release agent, as shown in Figure 2, also include
biocompatibility and safety (PLGA is a Food and Drug Administration (FDA)-approved
substance) for human intravenous, oral, and cutaneous uses [34–37].
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the factors related to its degradation besides characteristics, responsiveness, advantages, and Figure 2. The figure shows the different and most important fabrication techniques of PLGA,
and the factors related to its degradation besides characteristics, responsiveness, advantages, and
disadvantages. Due to the biodegradability and biocompatibility of PLGA polymer, it is widely used
as a hydrophobic polymer to form various kinds of carriers such as polymersomes, emulsions, and
polymeric micelles, and many more. Also, the figure shows some important PLGA characteristics,
responsiveness, factors affecting its degradation, and some advantages and disadvantages of utilizing
PLGA as a carrier system. The figure was created with BioRender.com.
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2.2. Chemistry of PLGA

Polylactic acid contains an asymmetric α -carbon, which is usually referred to as
the D or L form in stereochemical terms but can also be referred to as the R or S form,
respectively. Poly D-lactic acid (PDLA) and poly L-lactic acid (PLLA) are the enantiomeric
forms of the polymer PLA. Poly D, L-lactic-co-glycolic acid (PLGA) is an acronym for poly
D, L-lactic-co-glycolic acid, which has an equal ratio of D and L lactic acid types [1]. PLGA
is a linear aliphatic polyester copolymer of lactic acid (CH3CH(OH)CO2H) and glycolic
acid (HOCH2CO2H), which can be prepared at different ratios between its constituent
monomers, lactic (LA) and glycolic acid (GA) Figure 1 [38].

3. PLGA-Based Nanoparticle Types and Their Scale-Up Issues
3.1. Types of PLGA Nanomaterials
3.1.1. Polymeric Micelles

Micelles were prepared from the self-assembling amphiphilic polymers produced
by the interaction between hydrophobic and hydrophilic block copolymers (e.g., PLGA
and PEG di-block copolymer) [39]. Due to the biodegradability and biocompatibility of
PLGA polymer, it is widely used as a hydrophobic polymer to form various kinds of
block copolymers structures such as AB, BAB, or ABA in the formation of polymeric
micelles [40,41]. The “core/shell” micelles developed by hydrophobic polymers define the
significant properties of polymeric micelles, including drug loading or release capacity and
stability. Therefore, by altering the hydrophobic block of the amphiphilic copolymer, the
size of polymeric micelles can be easily regulated to exhibit a narrow size distribution, and
diameters range from 10 to 100 nm [42]. The small polymeric micelle size makes it capable
of selectivity targeting the tumor in cancer treatment by the enhanced permeability and
retention (EPR) effect [43].

Polymeric micelles are known for their distinctive characteristics, for example, direct
biological targeting, minimized toxicity, prolonged blood circulation time of drugs, stimuli-
responsive properties, metabolic stability, and improved solubilization of encapsulated
medicines [44]. Besides, on the in-vivo study, Yin et al. designed a PLGA micelles nanosys-
tem with the ability to show the pH-dependent release of drugs, effectively crossing the
blood-brain barrier (BBB) through micropinocytosis and lysosomal pathways [45]. In a
recent study, Estupiñán et al. synthesized a novel PLGA polymeric micelles capable of en-
capsulating the anti-tumor antibiotic mithramycin (MTM) with high efficiency (up to 87%)
and a diameter of 100–200 nm by using the emulsion/solvent evaporation method [46]. All
these examples indicate the importance and applicability of utilizing PLGA for polymeric
micelles as shown in Figure 2.

3.1.2. Polymersomes

The liposome, which has distinctive lipid bilayers that match the cell’s plasma mem-
brane, is an excellent and robust structure for drug administration [47]. Both hydrophilic
and hydrophobic drug candidates can be incorporated into these delivery systems. As
research into liposomes has progressed, several items have been put through clinical testing,
and liposome-based therapies are now commonly used. Preparing liposomes with different
types of lipids allows for regulation of their properties [48]. Since liposomes were discov-
ered, their manufacture has evolved with new lipid components and processing methods.
Although there are many FDA-approved liposome-based medicines on the market and
more in development, clinical demands have not been satisfied [47]. Reproducibility be-
tween batches, low entrapment in some drug candidates, effective sterilizing procedures,
on-shelf stability, and clinical scale-up are production obstacles. Multifunctional liposomes
remain a difficulty for the industry. Hope provided by recent technological advancements
supports ongoing development of liposomes and nanomedicine in general as drug delivery
methods [49].

Similar to the structure of liposomes, the polymersome is a bilayer spherical nanos-
tructure prepared from the self-assembly of amphiphilic block copolymers. However,
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polymersomes are more stable than liposomes due to their advantages: (i) membrane per-
meability and thickness that is easily adjustable based on the chain length and molecular
weight of copolymers; (ii) efficiently encapsulate both hydrophobic and hydrophilic drugs;
(iii) lateral diffusivity and entanglement [50,51]. Furthermore, preparation techniques
of polymersomes depend on the controlled radical polymerization (CRP) methods such
as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain
transfer polymerization (RAFT), and ring-opening polymerization (ROP) [52]. There are
two proposed mechanisms for the formation of polymersomes. In the first mechanism, the
block copolymers start self-assembling into spherical micelles growing up to bilayer sheets
then forming the spherical vesicles of polymersomes by reducing the edge energy. In the
second mechanism, the solvent diffusion thereby reduces bending energy by raising the
radius of the edges to allow the micelles to expand gradually, leading to polymersomes [53].

Stimuli-responsive polymersomes that are quite sensitive to external stimuli for smart
drug release at tumor sites have been widely engineered for different therapeutic carri-
ers such as drugs or imaging agents, nanoreactors, and other biological processes [54].
For example, a study reported applicable polymersomes composed of poly (lactide-co-
glycolide-b-poly (ethylene glycol)) (PLGA-b-PEG) bilayers with grafted monoclonal anti-
bodies (mAbs) loaded with indocyanine green (ICG). It was encapsulated at high loadings
within small 77 nm polymersomes for high specificity and photoacoustic sensitivity imag-
ing (PAI) of cancer cells. During formation of polymersomes with a water-in-oil-in-water
double emulsion process, loss of ICG from the ICG aggregates was minimized via coating
them with a layer of branched polyethyleneimine and via providing excess “sacrificial” ICG
to adsorb at the oil−water interfaces. For 24 h in 100% fetal bovine serum, the encapsulated
aggregates were protected against dissociation via the polymersome shell after which the
polymersomes biodegraded and the aggregates dissociated to ICG monomers [55]. In re-
cent studies, well-designed drug delivery systems were constructed via an adapted double
emulsification method for preparing the DOX-loaded PLGA nanoparticles (DOX@PLGA),
followed via the modification of different shells using the amino-terminated polymers.
They bound with negative charged carboxyl of PLGA nanoparticles by electrostatic inter-
action. For folic acid receptors overexpressed on cell membrane of tumors, folate grafted
amine poly (ethylene glycol) (NH2-PEG-FA) was utilized to target tumors and quaternary
chitosan (QCS) was introduced for prolonging circulation. To shield the negative charge of
nanoparticles and enhance the interaction of nanoparticles with the cell membranes, the
Poly (allylamine hydrochloride) (PAH) was introduced. Also, the developed degradable
core–shell polymersomes were able to release DOX in a controlled and pH-dependent
manner, in which significantly facilitated drug release was observed at a mildly acidic pH
of 5.0 compared with physiological pH (pH 7.4) [56].

3.1.3. Lipid Nanoparticles

The lipid-polymer nanosystem consists of a lipid shell surrounding the polymeric core,
representing a favorable characteristic for drug delivery application due to its high stability
and encapsulation efficiency [57]. PLGA is the most commonly used polymer as the inner
polymeric core in preparing lipid-polymer hybrid nanoparticles [58]. The designing of
lipid-PLGA nanoparticles depends on the optimal therapeutic effect. Additionally, there are
several types of lipid-PLGA nanoparticles, such as PLGA core-lipid and lipid core-PLGA.
On the first one, the lipid shell embeds the therapeutic agents surrounding the PLGA core.
Otherwise, in the lipid core-PLGA, the PLGA polymer encapsulates the lipids core [8].
Different engineering methods as shown in Table 1 describe the fabrication of lipid-PLGA
nanoparticles, such as the single-step method and two-step method. The two-step method
is a conventional process where the performed lipid liposome is absorbed on the surface of
the performed PLGA nanoparticles by electrostatic interactions. In the single-step method,
the PLGA polymer and lipids are dissolved in a suitable solvent under the same conditions
and tend to self-assemble the lipid around the PLGA nanoparticles.
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Table 1. The table represents different fabrication methods, in addition to describing the process, main
advantage, and negative aspects. All information was taken from the following references [8,59,60].

Method Main Idea Main Advantage Negative Aspects

1-Nanoprecipitation
method

The nanoprecipitation method
produces lipid-polymer particles with

a high yield of less than
100 nanometers.

Nanoparticles with a higher
production rate and better size

homogeneity.

Organic solvents have the
potential to damage

biomolecules (protein nuclei
acids).

2-Microfluidic method

This method can control immiscible
liquids in small quantities in a precise

capillary network with microscale
fluid channels.

Small size distribution (lower
PDI), higher encapsulation

and loading efficiencies,
improved batch-to-batch
uniformity, and simple
scale-up possibilities all

contribute to cost-effective
nanocarrier development.

The yield Is relatively poor.

3-One-step method
This approach uses covalent

conjugation to combine various lipid
and polymer precursors.

Cost-effectiveness, scalability,
and a traditional method of

preparation.

Instability of
biomacromolecules.

4-Two-step method

Monolayer, bilayer, and multilayer
shells are usually made with it.

Cationic lipid vesicles are coupled
with anionic polymeric nanoparticles
using electrostatic interactions in this

process.

Nanoparticles produced easily
cross the membrane barrier

and circulate in the
bloodstream, allowing them

to deliver drugs for long
periods of time.

Separate preparation of
polymeric nanoparticles and
lipid vesicles, which takes a
long time and consumes a

lot of resources.

5-Spray-drying method

Polymers are used to make
nanoparticles with sizes ranging from

400 to 500 nm, which are then
dispersed in an organic solvent

containing various lipids. To
complete the product, the lipoidal

polymeric suspension is spray dried.

Fast and effective. Ideally
suited to commercial scale-up.

Protein parameters that are
more appropriate.

Small lots with a moderate
yield.

Several techniques for each process depend on various factors as shown in Figure 2 such
as size, shape, and nature of drug incorporation with the engineered nanoparticles [8,61].
For instance, García-García et al. used single-step nanoprecipitation techniques to syn-
thesize lipid-PLGA nanoparticles with variable surface charges, incorporating GapmeRs
single-strand antisense oligonucleotides for osteoporosis therapy by adjusting the lipid
composition [62]. Lipid-PLGA nanoparticles loaded with the Paclitaxel drug were also
successfully synthesized via a single-step nanoprecipitation technique in a 150–400 nm
size range [63]. Moreover, in another study, Maghrebi et al. engineered PLGA-lipids as
a drug carrier system loaded with antibiotics to treat intracellular pathogens by using
a two-step method through the process of spray drying [64]. Currently, there are many
ongoing preclinical studies utilizing these platforms for multiple diseases.

3.2. PLGA Systems Scale-Up Productions: Challenges and Efforts

Scaling up production without affecting formulation requirements obtained at the lab
scale is one of the major challenges in the clinical and commercial creation of sub-micron
polymeric particle formulations. As shown in Table 1, several methods for producing sub-
micron PLGA particles on a lab-scale have been developed, and they all use emulsion-based
batch techniques. Because of the low cost of equipment and ease of use, emulsification
through direct sonication with a transducer probe is one of the most common methods for
forming PLGA particles. However, when this process is scaled up to industrial batch sizes,
it can induce changes in particle properties, including drug release profiles. Continuous
processes have the advantage of allowing output to be stopped at the desired scale without
adjusting the process parameters. The high-shear mixing method uses extreme shear
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forces to minimize mixing times in processes involving immiscible fluids formed into
emulsions [65]. Since PLGA tends to accumulate in the hydrophobic polydimethylsiloxane
(PDMS) channels and eventually clogs them, large-scale development of PLGA-based NPs
for clinical studies is limited. However, since PDMS can only withstand a small amount
of high pressure, further elevation of the flow rate is limited and thus cannot meet the
requirements of a large-scale clinical trial. However, some materials, like glass capillaries
and polytetrafluoroethylene, can be used to make microfluidic chips instead of PDMS. They
can withstand intense pressure, allowing for high throughput of PLGA NPs [66].

A new method for preparing PLGA microspheres on a pilot scale has recently been
developed as shown in Figure 3. The technique has many benefits, including a high yield,
minimal post-process handling, and a fast operation time [67]. Emulsification in a packed-
bed column is the mechanism. A continuous phase runs through gaps between beads
(50–1000 m) filled inside the column, forming emulsions. The emulsions repeatedly travel
through the openings, narrowing the size distribution. The obtained microspheres are in
the 10–100 m size range, and the span value (a size distribution index) estimated from the
submitted data is around 0.6 (indicating narrower size distribution). The equipment’s flow
rate is stated to range from 0.0001 to 100 L/min. Furthermore, each batch’s production
scale might range from dozens to hundreds of kilograms.
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Figure 3. The figure shows different scanning electron microscope (SEM) images of poly(lactic-acid
(PLGA) materials. (A) PLGA porous microsphere made by batch synthesis with increasing PLGA
75:25 concentrations (%w/v), 1%, 3%, and 5%. (B) SEM images representing the morphology of
porous and non-porous microspheres obtained with PLGA polymers and MWT using PLGA 75:25,
PLGA 50:50. (C) SEM images of 3% (w/v) PLGA 75:25 porous microspheres taken by the microfluidic
technique at increasing soaking time in NaOH 0.2% solution. As immersion time increased, a more
porous structure was obtained. This figure is adapted from [30].

Edge Therapeutics®, for example, has produced PLGA microspheres encapsulat-
ing nimodipine for the treatment of aneurysmal subarachnoid hemorrhage using this
approach [68]. For a certain therapeutic release profile, the manufacturer also developed
a program called “Precisa” that uses a specific combination of polymers. This is done
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by entrapping the treatment in a biodegradable and biocompatible matrix of clinically
validated polymers. PLGA, a polymer utilized in dissolvable sutures since the 1970s, is
the underlying material of “Precisa”. Even when employed intracranially, the biodegrad-
ability of PLGA and its low toxicity to humans make it an ideal matrix for long-term drug
administration. When the polymer is injected into a patient, the therapeutic agent on its
surface is rapidly released, resulting in high initial concentrations of the drug. Polymer-
based microparticles are then dissolved in lactic acid, a naturally occurring chemical, to
deliver therapeutics in accordance with the intended release profile of the microparticles’
therapeutic agents.

3.3. Efficacy and Safety Assessment: Ways of Clinical Translations

Pilot studies in large animal models, where protection and effectiveness can be in-
vestigated over long periods, are needed to translate initial successes in small laboratory
animals into clinics [69]. Aside from optimizing formulation and process factors, the safety
and efficacy by design method should incorporate the biological response (nano-bio in-
teractions) to tailor physicochemical characteristics for effective tumor targeting [70]. For
example, anticancer combination therapy has been shown to be a more successful treatment
technique than a single drug delivery method. Thus, recent innovative therapy has the
ability to minimize side effects, improve medication effectiveness, and resolve multidrug
resistance, which may be a significant barrier to anticancer chemotherapy success. To
create lipid-coated nanoparticles, mTHPC liposomes were coated onto the chosen THP
nanoparticles based on their physicochemical profiles (LCNPs), as presented in Figure 4.
The histopathological investigation of the vital organs showed no apparent signs of toxicity,
implying that the PLGA lipid-polymer hybrid system is healthy and efficient. It entails de-
termining the hemolytic ability of drug formulations in the presence of blood components,
which will decide their therapeutic effectiveness and in vivo fate [71]. Anti-tumor drugs
encapsulated in PLGA NPs can thus not only increase anti-tumor effectiveness but also
greatly minimize side effects [72]. There has been a huge effort in investigating different
PLGA platforms and evaluating their safety and efficacy [8,73–76].

3.4. Biodistribution Studies of PLGA Nanomedicine Formulations

Systemic administration of nanoformulation is widely used to study the biodistribu-
tion, disease targeting, and therapeutic effectiveness of NPs-based drug delivery systems
as shown in Table 2. Additionally, near-infrared imaging allows for time-resolved biodistri-
bution studies. Fluorescent dyes emit near-infrared light, enabling spatiotemporal analysis
in conjunction with optical tomography [77]. Thus, PLGA-NPs could be used to shield the
medication from gastric degradation while also reducing its absorption by mucosae villi or
Peyer’s patches and subsequent release into the bloodstream [78]. PLGA is characterized
by its in vivo biocompatibility, biosafety, and biodegradability, which attract researchers to
use it as a carrier in many diseases such as cancer [79]. PLGA nanoparticles play a role in
enhancing the bioavailability of the encapsulated payload and minimizing the premature
degradation in the biological systems [8]. Despite the advantages of PLGA as a carrier, lack
of specificity in cells and protein binding is the main PLGA drawback that minimizes its
accumulation in the target tissue [80,81]. Thus, modifying PLGA nanoparticles, as shown in
Figure 5, is essential to improve the drug delivery properties [79]. Maksimenko et al. coated
PLGA nanoparticles with poloxamer 188 to improve the brain delivery of doxorubicin.
The study showed that the efficiency of the coated PLGA nanoparticles and accumulated
drug delivery showed higher efficacy in the target site compared with free doxorubicin [82].
Moreover, Partikel et al. showed that pegylation of PLGA nanoparticles reduced the protein
bounding and immune systems recognition, which enhanced the biodistribution of the
nanoparticles within the biological systems [83].
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Figure 4. Biodegradable nanoparticles with lipid bilayers are shown schematically in (A). Morphology
of the surface depicted in (B–D). (A) AFM imaging of THP-NP 200 nm, THP-NP 400 nm, and
mTHPC-LP. AFM micrographs of lipid-coated nanoparticles are shown in panel (B). (a1) THP NP
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phase view, and height measured view. Lipoparticle thickness around PLGA nanoparticles is seen in
(C) using an AFM cross-sectional profile. (b1) height measured view; (b2) lock-in amplitude view and
(b3) lock-in phase view. The bar’s width corresponds to 500 nm. The figure is adapted from [71] with
copyright permission.

Table 2. Some examples of preclinical studies of PLGA-based nanomaterial therapy that has been
used as anticancer delivery systems.

Nanoparticle (NPs)
Polymer

and
Additives

Function of
Polymer Drug Type of

Cancer
Type of

Cell Line Target Action Reference

Afatinib-loaded PLGA
NPs) PLGA

Protect Afatinib,
improve drug

delivery
Afatinib Colon

Cancer
Caco-2

cells

pH-responsive
characteristics to

increase the
sensitivity of colon

cancer cells to afatinib.

2019
[84]

Platinum–curcumin
complexes loaded into

pH and
redox dual-responsive

nanoparticles
(PteCUR@

PSPPN)

mPEG-SS-
PBAE-
PLGA

Control intracellular
release, synergistic

anticancer
effects

Platinum–
curcumin

Lung
Cancer A549 cells

Synergistic anticancer
effects, enhanced

anti-metastatic activity

2019
[85]

Uncaria tomentosa
extract (UT)-PLGA &

UTPCL

PCL and
PLGA

Better drug
delivery—UT-PLGA

nanoparticles
showed

higher drug loading

Uncaria
tomen-

tosa
extract

Prostate
Cancer

LNCaP,
DU145

cells

UT-PLGA showed
higher cytotoxicity

towards
DU145 cells, UTPCL

showed higher
cytotoxicity

against LNCaP cells

2019
[86]

Curcumin (Cur)-loaded
polymeric

poly (lactic-co-glycolic
acid) (PLGA)
nanoparticles

(Cur-PLGA NPs)

PLGA

Stabilize curcumin in
the presence of light,

improved
serum stability

compared with free
curcumin

Curcumin Ovarian
Cancer

SKOV3
cells

Cytotoxic effects on
tumor cells upon
irradiation at a

low intensity inhibits
tumor growth

2019
[87]
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Table 2. Cont.

Nanoparticle (NPs)
Polymer

and
Additives

Function of
Polymer Drug Type of

Cancer
Type of

Cell Line Target Action Reference

5-FU-Chrysin-loaded
PLGA-PEG-PLGA

nanoparticles
(5FU-Chrysin-PLGA-

PEG-PLGA
NPs)

PLGA-
PEG-

PLGA

Improve the
functional delivery
efficacy of 5-FU and

Chrysin in cancer

5-FU,
Chrysin

Colon
Cancer HT-29 cells Apoptosis, growth

inhibitory effects
2020
[88]

Sorafenib (SF)-loaded
catatonically-modified

polymeric nanoparticles
(NPs)

PLGA
Aerosolization
efficiency for

pulmonary delivery
Sorafenib Lung

Cancer A549 cells

Enhanced cell
migration inhibition,

reduction in cell
survival, inhibition in

the formation of
colonies

2020
[89]
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Figure 5. The images depict different PLGA polymer-based carriers that have been fabricated over
recent years with the most important types used especially for targeting cancer (Figures (A–F)). Also,
Figure (G) shows how PLGA amphiphilic block copolymers looks when loading with different
anticancer drugs and/or DNA or RNA and decorated with small molecules receptor ligands or mono-
clonal antibodies for active targeting. The active targeting of cancer utilizing PLGA functionalization
with different cancer markers makes them one of the most promising platforms for both treatment
and diagnostics. The PLGA stimuli responsive release could be external or internal stimuli. The
figure was created with BioRender.com.
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4. PLGA as a Platform for Drug Delivery Systems

The US Food and Drug Administration (FDA) approved using the PLGA for vari-
ous pharmaceutical applications. In 1989, the first FDA-approved drug delivery system,
Lupron® Depot, was released based on a biodegradable polymer. Lupron®, Leuprolide
is contained within PLGA microspheres and used as a depot for the treatment of prostate
cancer [90]. Medication release from this biodegradable formulation may be modulated
by adjusting the biodegradation of PLGA, leading to a prolonged drug release profile that
decreases harmful side effects and improves patient compliance [91]. There are many other
US FDA-approved PLGA-based marketed products such as Zoladex Depot ®(AstraZeneca
UK Limited), Sandostatin® LAR, Suprecur® MP, and many other more as listed in Table 3.

Table 3. Selected clinical trials enlisted in clinicaltrials.gov website for marketed PLGA-based
therapeutics. Reproduced from [10].

Brand Name Indication Clinicaltrials.Gov Identifier

Somatuline® LA Acromegaly NCT03066245
Sandostatin® LAR Acromegaly and carcinoid NCT03060655
Nutropin Depot ® Growth deficiency NCT02568527
Zoladex® Breast cancer. Prostate cancer NCT03474900
Arestin Periodontal disease NCT02726646
TrelstarTM Depot Advanced Prostatic Cancer NCT01681381
Suprecur® MP Prostate cancer NCT0 1753 089
Pamorelin® Prostate cancer NCT03045913
Lupron Depot Prostate cancer NCT02578069
Eligard Advanced Prostatic Cancer NCT03401216
Atridox® Chronic adult periodontitis NCT03429803
Risperidal® Consta Antipsychotic NA
Decapepty Prostate cancer NA

Additionally, to enhance the administration of hydrophobic medicines, PLGA, a
biocompatible and biodegradable polymer, is frequently utilized in clinical and preclinical
settings for nanoparticle production (as shown in Figure 6 and Table 2) [92]. Zhang et al.
developed curcumin (CUR)-encapsulated chitosan-coated poly (lactic-co-glycolic acid)
nanoparticles (CUR-CS-PLGA-NPs) and hydroxypropyl-β-cyclodextrin-encapsulated CUR
complexes (CUR/HP-β-CD inclusion complexes) for Alzheimer’s disease. In vitro studies
indicated that both CUR-CS-PLGA-NPs and CUR/HP-β-CD inclusion complexes were
very stable over two months of storage. Moreover, the study revealed that CUR-CS-PLGA-
NPs and CUR/HP-β-CD inclusion complexes could minimize the toxicity of CUR and
show excellent antioxidant and anti-inflammatory activities [93].

Furthermore, Upadhyay et al. studied the role of adding targeting ligand to nanoparti-
cles. They found that PLGA encapsulated silymarin that functionalized with lactobionic
acid (LA) (LA-PLGA-Sil) exhibited better targetability, cellular distribution, and toxicity
against the liver cancer HepG2 cell line compared with non-targeted formulation PLGA
encapsulated silymarin (PLGA-Sil) [95].

In another study, Hu et al. has successfully fabricated a FeIII-TA complex-modified
PLGA nanoparticle platform for the tumor-targeted delivery of Doxorubicin (DOX) to
treat breast cancer. The nanoformulation successfully decreased premature release of
chemotherapy drugs during systemic administration and enhanced pH-responsive release
in the tumor microenvironment. At pH 5.0, the cumulative drug release rate was 40%
greater than at pH 7.4 [96]. Additionally, nanoparticles made from PLGA 503H and the
lower molecular weight PLGA 2300 loaded with trimethoprim (TMP) for urinary tract
infections (UTI) by Brauner et al. were tested for their ability to adhere to cells, and
the results were significant. The nanoformulation surface was modified by wheat germ
agglutinin (WGA) to circumvent the short dwelling time in the bladder. In this study,
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both PLGA types showed almost 70% adhesion capability to the cell surface of SV-HUC
monolayers within 30 min contact time [97].
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Figure 6. The figure represents different applications of PLGA. (A) Schematic diagram of the fab-
rication of drug-loaded PLGA microspheres by electrospraying. (B) Schematic illustration of the
preparation of Dopamine with immobilized BFP1 by polydopamine coating. Figure (A) is reproduced
from [33] and Figure (B) from [94] with copyright permission.

Zhang et al. developed a PLGA nanoparticle, which encapsulated the antigenic
peptide HPV16 E744–62 to treat HPV-associated tumors [73]. This system provides some
distinct advantages, such as minimizing peptides’ degradation, enhancing the peptides’
residence time, promoting the uptake efficiency by an antigen-presenting cell (APCs), and
enhancing peptide migration/accumulation into lymph nodes leading to the presence of
more APCs. The results showed that adenosine triphosphate (ATP) is a new and potent
vaccine adjuvant; thus, encapsulating ATP within PLGA nanoparticles elicits robust anti-
tumor cellular immunity [73,97]. Far et al. designed PLGA NPs encapsulated mometasone
furoate (MF) for sustained drug release using the nanoprecipitation method. This delivery
system exhibited adequate physicochemical properties, high drug encapsulation efficiency,
and loading, which makes it suitable for treating chronic rhinosinusitis [98].

5. PLGA Nanomedicine Formulations as a Platform for Theranostic: Imaging and
Biodistribution Studies

Integration of diagnostic and therapeutic chemicals into a flexible nanocarrier is seen
as a potential cancer therapy strategy due to the expectation that it would increase the
anti-tumor activity and decrease the adverse effects of traditional chemotherapy. Using the
double emulsion solvent evaporation approach (W/O/W), which is linked to changes in
bovine serum albumin (BSA), Shen et al. constructed a PLGA-based theranostic nanoplat-
form as shown in Figure 7. Co-delivery of the near-infrared (NIR) dye indocyanine green
(ICG) and the chemotherapeutic medication doxorubicin (Dox) (denoted as IDPNs) for
dual-modality imaging-guided chemo-photothermal combination cancer treatment was
accomplished with this delivery method. A minimal quantity of tumor accumulation was
attained by the free ICG. Additionally, the IDPNs accumulated mostly in the tumor, kid-
neys, and liver 24 h post-injection, producing a robust fluorescence signal in the removed
tumors [99].

Furthermore, Zhang et al. prepared PLGA nanocapsules (NCs) as a multimodal
theranostic delivery system for in vivo/animal drug delivery. They outlined the chemical
synthesis techniques for covalently labeling the PLGA with bio-compatible small molecule
fluorophores or radioligands. Bovine serum albumin (BSA) was used as a model protein,
while superparamagnetic iron oxide nanoparticles (SPIONs) were used as an MRI contrast



Pharmaceutics 2022, 14, 2728 13 of 30

agent. 89Zr-labeling was used as a radio imaging probe, and fluram and cyanine 7.5
(Cy7.5) were used as fluorescent probes in the blue and near-infrared (NIR) wavelengths,
respectively. Quantitative region of interest (ROI) analysis reveals a reduction of 55%
in signal intensity (SI) on T2W images and 26% in T2 relaxation time in the liver. In
comparison, the kidney showed only a slight decrease in signal strength. After in vivo MRI,
ferrous iron was detected in liver slices stained with Prussian blue, confirming the existence
of NCs. Cell viability was not affected by exposure to NCs ranging in concentration
from 25 to 100 g mL−1 for 48 h following overnight incubation at room temperature at a
concentration of mg mL−1 [16].
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Figure 7. (A) Time-dependent in vivo whole-body near-infrared (NIR) fluorescence (FL) imaging
of EMT-6 tumor-bearing BALB/c nude mice 2, 4, 8, and 24 h following i.v. administration of free
ICG and IDPNs. Tumors are blue circles. The color bar gradually changes from red to yellow as
fluorescence signal intensity increases. (B) Quantification of average fluorescence signals in tumor
sites in part A. * p < 0.05. (C) The color bar gradually changes from red to yellow as fluorescence signal
intensity increases. (D) Quantification of part C’s isolated organs and tumors’ average fluorescence
signals. * p < 0.05. (E) Time-dependent in vivo photoacoustic (PA) imaging of EMT-6 tumors in
BALB/c nude mice 0, 1, 4, and 24 h following i.v. administration of free ICG and IDPNs. Tumor
locations are indicated by cycles. The color bar gradually changes from blue to red as PA intensity
rises. (F) PA intensity quantification in part E tumor locations. * p < 0.05. The figure is adapted
from [99] with copyright permission.

Additionally, nanocapsules composed of a PLGA-polymer matrix coated with Fe/FeO
core-shell nanocrystals and co-loaded with a chemotherapy drug and photothermal agent
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were used in a study by Wang et al., which also made use of near-infrared light and the
tumor microenvironment (TME), dual responsiveness, and size-switchability. ICG@Fe/FeO-
PPP-FA nanocapsules were found to have low cytotoxicity, as 95% cell viability was ob-
served after being incubated. It was found that ICG@Fe/FeO-PPP-FA nanocapsules ac-
cumulated much more than ICG@Fe/FeO-PPP nanocapsules at the tumor site, as the
fluorescence signals were observed and strong in the tumor and liver but not in the main
organs (spleen, lung, heart, and kidneys) after 48 h of intravenous injection (20 mg/kg,
200 mL). The tumor site MRI signal intensity of DOX-ICG@Fe/FeO-PPP-FA nanocapsules
was 85 a.u. with and 65 a.u. without laser irradiation (808 nm, 0.3 W cm−2, 5 min) after
24 h. Therefore, laser-triggered shrinking of DOX-ICG@Fe/FeO-PPP nanocapsules proved
useful for the deep tumor tissue penetration of nanocapsules [100].

In another study, the PLGA-NPs were loaded with a recombinant human VEGF-A165 (the
vascular endothelial growth factor, rhVEGF) analog via the 1-Ethyl-3-[3-dimethylaminopropyl]
carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) covalent coupling method
as a new theranostic technology for tumor diagnosis and therapy by Varani et al. as shown
in Figure 8. Mice that were injected with VEGF-PLGA-NPs represented elevated tumor
uptake and higher target-to- muscle (T/M) ratio in comparison with PLGA-NPs, where the
tumor uptake and T/M ratio of VEGF-PLGA-NPs were 39.83 ± 7.17 and 7.90 ± 1.61, while
for PLGA-NPs they were 29.95 ± 1.92 and 4.49 ± 0.54, respectively [101].
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Figure 8. The figure represents different applications of PLGA. (A) Optical photographs taken of the
entire mouse after 2, 24, 48, 72, 96, 168, and 240 h after subcutaneous injection of 500 µg of fluorescent
PLGA-NPs in the right flank in a syngeneic tumor-bearing mouse. (B) Analyzing the PLGA-NPs’
biodistribution in BALB/c mice. This data is shown as the mean fluorescence (NET/Area) ±SD from
5 different mice at each time point. (C) Images of two syngeneic J744a-carrying mice. 1 tumor located
in the right thigh, obtained 24 h post-injection (p.i.) of either native PLGA-NPs (left) or VEGF-PLGA-
NPs (right). (D) TPLGA NP biodistribution in vivo. 24 h post-injection ex vivo fluorescent pictures
of key organs and 4T1 tumors were observed. Red circles indicate tumor locations. Fluorescence
intensity decreases from red to blue. (E) Tumor and major organ DOX content was determined 24 h
after tail-vein injection with free DOX and DOX-loaded NPs. Mean ± SD (n = 3) was used. * p < 0.05,
** p < 0.01, and *** p < 0.001. Figure (A–C) is reproduced from [101] and Figure (D,E) are adapted
from [96] with copyright permission.

Chen et al. created a new form of multiporous lipid/PLGA hybrid microbubbles
(lipid/PLGA MBs) that resolved the challenge of microbubbles as imaging agents and
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drug carriers. The study utilized doxorubicin-loaded nanoparticles (Dox-lipid/PLGA
MBs) as a model drug delivery system. The liver ultrasonography contrast signal was low
before bubble injection but improved rapidly after lipid/PLGA MBs were injected. The
ultrasonic assessment performed in vivo by these MBs is highly efficient. This technique
offers novel understanding of the biological action of medications used to treat tumors and
other disorders by regulated drug release, as well as tracking their locations within the
body [102].

6. PLGA Nanomedicine Platforms for Different Diseases

Due to low toxicity, biocompatibility, controlled and sustained-release properties with
tissue and cells, PLGA has been utilized in clinical drug delivery systems as one of the most
effective biodegradable polymeric nanoparticles (NPs) as shown in Table 4 [11,103–105]. In
the next subsections, we highlight some of the most important usages of PLGA for different
diseases and purposes.

Table 4. Current clinical trials enlisted in clinicaltrials.gov website. ClinicalTrials.gov search results
on 30 July 2022.

Clinical Trial No.
(Status) Study Title Conditions Interventions

NCT05475444
(Completed)

PLGA Nanoparticles Entrapping
Ciprofloxacin to Treat E-Fecalis

Infections in Endodontics
Bacterial Infections Oral

Device: Chitosan-coated PLGA
nanoparticles entrapping

Ciprofloxacin incorporated in
smart gels

Device: Ciprofloxacin paste and
solution

NCT03060655
(Unknown status)

Study of PLGA-Mg Material in
Clinical Orthopedics Fracture Dislocation Biological: PLGA-Mg material

Biological: titanium alloy

NCT04735601
(Recruiting)

Ahmed Valve Implantation
Coated With Poly

Lactic-Co-glycolic Acid (PLGA)
Saturated With Mitomycin-C in
the Management of Adult Onset

Glaucoma in Sturge Weber
Syndrome

Glaucoma Procedure: Ahmed Valve

NCT03066245
(Unknown status)

Use of Stem Cells Cultured on a
Scaffold for the Treatment of

Aneurysmal Bone Cysts (ABC)
Aneurysmal Bone Cyst Biological: MSC-PLGA

NCT03474627
(Completed)

PLGA-coated Biphasic Calcium
Phosphate in Sinus Lift Sinus Floor Augmentation

Device: Non-coated HA/TCP
particles

Device: PLGA-coated HA/TCP
particles

NCT02487186
(Completed)

Locally Delivered Doxycycline
Adjunct to Nonsurgical

Periodontal Therapy.
Periodontal Disease

Drug: Doxycycline
Procedure: Full-mouth

debridement

NCT02568527
(Completed)

Biodegradable Synthetic Scaffold
as a Substitute for hAM in Limbal

Epithelial Cells Transplant in
LSCD Patients

Limbal Stem Cell Deficiency Device: PLGA scaffold

NCT00836797
(Completed)

Radiographic Assessment of Bone
Regeneration in Alveolar Sockets

with PLGA Scaffold

Preservation of Alveolar Bone
Height With PLGA

Bioscaffold
NA
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Table 4. Cont.

Clinical Trial No.
(Status) Study Title Conditions Interventions

NCT04619056
(Recruiting)

First-in-man Clinical Trial of
CEB-01 PLGA Membrane in

Recurrent or Locally Advanced
Retroperitoneal Soft Tissue

Sarcoma

Locally Advanced Soft Tissue
Sarcoma

Recurrent Soft Tissue Sarcoma

Combination Product: CEB-01
membrane loaded with SN-38

NCT04848818
(Recruiting)

Comparative Trial of Operative
Treatment of Distal Pediatric

Forearm Fractures With
Biodegradable Nails and K-wires

Fracture Wrist

Procedure: Distal radial
metaphyseal fracture fixation
with percutaneous K-wires

Procedure: Distal radial and/or
ulnar metaphyseal fracture
fixation with biodegradable

PLGA-based (Activa Im-Nail)
implants

NCT05442736
(Completed)

Modified Surface of PLGA
Nanoparticles in Smart Hydrogel Antibiotic Resistant Infection Drug: Ciprofloxacin

NCT03474900
(Completed)

Biodegradable Versus Titanium
Nailing in Forearm Shaft

Fractures in Children
Forearm Fracture

Device: PLGA implant, Bioretec
ltd. Finland

Device: Titanium elastic stable
nail

NCT05456022
(Not yet recruiting)

Therapeutic Efficacy of Quercetin
Versus Its Encapsulated
Nanoparticle on Tongue

Squamous Cell Carcinoma Cell
Line

Oral Cancer

Drug: Quercetin
3,3’,4’,5,6-Pentahydroxyflavone,
2-(3,4-Dihydroxyphenyl)-3,5,7-
trihydroxy-4H-1-benzopyran-4-

one
Drug: Quercetin-encapsulated

PLGA-PEG nanoparticles
(Nano-QUT)

Drug: Doxorubicin
chemotherapeutic drug as a

positive control

NCT01729195
(Completed)

Ankle Syndesmosis Fixation by
Antibiotic Releasing
Bioabsorbable Screw

Ankle Fracture
Procedure: A ciprofloxacin

containing bioabsorbable PLGA
bone screw

NCT02726646
(Completed)

Evaluation of Local Doxycycline
in Smokers With Chronic

Periodontitis
Chronic Periodontitis

Drug: Doxycycline
Procedure: Mechanical

debridement
Drug: Placebo

NCT04339764
(Recruiting)

Autologous Transplantation of
Induced Pluripotent Stem

Cell-Derived Retinal Pigment
Epithelium for Geographic
Atrophy Associated With

Age-Related Macular
Degeneration

Age-Related Macular
Degeneration

Drug: iPSC-derived RPE/PLGA
transplantation

NCT01681381
(Unknown status)

Evaluate Safety and Effectiveness
of the Tivoli® DES and The

Firebird2® DES for Treatment
Coronary Revascularization

Ischemic Heart Disease
Myocardial Ischemia

Coronary Artery Lesions,
Primary

Coronary Disease
Acute Coronary Syndrome

Furcation Lesion of Coronary
Artery

Device: Tivoli® DES
Device: Firebird2® DES
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Table 4. Cont.

Clinical Trial No.
(Status) Study Title Conditions Interventions

NCT02017275
(Completed)

Comparison of BuMA eG Based
Biodegradable Polymer Stent
with EXCEL Biodegradable

Polymer Sirolimus-eluting Stent
in “Real-World” Practice

Coronary Artery Disease Device: BuMA
Device: EXCEL

NCT01753089
(Active, not recruiting)

Dendritic Cell Activating Scaffold
in Melanoma Melanoma Biological: WDVAX

NCT04751786
(Recruiting)

Dose Escalation Study of
Immunomodulatory

Nanoparticles
Advanced Solid Tumor Drug: PRECIOUS-01

NCT04941612
(Recruiting)

Use of the Bioabsorbable Activa
IM-Nail™ in Pediatric Diaphyseal

Forearm Fractures

Fracture Fixation,
Intramedullary

Forearm Fracture
Fracture Healing Child, Only

Implant Complication

Device: Activa IM-Nail

NCT04385745
(Unknown status)

Treatment of Children’s Forearm
Shaft Fractures With

Biodegradable Intramedullary
Nailing, Compared With Elastic
Stable Intramedullary Nailing

Fractures, Bone
Injury Arm

Procedure: Biodegradable
Intramedullary Nailing (BIN)

NCT02255188
(Completed)

Experimental Study of the
Vascular Prosthesis Manufactured

by Electrospinning
Arterial Occlusive Disease Procedure: blood sampling

procedure

NCT03707769
(Recruiting)

TIPS Microspheres for Perianal
Fistula Perianal Fistula Device: TIPS microspheres

NCT05448625
(Recruiting)

DES in Patients With a High Risk
of Ischemic Events

Drug-eluting Stent
Coronary Artery Disease Device: Genoss DES

NCT03045913
(Active, not recruiting)

Genoss DES Prospective
Multicenter Registry

Coronary Artery Disease
Myocardial Ischemia
Myocardial Infarction

Device: Genoss DES

NCT04082962
(Recruiting)

Dexamethasone Implant for
Retinal Detachment in Uveal

Melanoma

Exudative Retinal Detachment
Uveal Melanoma

Drug: Dexamethasone intravitreal
implant

NCT03762655
(Active, not recruiting)

Study of Probable Benefit of the
Neuro-Spinal Scaffold™ in

Subjects with Complete Thoracic
AIS A Spinal Cord Injury as

Compared to Standard of Care

Injury, Spinal Cord Device: Neuro-Spinal Scaffold

NCT04094298
(Recruiting)

Use of Extended Release
Triamcinolone in the Treatment of

Rotator Cuff Disease

Rotator Cuff Tears
Rotator Cuff Tendinitis

Rotator Cuff Impingement

Drug: FX006 Injection
Injections, Glucocorticoids

NCT05104853
(Recruiting)

Study to Evaluate the Safety,
Tolerability, PDs, and Efficacy of

CNP-104 in Subjects With Primary
Biliary Cholangitis

Primary Biliary Cholangitis Drug: CNP-104
Drug: Placebo

NCT05250856
(Recruiting)

CNP-201 in Subjects with Peanut
Allergy Peanut Allergy Drug: CNP-201

Drug: Placebo

NCT02578069
(Completed)

First-in-man Trial Evaluating the
Safety and Efficacy of the NOVA
Intracranial Stent (NOVA Trial)

Ischemic Stroke

Device: NOVA Intracranial
Sirolimus Eluting Stent System

Device: Apollo Intracranial Stent
System
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Table 4. Cont.

Clinical Trial No.
(Status) Study Title Conditions Interventions

NCT04012567
(Active, not recruiting)

Safety and Effectiveness of
BIOSURE RG in Cruciate

Ligaments Reconstruction in
Chinese

Cruciate Ligament
Reconstruction, Knee

Investigational device: Biosure
Regenesorb Interference Screw

Control device: Biosure HA
Interference Screw

NCT02982889
(Completed)

Single Ascending Dose Study of
Two Liquidia Bupivacaine

Formulations
Acute Pain

Drug: LIQ865A bupivacaine
formulation

Drug: LIQ865B bupivacaine
formulation

Drug: Diluent for LIQ865
Drug: 0.5% bupivacaine

hydrochloride

NCT03401216
(Unknown status)

Stent Coverage and Neointimal
Tissue Characterization After

Extra Long Everolimus—Eluting
Stent Implantation

Ischemic Heart Disease
Coronary Artery Disease
Coronary Atherosclerosis

Device: SYNERGY 48 mm
Procedure: PCI

Procedure: 3-month OCT
follow-up

Procedure: 6-month OCT
follow-up

NCT01734512
(Active, not recruiting)

Phase II Study of Everolimus for
Recurrent or Progressive

Low-grade Gliomas in Children

Pediatric Recurrent
Progressive Low-grade

Gliomas
Pediatric Progressive
Low-grade Gliomas

Drug: Everolimus

NCT03429803
(Active, not recruiting)

DAY101 In Gliomas and Other
Tumors Low-grade Glioma Drug: DAY101

NCT = Clinical trial numbers; NA = not available.

6.1. Cancers

Nanoparticles can target cancer cells through passive or active targets. Drug resis-
tance, low intra-tumoral accumulation, and non-specific cytotoxicity are the problems
most associated with chemotherapeutic agents; thus, using PLGA as a delivery system
has gained significant attention due to its outstanding properties [106]—for example, the
blood-brain barrier (BBB), which is one of the major limitations facing chemotherapeutic
drugs delivery to the brain in the case of malignant gliomas. The anticancer agent paclitaxel
has limited BBB permeability, but when combined with a nonsteroidal anti-inflammatory
drug that has anticancer activity such as R-Flurbiprofen and carried by PLGA NPs, the
use of anti-inflammatory and anticancer drugs may provide additional anti-tumor ac-
tivity; this conjunction has also decreased inflammation in the peri-tumoral area [107].
Moreover, 5-Fluorouracil (5-FU) is extensively used as first-line chemotherapy for colon
cancer. Yet, systemic toxic effects and low drug uptake limit its use. Several novel drug
delivery systems as dendrimers, liposomes, and polymeric nanoparticles (NPs) have been
reported to overcome these limitations. PLGA is widely used as a delivery system for
multiple drugs, including 5-FU, due to biodegradability and biocompatibility. Therefore,
another technique used to prepare NPs is the double emulsion method; this has been
used to develop PHBV/PLGA NPs as a novel combination drug delivery system. 5-FU
loaded PHBV/PLGA NPs induced considerably higher cell death than free 5-FU in colon
cancer [108].

However, the effectiveness of chemotherapy in the case of glioblastoma multiforme
(GBM) is primarily limited due to scant brain delivery of most therapeutics across the
blood-brain barrier (BBB) [109,110]. A promising strategy that may offer a solution for this
problem is drug delivery by nanoparticles. However, one of the most effective anti-tumor
drugs that could be used in combination or alone is doxorubicin; it has been used as the
first-line therapy in many cancers. On the other hand, it has been used as a drug of choice
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in drug delivery-related studies aimed to overcome tumor resistance. PLGA nanoparticles
loaded-doxorubicin increased survival time, and has a significant inhibition on tumor
growth, and a very considerable anti-tumor effect against the intracranial glioblastoma in
the rats animal model [82].

Another example is epidermal growth factor receptor (EGFR), which is highly ex-
pressed in pancreatic cancer (PC). EGFR inhibitor’s use alone was proven ineffective in
clinical trials due to a cellular feedback mechanism that takes over therapeutic resistance
to single targeting of EGFR [111]. Specifically, the signal transducer and activator of tran-
scription 3 (STAT3) when receiving an EGFR is overactivated and considered to be highly
involved in the resistance and failure of EGFR inhibitor treatment. For that, PLGA NPs
were co-loaded with Erlotinib (ERL), an EGFR inhibitor and one of the first-generation
approved for lung and pancreatic cancer treatment [112]. Furthermore, Inula helenium
Alantolactone (ALA) was confirmed to possess the STAT3 inhibition property. Firstly, for
the best therapeutic outcome, the ERL and ALA ratio was screened. Then, PLGA NPs
co-loading ALA and ERL were characterized and optimized. A nanoplatform to co-deliver
ALA and ER showed anti-migration and antiproliferation effects and an enhancement in
cell-killing resulting from increased cellular uptake in PC cells. However, this co-delivery
markedly inhibits both STAT3 and EGFR signaling pathways [113]. There are many ex-
amples [114–116] that can be highlighted for the utilization of PLGA in cancer research as
shown previously in Table 2.

6.2. Neurological Diseases

Multiple clinical conditions are often associated with neuropathic pain, including pa-
tients undergoing chemotherapy courses and diabetic neuropathy. Therefore, antiepileptic
drugs (AED) help detract neuronal excitability as they have common pathophysiology for
epilepsy and neuropathy. Lamotrigine (LTG), approved AED, is widely used as a first-line
treatment for neuropathic pain [117]. With this AED, a modified nanoprecipitation method
was used to prepare LTG-PLGA-NPs. Studies mentioned PLGA as an appropriate carrier
system for lamotrigine for neuropathic pain using the intra-nasal route [118]. Moreover,
the modified nanoprecipitation method was used to prepare nanoparticles of baclofen
(Bcf-PLGA-NPs); the allocation of Bcf intranasally provides direct transmucosal absorption
to the brain passing blood-brain barrier (BBB), giving an appropriate administration option,
and rapid and early onset of action [119].

On the other hand, the neurodegenerative disorder mainly recognized by b-amyloid
deposit known as Alzheimer’s disease (AD) has no curative treatments. Yet, curcumin
(Cur), with its anti-inflammatory, antioxidant, and anti-amyloid properties has been proven
to have future use in Alzheimer’s disease. B6 peptide enhances the BBB permeability conju-
gated with a novel brain-target nanoparticle poly(lactide-co-glycolide)-block-poly(ethylene
glycol) (PLGA-PEG) to increase the bioavailability. It is loaded with Cur (PLGA-PEG-
B6/Cur), which has a promising property in relieving tauopathy and beta-amyloidosis.
These results indicate that PLGAPEG-B6 can enhance the delivery of nanoparticles to
the brain, and PLGA-PEG-B6/Cur nanoparticles may be used as a promising therapeutic
approach for treating AD in the future [120]. The construction of a rational medication
therapy for AD has had limited success despite extensive research into nano-based drug
delivery [121].

6.3. Cardiovascular Diseases

Numerous patients suffer from cardiovascular diseases; a recognized significant cause
of death worldwide [122,123]. Further, atherosclerotic disease of the carotid veins occurs
in the aging population. Thus, stabilin-2 peptide (S2P) was highly expressed on smooth
muscle, endothelial cells, and atherosclerotic plaques. For this reason, targeting agents for
atherosclerosis with localization of nanoparticles containing S2P peptide has been brought
up. Therefore, the focus on inhibition of platelet adhesion, aggregation, and activation is
necessary as one of the efficient therapeutic approaches [124,125]. Imatinib as a platelet-
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derived growth factor receptor (PDGFR) inhibitor has very low water solubility. This
low water solubility was overcome by using peptide conjugated nanoparticles as a drug
delivery system for atherosclerotic disease. Thus, Imatinib was encapsulated in PLGA
nanoparticles which are conjugated to maleimide PEG [126].

Furthermore, using PLGA as a drug carrier for serum lipid-lowering drugs such as
statins is a valid way to enhance statins’ efficiency [127,128]. Hydrophobic drugs with
bioabsorbable PLGA polymer were taken up by various cells such as vascular smooth
muscle cells, monocytes, and endothelial cells. In addition to their serum lipid-lowering
ability, statins have pleiotropic effects and improve collateral circulation in the ischemic
heart [129]. Therefore, using a bioabsorbable polymer such as (PLGA)-nanoparticles loaded
with simvastatin (SimNPs) reduced the infarct site area and improved cardiac function in
the treated group with (SiMNPs) [130].

6.4. Infectious Diseases

Sepsis occurs when an invasion of pathogens in the host is triggered by an immune
disorder; it is complex with very high mortality and morbidity. It is challenging to si-
multaneously have an effective delivery of immune-modulating and anti-infection drugs.
Therefore, prepared PLGA nanoparticles with good degradability and biocompatibility
were co-loaded with anti-inflammatory immunosuppressant Tacrolimus (TAC) and broad-
spectrum antibiotic Sparfloxacin (SFX). The NPs have outstanding antibacterial activity on
both Gram-negative and Gram-positive bacteria and can effectively reduce the immune
response and inflammation in mice with acute lung infection [131].

A fatal tropical disease known as Visceral leishmaniasis (VL) is caused by the parasite
Leishmania donovani, transmitted to humans by the bite of an infected sandfly. The amino-
glycoside antibiotic paromomycin (PM) has significant antileishmanial activity. However,
due to the lack of oral bioavailability and decreased permeability across the macrophage’s
cell membrane, the full therapeutic potential of PM is endangered by its decreased accu-
mulation inside the macrophages. For this reason, PLGA nanoparticles were prepared
to encapsulate the drug PM and coated with Mannosylated thiolated chitosan (MTC). L.
donovani amastigotes were effectively inhibited by the mannosylated PLGA nanoparticles
in affected macrophages compared with the pure drug. Therefore, PM-loaded MTC-PLGA
nanoparticles successfully promoted anti-leishmanial activity [132].

In another example, in a pathological condition observed after surgery associated
with microbial growth and biofilm formation known as surgical site infection (SSI), Oral
consumption of Vancomycin, and aminoglycosides such as gentamycin sulphate (GS) is
the preferred alternative for preventing post-operative SSI. Thus, PLGA was chosen as a
polymer for the preparation of PLGA polymeric nanoparticles (PNPs). Moreover, Gum
Kondagogu (GKK) is an exudate from the rind of Cochlospermum Gossypium, and it is
composed of galactose, glucose, arabinose, and non-toxic polysaccharide. Therefore, GS
loaded PLGA-GKK encapsulated PNPs were elicited for the treatment of SSI at the localized
site [133]. Additionally, synthesis of the PLGA/Ag2O NPs composite was performed by
a low-temperature technique established by Smirnova et al. [134]. The nanocomposite
produced encouraging findings, suggesting it may be used to create materials with both
potent antibacterial activity and great biocompatibility with human cells. Such materials
have potential uses in surgical procedures, especially in prosthetics [134].

6.5. Other Diseases

PLGA has been utilized widely in improving the efficacy of many drugs used in
treating or managing multiple diseases such as ophthalmic delivery systems, periodontal
regeneration, and chronic obstructive pulmonary diseases delivery systems [135,136].

6.5.1. Ophthalmic Delivery Systems

The anatomy of the eye plays a major role in restricting the amount of drugs that
reach the site of the affected tissue [136]. Different barriers in the anterior portion of the



Pharmaceutics 2022, 14, 2728 21 of 30

eye limit the penetration of the drugs, which results in poor drug bioavailability [137]. The
tear turnover is one of the eye mechanisms in which topical drugs are diluted. Another
barrier is the cornea, which is composed of several layers such as the corneal epithelium,
Bowman’s layer, corneal stroma, Descemet’s membrane, and corneal endothelium [138].
The corneal epithelium, which is lipophilic in nature, limits the penetration of hydrophilic
drugs. Corneal stroma, which is composed of collagen fiber, is another barrier that limits
not only foreign bodies, but drug absorption. Furthermore, corneal endothelium is another
barrier that works as a barrier between the cornea and aqueous humor [138,139]. Besides
the anterior eye segment barriers, the posterior eye segment is another barrier that limits
drug absorption. The vitreous body, which is one component of the posterior segment, is a
gel-like structure that functions as a barrier that limits the movement of drugs from the
vitreous humor to the retina [136,137]. Thus, it is important to develop several strategies
to enhance the efficiency and bioavailability of current eye drugs by implementing drug
delivery systems technology. Using PLGA as a nanocarrier is one of the ways it has been
utilized to improve the overall drug efficacy and bioavailability [136].

Drug therapy for the back of the eye is often administered intravitreally [140]. How-
ever, prominent downsides of this treatment include the drug’s short residence duration
and high clearance, irritation caused by numerous injections, and the potential of vision
impairment. In light of these constraints, researchers have been working to develop in-
traocular drug delivery methods that can address at least some of the issues just discussed.
In this way, PLGA and PEG monomer units form a class of amphiphilic water-soluble
polymers known as PLGA-PEG-PLGA triblock copolymers [141]. Micelle-like structures,
with a high hydrophobic core (PLGA) and an encircling corona-like structure built of
PEG tails, can be formed from PLGA-PEG-PLGA copolymers in aqueous solution [142].
Though the details are modifiable, the micelles are typically well-separated and distributed
at room temperature, giving the solution a sol state. However, the micelles grow in size
and begin to aggregate at higher temperatures, transitioning into the gel state and thusly
producing a hydrogel that responds to temperature. It has been hypothesized that polymer
precipitation and PEG chain dehydration contribute to micelle disintegration at elevated
temperatures [143]. Many other studies suggested that PLGA-PEG copolymers can be used
as a delivery platform to lengthen the amount of time that active compounds spend in
the eye’s back chamber, enabling for the development of treatments that don’t require as
frequent administration [75,144–146].

6.5.2. Periodontal Regeneration

Biocompatible and biodegradable PLGA polymer has been studied for periodontal
regeneration [147]. A fibronectin-functionalized electrospun PLGA scaffold [148] was cre-
ated to increase periodontal ligament cell adhesion. In vitro experiments showed better cell
adherence to fibronectin-functionalized scaffolds than unfunctionalized ones. Moreover,
fibronectin permitted a more homogenous cell adhesion over the whole scaffold surface,
demonstrating a unique extracellular matrix deposition and acquired cell migratory ca-
pacity. Fibronectin-functionalized PLGA fibers provide a superior scaffold for periodontal
regeneration than non-functionalized ones [148]. PLGA hydrogels for periodontitis were
also studied. An injectable scaffold consisting of PLGA and hydroxypropyl methylcellu-
lose (HPMC) loaded with chlorhexidine was developed [149]. Its syringeability, textural
profile, and swelling/shrinking characteristics were compared with two gels on the mar-
ket: Parocline® (minocycline gel) and Chlo-site® (chlorhexidine gel). The researched new
hydrogel had better syringeability than Parocline® and Chlo-site®, although its textural
characteristics were midway between the two gels on the market. These studies showed
PLGA/hydroxypropyl methylcellulose hydrogels had better physicochemical qualities
for periodontal use. HPMC improved gel property, giving more robust and adequate
physical support for in vivo periodontal application [149]. Additionally, the multilayered
PLGA-calcium phosphate scaffold was presented by Reis et al. [150]. This scaffold was
strong and flexible, adjusting to its new environment with ease, and its connected macrop-
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orosity allowed for blood reabsorption upon implantation. This study set out to create a
bilayered construct for periodontal regeneration in vivo. The 30-, 60-, 90-day, and 12-month
durability of this scaffold was evaluated in canine subjects. Histological examination of the
treated animals showed cementum, alveolar bone, and periodontal ligament regeneration.
In comparison with absorbable membrane, the rigidity of this construct decreased collapse,
promoting regeneration of wounded periodontal tissue [150].

6.5.3. Chronic Obstructive Pulmonary Diseases (COPD)

Pulmonary emphysema, the form of COPD that causes chronic breathing difficulties,
is a major cause of global mortality [151]. An overabundance of free radicals and chronic in-
flammation are responsible for chronic obstructive pulmonary disease (COPD). Substances
with anti-inflammatory, antioxidant, and corticosteroid properties are toxic, need high
doses, and have serious side effects [152]. Due to their adaptability to specific microenvi-
ronments in diseased tissues and low toxicity, nanomaterial-conjugated medications show
promise in treating a wide range of respiratory illnesses. The pharmacological effects of
small RNA molecules and drug conjugates designed for the treatment of chronic respiratory
illnesses can be enhanced by loading them onto PLGA NP [153]. Therapeutic applications
for PLGA NPs in the treatment of a variety of respiratory disorders are promising. In terms
of developing PLGA miRNAs for clinical uses in COPD, insufficient advancement has
been made. The fast breakdown of miRNA after being administered to humans may be
the underlying cause [154]. Polymer’s immunogenicity is a further explanation. Loss of
effectiveness of polymer-coated medicinal compounds has been linked to the existence
of antipolymer antibodies [155]. Improved targeting efficiency and decreased off-target
effects can only be achieved by adjusting the PLGA NP encapsulation of miRNAs [156].

Numerous pharmacologically active small compounds have been identified for the
treatment of COPD; however, their limited permeability across the mucus lining prevents
their widespread clinical application [157,158]. To counteract this, the anti-inflammatory
medication ibuprofen was conjugated with the PLGA-PEG NP to specifically target the
neutrophil-mediated inflammatory response in COPD [159]. Ibuprofen’s anti-inflammatory
properties and its ability to reduce lung harm caused by lipopolysaccharide (LPS) and
cigarette smoke (CS) show promise for its use in clinical settings. Additionally, the genera-
tion of reactive oxygen species (ROS) and interleukin-8 (IL-8) in COPD is suppressed when
the antioxidant 1,3-di [5-(N-methylene-pyridinium-4-yl)-10,15,20-triphenylporphynato
manganese]-benzene tetrachloride (MnPD) is coupled with PLA NP [160].

When it comes to treating respiratory conditions, nanomedicines conjugated with
PLGA are effective, safe, and convenient [161]. Despite this, relatively little research has
been reported in preclinical settings on the use of PLGA-conjugated medication to fight
COPD. The effective treatment of COPD necessitates the rapid development of innovative
medications, such as enhanced PLGA-drug conjugates, that provide more efficacy with
reduced toxicity. More study is needed to develop a formulation for drug-loaded PLGA
NP and track the rate at which the medication is released in the respiratory system. The
development of PLGA-drug conjugates for the treatment of COPD will benefit from this.

7. Conclusions and Future Directions

Since their discovery, PLGA-lipid hybrid nanoparticles have garnered considerable
interest as promising multipurpose carriers for a wide variety of therapeutics, leading
to a wide variety of successes in the design of new drug delivery systems and making
a particularly noticeable impact in the field of cancer therapy. When compared to other
drug delivery formulations, PLGA-lipid hybrids have shown that they are better in terms
of physicochemical characteristics, shape, and biological activity. While these results are
impressive, much more work has to be done to get a thorough comprehension of certain
technological, biological, and industrial elements that may lead to novel options for the cre-
ation of safe and powerful carriers with medical applications. There are two main obstacles
to overcome when designing a hybrid formulation: first, a thorough understanding of the
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interactions of the hybrid nanocarrier with cells is required to predict the potential toxicity
issues and ensure its safe clinical applications; and second, a comprehensive consideration
of essential characteristics of each constituent that forms the hybrid system is required for
successful design.

Some PLGA-lipid hybrid platforms are only manufactured in small quantities be-
cause of the intricacy of the engineering technique, making scale-up problematic. Cost-
effectiveness and repeatability favor single-step procedures over two-step ones. Single-step
methods are not always possible for PLGA-lipid hybrids, necessitating separate optimiza-
tion. Due to the complexity of biological environments, trustworthy and highly repro-
ducible hybrid carriers are needed for clinical studies. Increasing the complexity of hybrid
formulations may lead to an increase in expenses, complicating subsequent experiments.
Despite advances in building increasingly complicated hybrid carriers, multicomponent
architectures can hinder translation into a pharmaceutical and clinical program.

As a result, the use and investigation of clinical PLGA nanocarriers will remain a
profitable and demanding subject for academic and clinical settings as well as industry. Con-
stant improvements to this PLGA polymeric nanoformulation, along with the researchers’
encyclopedic expertise, will revolutionize how we approach illness detection and treatment,
with a special focus on enhancing patients’ quality of life.
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