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Abstract: According to the WHO, cancer caused almost 10 million deaths worldwide in 2020,
i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and
prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large,
there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was
the introduction of gentler antineoplastics for targeted therapy–tyrosine kinase inhibitors (TKIs).
Although they have undoubtedly revolutionized oncology and hematology, they have significant side
effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic
and safety profiles, and being more resistant to the development of drug resistance, high expectations
are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This
review provides an insight into the history of chemotherapy, a brief overview of the development of
TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the
applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid
nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug
delivery systems of TKIs obtained in vitro and in vivo.

Keywords: protein-tyrosine kinase; tyrosine kinase inhibitors; anticancer; nanoparticles; self-
nanoemulsifying drug delivery systems; nanoemulsions; liposomes; solid lipid nanoparticles; lipid-
polymer hybrid nanoparticles; nanostructured lipid carriers

1. Introduction

Tumors of various etiology are one of the most common reasons for disease occurrence
and deaths. According to the WHO, breast, lung, large bowel, rectal, and prostate cancer
are the most frequent. All over the world, cancer caused almost 10 million deaths in 2020,
i.e., every sixth death [1]. High-income regions have twice the number of malignancies than
low-income countries, mainly due to unhealthy lifestyle (tobacco overuse, high body mass
index, alcohol consumption, low vegetable and fruit intake, insufficient physical activity,
and stress), while approximately 30% of cancer cases in low- and middle-income countries
is caused by infections (e.g., by human papillomavirus and hepatitis). Even hereditary
predisposition cannot be excluded (e.g., in breast cancer) [1,2].

It is very hard to determine exactly the time for antitumor treatment start, because
plant preparations have been continuously used since ancient times [3]. The beginnings
of modern anticancer chemotherapy (cancer cell proliferation inhibition) can be found in
the 1940s [4]. This idea was based on the observation of sailors exposed to yperite after
the Luftflotte 2 air raid on Bari during World War II. Gilman et al. noticed considerable
hypoplasia of the lymphoid and myeloid cells of one of the sailors exposed to the effects of
mustard gas. Subsequently, different derivatives, or yperite analogues, so-called N-yperites,
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were developed [5,6]; some of them have been used as cytostatics until now. For exam-
ple, in 1959, the U.S. FDA approved cyclophosphamide [7]. Another crucial milestone
in cytostatic development was the discovery of the essential role of folic acid [8] in DNA
metabolism [9,10]. Sidney Farber hypothesized that folate antagonists should be able
to inhibit tumor growth and slow down disease progression [11] and published a study
in 1948 elucidating the effects of folate antagonists [12]. Besides, Farber first described
the compound known as methotrexate [13]. Thus, the first possibility of the treatment
of acute leukemia—the disease that was believed to be incurable—arose. Unfortunately,
Farber did not find collective understanding in his time; however, already in 1958, em-
ployees of the U.S. National Cancer Institute (NCI), Hertz & Li, reported the curing of
solid tumor choriocarcinoma by methotrexate [14]. Farber’s work and the antifolate idea
gave rise to the thesis of G. Hitchings and G. Elion from Burroughs Wellcome Co., (today
GlaxoSmithKline) [15], who dealt with a similar thought as Farber, that small changes
in physiological molecules can lead to large changes in the physiological properties of
these compounds and thus inhibit cancer cell growth by their ability to interfere in de
novo RNA and DNA synthesis [16]. This way, antimetabolites on the basis of purines
(6-mercaptopurine) came into existence [17]. In a paper from 1954, Elion & Hitchings
described the effects of 6-mercaptopurine and a combination of 6-mercaptopurine with
methotrexate on adenocarcinoma, sarcoma, and leukemia cells [18]. Classic antimetabolites
of thymine, a pyrimidine base, include 5-fluorouracil that was patented by C. Heidelberger
in 1957 and ranks among the most used cytostatics at present [19]. It should be noted that
in 1955, the National Chemotherapy Program was first initiated in the NCI in the U.S., and
thus, the systematic screening of new drugs began [14,20].

In the course of previous decades, several main groups of cytostatics were devel-
oped, including different types of alkylating agents (N-yperite analogues, alkylsulfonates,
ethylenamines, nitrosoureas, epoxides, and other alkylating agents), folic acid derivatives,
alkaloids and plant medicines (Vinca alkaloids, podophyllotoxin or colchicin derivatives,
taxanes, and other natural products), cytotoxic antibiotics (actinomycins, anthracyclines
and related substances, and other toxic antibiotics), complex-forming compounds from the
group of platinum cytostatics, and methylhydrazines [21,22]. One more group is of the var-
ious sensitizers used in photodynamic or radiation therapy. A big anatomical therapeutic
chemical (ATC) [22] classification group is the so-called other antineoplastic agents, e.g., hy-
droxyurea, estramustine, topotecan, etc. [21]. The discovery of new antiviral agents is also
associated with the research and development of new cytostatics (from the groups of purine
and pyrimidine analogues) [21,22]. The development of biology, physiology, and chemical
sciences enabled the origination and synthesis of monoclonal antibodies, e.g., rituximab,
trastuzumab, cetuximab, bevacizumab, and others [23,24]. One of the youngest groups is
protein kinase inhibitors, which became one of the most important groups of antineoplastic
agents soon after their discovery [21,25]. Targeted treatment with monoclonal antibodies
and protein kinase inhibitors, as well as their preparation, development, and production
were enabled primarily by the development of molecular biology and the ability to decode
and model enzyme amino acid sequences.

A significant number of protein kinase inhibitors was developed, and it can be said
that they caused a revolution in oncology and hematology over the last 20 years; how-
ever, save for several cases of chronic myeloid leukemia, no one patient was cured with
only monotherapy [26–28]. Problems of the emergence of resistance to treatment and
toxicity, leading to a reduction of the administered dose or even treatment discontinua-
tion are main challenges of their use in oncology patients [27–31]. Besides the design of
new molecules [27–29,32], scientists have developed sophisticated reformulations [33,34]
and nanosystems [35], enabling controlled and targeted drug delivery and expecting a
quick overcoming of pharmacological and pharmacokinetic difficulties as compared to the
development of new original protein kinase inhibitors [36–39].

This review, in addition to an insight into the history of chemotherapy and a brief
overview of the development of tyrosine kinase inhibitors (TKIs) for the treatment of
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cancer and their mechanism of action, summarizes the results of applications of self-
nanoemulsifying drug delivery systems (SNEDDSs), nanoemulsions (NEs), liposomes,
solid lipid nanoparticles (SLNPs), lipid-polymer hybrid nanoparticles (LPH NPs), and
nanostructured lipid carriers (NLCs) used as drug delivery systems of TKIs.

2. Protein Kinase Inhibitors

At the end of the 1980s, molecular and genetic approaches allowed better under-
standing of cell biology and thus, the discovery of signaling networks regulating such
activities as proliferation and cell survival. It was discovered that such signaling networks
are considerably changed in cancer cells. This turning point in cell biology ushered in the
rise of a new approach in anticancer chemotherapy—targeted therapy [40]. Thus, growth
factors, signaling molecules, cell-cycle proteins, apoptosis modulators, and angiogenesis-
related molecules became targets of new drug substances [14,31,41]. An example of such a
substance is imatinib (IMA) [42], developed in the second half of the 1990s [43,44] and ap-
proved for the treatment of chronic myeloid leukemia as the first representative of protein
kinase inhibitors in 2000 [45]. In 1961, its discovery was preceded by the identification of
chromosomal translocation t(9;22), known as Philadelphia chromosome [46], the result of
which was the construction of a fusion gene of breakpoint cluster region–Abelson tyrosine
kinase (BCR-Abl tyrosine kinase) [47]. IMA is the first and basic molecule in the protein
kinase inhibitor group [42]. It is not a selective inhibitor of BCR-Abl tyrosine kinase, but it
inhibits other so-called non-receptor tyrosine kinases [48,49] (see below).

2.1. Proteins with Kinase Activity

Kinases belong to the transferase group catalyze phosphorylation, which is a common
covalent modification [50] regulating the functionality of proteins. Binding of a phosphate,
i.e., a group with strong negative charge, to protein considerably influences its confor-
mation and functions. Phosphorylation (and the opposite process, dephosphorylation
catalyzed by phosphatases) serves as an activity switch of a particular protein. Many
signaling pathways use kinases and phosphatases as their regulators. These signaling
pathways are necessary for signal transduction and cell activity regulation [51]. Thus,
kinases control many cell processes, including transcription, cell-cycle process, cytoskeleton
reorganization, movement, differentiation, and, especially, apoptosis [52–55]. Therefore,
mutations and dysregulation of these protein kinases play a casual role in some human
diseases [26,54,56–58].

Through amino acid phosphorylated residues, protein kinases can be divided into
three basic groups: serine kinases (serine phosphorylation), threonine kinases (threonine
phosphorylation), and tyrosine kinases (tyrosine phosphorylation). In addition, other
groups can be found, e.g., histidine protein kinases, but they are not essential for this
contribution [30,31,52,53,57,58]. Protein kinases have a typical secondary structure that is
divided into 12 subdomains, which form a bilobed catalytic core, to which an ATP molecule
is bound in the deep groove (see the schematic structure in Figure 1). The adenine base
of the ATP molecule forms hydrogen bonds with a kinase section, the so-called hinge
region, which connects N- and C-terminal lobes of the catalytic domain of the protein
kinase. The sugar part (ribose) and phosphate residues of the ATP molecule bind in the
hydrophilic channel of the protein kinase. All kinases also have an activation loop that
is important for the regulation of kinase activity [59]. Pathological protein kinases with
mutation (having aberrant structure) or (increased or decreased) expression change affect
signaling pathways that provide proliferation advantages to a malignant clone or protect
its cells from apoptosis, and thus are the direct reason for uncontrollable cell division [60].
Therefore, protein kinase inhibitors are effective drugs for the treatment of cancers.
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rated by the transmembrane region, which is fixed in the cell membrane. The ATP-binding cleft is 
located between the two lobes of the intracellular domain. A schematic depiction of the ATP 
binding cleft with its numerous regions is shown on the right side of the image. Type I and type II 
tyrosine kinase inhibitor binding sites have been shown in a biochemical general structure model. 
Adapted from [30], Copyright 2021 MDPI. 
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which can be grouped into 10 subfamilies [27,28,30,52,54,57,58,60,61]. RTKs have a 
transmembrane domain in their molecule and receptors on the cell surface. Different re-
ceptor classes belong to this family, e.g., epidermal growth factor receptor (EGFR), vas-
cular endothelial growth factor receptor (VEGFR), platelet derived growth factor recep-
tor (PDGFR), glial cell-line derived neurotrophic factor receptor (GDNFR), insulin-like 
growth factor 1 receptor (IGF-1R), erythropoietin-producing human hepatocellular re-
ceptors (Eph), and discoidin domain receptor (DDR) [27,28,30,52,54,57,58,60,61]. The 
structure of RTKs is shown in Figure 1. NRTKs have subcellular localization (do not have 
a transmembrane domain) and can be connected to RTKs, but do not communicate di-
rectly with the cell environment. The pathologically changed activity of NRTKs is re-
sponsible for cancer growth, proliferation, invasiveness, and metastasizing, for neovas-
cularization of cancer tissue, and for the increased resistance of transformed cells to 
chemo/radio/immunotherapy. These kinase families include, e.g., Abelson kinase (Abl), 
sarc kinases (Src), Janus kinase (JAK), and focal adhesion kinase (FAK) [48,57,58]. 

2.2. Tyrosine Kinase Inhibitors 
After IMA success, the group of TKIs increased by several tens of new molecules. 

The timeline of marketing is presented in Figure 2. A representative list of registered 
TKIs and TKIs in clinical studies or development is provided in [27,30,31,62]. Generally 
(irrespective of PTK inhibited), small entities from the TKI group can be classified into 
several categories according to the mechanism of action, see Figure 3 [31,62,63]. The first 
group (type I inhibitors) is formed by heterocyclic-based non-covalent ATP-competitive 
inhibitors that occupy pocket binding purines and serve as a template for side chains for 
occupation of the hydrophobic region. These inhibitors are basically ATP-binding site 

Figure 1. The molecular structural feature of receptor tyrosine kinase (RTK). An RTK’s extracellular
domain can bind particular ligands such as growth factors, whereas the intracellular domain is
responsible for the kinase’s (auto)phosphorylation. The external and internal domains are separated
by the transmembrane region, which is fixed in the cell membrane. The ATP-binding cleft is located
between the two lobes of the intracellular domain. A schematic depiction of the ATP binding cleft
with its numerous regions is shown on the right side of the image. Type I and type II tyrosine kinase
inhibitor binding sites have been shown in a biochemical general structure model. Adapted from [30],
Copyright 2021 MDPI.

Approximately 90 protein-tyrosine kinases (PTKs) have been identified in the human
genome, including 58 receptor protein-tyrosine kinases (RTKs), which can be divided into
about 20 subfamilies and 32 non-receptor protein-tyrosine kinases (NRTKs), which can
be grouped into 10 subfamilies [27,28,30,52,54,57,58,60,61]. RTKs have a transmembrane
domain in their molecule and receptors on the cell surface. Different receptor classes belong
to this family, e.g., epidermal growth factor receptor (EGFR), vascular endothelial growth
factor receptor (VEGFR), platelet derived growth factor receptor (PDGFR), glial cell-line de-
rived neurotrophic factor receptor (GDNFR), insulin-like growth factor 1 receptor (IGF-1R),
erythropoietin-producing human hepatocellular receptors (Eph), and discoidin domain
receptor (DDR) [27,28,30,52,54,57,58,60,61]. The structure of RTKs is shown in Figure 1.
NRTKs have subcellular localization (do not have a transmembrane domain) and can
be connected to RTKs, but do not communicate directly with the cell environment. The
pathologically changed activity of NRTKs is responsible for cancer growth, proliferation,
invasiveness, and metastasizing, for neovascularization of cancer tissue, and for the in-
creased resistance of transformed cells to chemo/radio/immunotherapy. These kinase
families include, e.g., Abelson kinase (Abl), sarc kinases (Src), Janus kinase (JAK), and focal
adhesion kinase (FAK) [48,57,58].

2.2. Tyrosine Kinase Inhibitors

After IMA success, the group of TKIs increased by several tens of new molecules.
The timeline of marketing is presented in Figure 2. A representative list of registered
TKIs and TKIs in clinical studies or development is provided in [27,30,31,62]. Generally
(irrespective of PTK inhibited), small entities from the TKI group can be classified into
several categories according to the mechanism of action, see Figure 3 [31,62,63]. The first
group (type I inhibitors) is formed by heterocyclic-based non-covalent ATP-competitive
inhibitors that occupy pocket binding purines and serve as a template for side chains for
occupation of the hydrophobic region. These inhibitors are basically ATP-binding site
competitors and mimic the purine ring of ATP. They bind to the active conformational
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site and cause the alteration of structural conformation [64]. Type II inhibitors, having
phenylalanine in their structure, bind to the site adjacent to the site of ATP kinases in the
inactive conformation and stabilize them in their inactive conformation [65]. Type III or
allosteric kinase inhibitors bind to the outer catalytic ATP-binding site (remote from the ATP
site and the hinge) and are highly selective [66]. Type IV or substrate-directed inhibitors
(under development) reversibly attack the substrate binding site, i.e., bind outside the ATP
pocket; they are noncompetitive inhibitors and do not compete with ATP [67]. Type V
or covalent inhibitors bind irreversibly to the active site of catalytic nucleophile cysteine
in the enzyme and thus have reduced off-target side effects [40]. Table 1 contains the
characteristics, and Figures 4 and 5 present the formulas of the TKIs discussed below.
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Despite unquestionable anticancer therapy benefits of TKIs, some negative aspects
should be mentioned. TKIs are intensively metabolized. They are P-glycoprotein substrates,
cause its upregulation, and have limited bioavailability. All TKIs and their metabolites are
hepatotoxic, and liver damage can be fatal. Besides, they cause hypertension and other
cardiovascular/arteriothrombotic adverse events, renal injury, hand–foot skin reaction,
persistent diarrhea, nausea, vomiting, and fatigue [62,68,69].



Pharmaceutics 2022, 14, 2706 6 of 31

Table 1. A brief description [27,30,31,62,63] of selected TKIs arranged alphabetically by their interna-
tional nonproprietary names (INN) formulated into lipid-based nanosystems.

INN Brand Name Approval for the
1st Indication Type Kinase Target Major Therapeutical Uses

afatinib Gilotrif 2013 V EGFR, HER2 NSCLC
axitinib Inlyta 2012 II VEGFR1-3, PDGFR RCC

brigatinib Alunbrig 2017 I ALK, ROS1, IGF-1R, Flt3, EGFR NSCLC
bortezomib Velcade 2003 I proteasome multiple myeloma, MCL

cabozantinib Cometriq, Cabometyx 2012 I RET, HGFR, VEGFR1-3, Kit, TrkB,
Flt3, Axl, Tie2, ROS1 MTC, RCC, HCC

crizotinib Xalkori 2011 II ALK, HGFR, ROS1, MST1R NSCLC

dasatinib Sprycel 2006 I BCR-ABL, EGFR, PDGFR Src, Lck,
Yes, Fyn, Kit, EphA2 CML, ALL

erlotinib Tarceva 2004 I EGFR, HER1 NSCLC, SCLC, PaC
gefitinib Iressa 2009 I EGFR NSCLC

imatinib Gleevec 2001 II BCR-ABL, c-Kit, PDGFR CML, ALL, DFSP, HES, GIST,
MDS/MDP

lapatinib Tykerb 2007 II EGFR, HER2 breast cancer
nintedanib Ofev 2014 I VEGFR, FGFR, PDGFR pulmonary fibrosis
osimertinib Tagrisso 2015 V EGFR NSCLC

pazopanib Votrient 2009 I VEGFR1-3, PDGFR, FGFR1/3, Kit,
Lck, Fms, Itk RCC, STS

ponatinib Iclusig 2013 II BCR-ABL, VEGFR, PDGFR, FGFR,
EphR, Src, Kit, RET, Tie2, Flt3 CML, ALL

regorafenib Stivarga 2012 II BCR-ABL, VEGFR, BRAF, c-Kit,
PDGFR, RET, FGFR, Tie2, Eph CRC, GIST

selumetinib Koselugo 2020 V MEK1/2 NF1

sorafenib Nexavar 2005 II B/C-Raf, BRAF, c-Kit, Flt3, RET,
VEGFR1-3, PDGFR RCC, DTC, HCC, ThC

sunitinib Sutent 2006 II PDGF, VEGFR1-3, c-Kit, Flt3,
CSF-1R, RET CML, RCC, GIST, PNET

trametinib Mekinist 2013 III MEK1/2 melanoma, NSCLC

ALL = acute lymphoid leukemia; CML = chronic myeloid leukemia; CRC = colorectal carcinoma; DFSP = der-
matofibrosarcoma protuberans; DTC = differentiated thyroid carcinoma; GIST = gastrointestinal stromal tu-
mor; HCC = hepatocellular carcinoma; HES = hypereosinophilic syndrome; MCL = mantle cell lymphoma;
MDS/MDP = myelodysplastic/myeloproliferative neoplasms; MTC = medullary thyroid cancer; NF1 = neurofi-
bromatosis type 1; NSCLC = non-small cell lung cancer; PaC = pancreatic cancer; PNET = primitive neuroectoder-
mal tumor; RCC = renal cell carcinoma; STS = soft tissue sarcoma; ThC = thyroid cancer.
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3. Nanoformulations of TKIs

Classic anticancer chemotherapy with small molecules is limited primarily by the bioavail-
ability of active substance in the target, i.e., afflicted, organ/tissue/cells as compared with
accumulation in healthy compartments and a narrow therapeutic window [33,34,70–74].
Drug encapsulation in nanosystems has proved to be an effective strategy to overcome
ADME limitations and thus reduce the toxic effect caused by the drug itself [39,75–87].
Nanocarriers are usually designed so that they can catch in cancer cells and the drug can be
released safely and specifically in those cells, which would increase the bioavailability of the
drug and minimize the exposure of healthy tissues [78,79,82,83,88]. This can be achieved
by passive targeting (increased permeability and retention effect) [89,90] or by active target-
ing: by covering the nanosystem surface with so-called cancer specific groups (e.g., folate,
transferrin, galactosamine), which are specifically recognized by pathologically changed
cells being the target [91–94]. This functionalization of the nanoparticle (NP) surface can
help to achieve noteworthy efficacy and decrease the in vivo toxicity of chemotherapeutics.
To ensure long circulation in the bloodstream and reduce proteolytic degradation and
immunogenicity, the nanosystem surface is standardly covered with polyethylene glycol
(PEG) [95]. Nanosystems most commonly get to cells through endocytosis. Controlled
drug release from drug delivery nanosystems can happen through simple diffusion from
the matrix or hydrolysis caused by pH change or specific enzymes in the target cells. Drug
release can be also achieved by external factors, such as magnetism, light, ultrasound,
and heat [39,96–98]. Emulsions and various lipid vesicular systems are a “gold standard”
in drug technology [99]. Therefore, they are frequently used and developed also in the
nanoscale age [75,79,80,100,101] (Figure 6). Lipid vesicular systems have been prepared as
an alternative to oil in water (o/w) NEs, where the internal oil phase was replaced with a
solid lipid matrix [75,102,103].
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It is not surprising that NEs and other lipid-based nanosystems have also come into the
sights of technologists reformulating TKIs. For example, therapeutic benefits of bortezomib
can be improved using lipid-based nanocarriers, such as liposomes, SLNPs, and microemul-
sions, which can enhance aqueous solubility, bioavailability, and ensure controlled release
of the drug at the site of administration [104]. Targeted delivery of kinase inhibitors using
lipid-based delivery systems (liposomes, SLNPs and NLC contributes to the reduction of
side effects and ameliorated efficiency of drugs in the target organs. In addition, using
combination therapy of TKIs with chemotherapeutic agents or biopharmaceuticals or two
TKIs within one formulation may result in synergistic therapeutic effect, reducing side
effects and drug resistance in cancer therapy, and is also accompanied by lower costs and
better patient compliance [105]. A combination of curcumin with dasatinib using nanoscale
drug delivery systems such as liposomes or SLNPs can ameliorate therapeutic efficacy
against colon cancer [106]. Anticancer effects of six different kinase inhibitors (crizotinib,
erlotinib, foretinib, gefitinib, refametinib, trametinib) encapsulated in a sterically stabi-
lized unilamellar nanocarrier vesicle system containing dipalmitoylphosphatidylcholine,
cholesterol, ursolic acid, and PEGylated phospholipid were investigated using HCT116,
SW480, H358, HCC827, and A431 cell lines. At combination, the treatment with ursolic
acid and kinase inhibitors—mostly synergism—in anticancer effects was observed. Using
such co-delivery vesicles with a drug:lipid molar ratio approx. 0.5, the multidrug resistance
effect could be likely overcome [107].

3.1. Self-Nanoemulsifying Drug Delivery System

The self-nanoemulsifying drug delivery system (SNEDDS) is an anhydrous isotopic
liquid mixture of oil, surfactant (and usually co-surfactant), drug, co-emulsifier or sol-
ubilizer, which spontaneously forms an o/w NE with a particle size of approximately
200 nm or smaller when diluted with water under gentle stirring. This is an advantageous
low-energy emulsification system because emulsification occurs spontaneously [108–111]
(Figure 7). Physicochemical properties, drug solubilization ability, and galenic availability
are determined by the selection of SNEDDS components, which can be easily modified.
Thus, SNEDDSs can encapsulate not only hydrophobic but also hydrophilic drugs. The
encapsulation of drugs in SNEDDSs greatly increases their solubility and overall bioavail-
ability after oral administration. In addition, SNEDDSs prevent drug degradation and
improve intestinal permeability. Also important is the fact that liquid SNEDDSs can be
converted into solid oral dosage forms (e.g., gelatin capsules filled with liquid SNEDDSs)
or solid SNEDDSs [108–110,112–117].
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3.1.1. In Vitro Tested SNEDDS-Based TKI Formulations

SNEDDSs of different composition were prepared with the following TKIs: brigatinib
(BG) [118], dasatinib (DAS) [119], IMA [120,121], sorafenib (SOR) [122,123], and sunitinib
(SUN) [124]. Their specific composition and particle size is given in Table 2. All these
nanoformulations showed a remarkably ameliorated in vitro anticancer effect, enhanced
solubility in aqueous medium, and bioavailability compared to bulk drug.

Table 2. In Vitro tested SNEDDS-based TKI formulations.

TKI Ingredients Particle Size Tested Human Cancer
Cell Lines

Benefits Refs.

brigatinib oleic acid, Tween® 20,
diethylene glycol
monoethylether

ca. 50 nm lung adenocarcinoma
A549 cells

↑ solubility (205×)
↑ intestinal permeability
↑ anticancer effect

[118]

dasatinib oleic acid, Cremophor® RH-40,
1,2-propanediol

ca. 16 nm MDA-MB-231 breast
cancer cells

↑ intestinal permeability
↑ anticancer effect

[119]

imatinib Cremophor® EL, Labrasol®

ALF, Lauroglycol™ 90
ca. 47 nm MDST-8 colon carcinoma

cells
↑ anticancer effect [120]

imatinib ethyl oleate, Tween® 80,
polyethylene glycol 600

ca. 81 nm MCF-7 breast cancer cells ↑ anticancer effect [121]

sorafenib medium-chain triglycerides,
lecithin, Tween® 80

ca. 43 nm HT-29 colorectal
adenocarcinoma cells

↑ anticancer effect [122]

sorafenib glycerol, Lipoid S75, Tween® 80 75–107 nm HepG2 liver cancer cells ↑ anticancer effect [123]
sunitinib Lauroglycol™ 90, Triton-X100,

Transcutol®-P
ca. 42 nm HT-29 colorectal

adenocarcinoma cells
↑ anticancer effect [124]

3.1.2. In Vivo Tested SNEDDS-Based TKI Formulations

The flaxseed oil NE encapsulating SOR with particle size 77.46 ± 8.28 nm and zeta
potential of –3.4 ± 1.2 mV, which was administered to mice inoculated with Ehrlich ascietes
carcinoma cells (EAC+) day-by-day via oral gavage with 7 doses (30 mg drug/kg of mice
weight) showed smaller tumor volume with increased activity of the lactate dehydrogenase
and longer survival (28 ± 2.54 days) compared to free NE and the same dose of drug
solubilized in Cremophor® and 95% ethyl alcohol (1:1). Moreover, SOR NE amended the
relative liver weight, reduced alanine aminotransferase level, increased the activity of the
catalase and reduced damage of the hepatocytes more than the solubilized drug, suggesting
the ability of this NE to reduce hepatotoxicity [125]. Similar results were obtained with
SOR loaded NE based on carrot seed oil (droplet size: 68.92 ± 10.6 nm) administered to
female Swiss Albino mice bearing Ehrlich ascites carcinoma via oral gavage [126]. SUN-
loaded SNEDDS with average droplet size 29.5 ± 6.3 nm showed enhanced drug release,
ensuring its controlled dissolution as well as cytotoxicity against 4T1 and MCF-7 cancer
cells compared to free drug, and at a dose of 50 mg/kg the maximum plasma concentration
and the mean area under the plasma concentration time curve were 1.45- and 1.24-fold
higher than those observed with SUN suspension [127].

3.2. Liposomes

Liposomes are nanoscale drug delivery systems which consist of an amphipathic
phospholipid bilayer and an internal aqueous core. These self-assembled lipid-based drug
vesicles can form a uni-lamellar or a concentric series of multiple bilayers (multilamellar)
surrounding the aqueous compartment, whereby their sizes can range from 30 nm up to
2.5 µm; the thickness of the phospholipid bilayer is 4–5 nm [79,128–131]. Liposomes have
a spherical shape and the core–shell nanostructure enables them to be loaded with both
hydrophobic and hydrophilic molecules, whereby hydrophobic drugs are encapsulated in
the shell formed by the lipophilic bilayers and hydrophilic drugs are located in the aqueous
phase of the core [79,132]. They are suitable for the targeted delivery of drugs, ensuring
their controlled release, and can reduce systemic side-effects and improve the therapeutic
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index of drugs [79,133]. For example, progress in the combinatorial delivery of drugs such
as paclitaxel (PTX), topotecan (TPT); SUN, irinotecan, combretastin A-4, and DOX using
liposomes, ensuring increased blood circulation, selective drug accumulation at tumor
tissues, and stimuli responsiveness, resulting in improved chemotherapeutic effects, was
discussed by Jain et al. [134].

3.2.1. In Vitro Tested Liposomal TKI Formulations

Liposomal nanoformulations were prepared and in vitro tested against various human
cancer cell lines from the following TKIs: ERL [135], IMA [136–138], SOR [139,140] and
afatinib (AFT) [141]. Their specific composition and particle size are given in Table 3. Lipo-
somal formlations demonstrated long-term stability, sustained release, enhanced cellular
uptake, and anticancer effect in comparison with bulk drugs. In the case of the combination
of IMA with classical antitumor drugs such as paclitaxel (PTX) [137] and tamoxifen [138],
a synergistic effect was observed, resulting in further strengthening of the effect. Also,
a liposomal nanoformulation consisting of egg phosphatidylcholine and cholesterol for
co-delivery of lapatinib (LPT) and PTX, showing pronounced inhibitory activity against
P-glycoprotein which are responsible for efflux pump mediated multidrug resistance, was
prepared by Ravar et al. [142]. This liposomal formulation with mean particle size of
235 ± 12 nm and EE of 52% and 68% for LPT and PTX, respectively, released after 40 h
93% PTX and 71% LPT and exhibited improved cytotoxicity to 4T1 mouse breast cancer
cells compared with the binary mixture of free drugs. On the other hand, Patel et al. [143]
prepared nanoliposomes consisting of Phospholipon® 90H and cholesterol suitable for
inhalation. These SOR tosylate loaded liposomal dry powder showed optimized liposomes
with a particle size of 111.15 ± 1.03 nm, zeta potential of 29.87 ± 0.56 mV, 93.13 ± 1.11% EE,
and low density and good flowability. Based on the in vitro deposition fine particle fraction
of 83.7 ± 0.09%, mean mass aerodynamic diameter 3.15 ± 0.2 µm, geometric standard
deviation 1.78± 0.15 µm and dispersibility of 85± 0.1% was estimated and biphasic release
pattern was observed with burst release in the first 6 h and following sustained release up
to 72 h, suggesting the potential of SOR tosylate for NSCLC treatment. A very remarkable
but comprehensive study was recently published by Salmaso et al. [144]. A synthesized
prodrug Pro962 of TKI TK962 was loaded into liposomes consisting of egg phosphatidyl-
choline, cholesterol, and 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine with a
size in the range of 120–190 nm showing pH-controlled release in the tumor, whereby a
cholesterol moiety was linked to TK962 through pH-sensitive hydrazone bond and an-
chored to the liposome phospholipid bilayer, ensuring prevention for Pro962 leakage from
liposomes. Because in this formulation Pro962 was de facto associated with the vesicles, the
drug release was restricted under blood-mimicking conditions (in contrast to TK962-loaded
conventional liposomes, which showed fast release of the drug) and approximately half
of the drug was released at pH 4 and pH 5 in 2 h. The Pro962-loaded liposomes exhibited
increased cytotoxicity compared to unencapsulated TK962 in both 2D and 3D models
(BxPC3 and PSN-1 pancreatic adenocarcinoma cell lines and A431 human squamous cervi-
cal carcinoma cell line) and the treatment of human, mouse, and rat microsomes showed
that they attenuated the metabolic reactions and protected Pro962 from catabolism [144].
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Table 3. In Vitro tested liposomal TKI formulations.

TKI Ingredients Particle Size Tested Human
Cancer Cell Lines

Benefits Refs.

erlotinib lecithin, cholesterol, chitosan,
anti-EGFR aptamer

70–200 nm lung adenocarcinoma
PC-9, H-1975 cells

long-term stability
effective targeting
↑ drug accumulation
↑ anticancer effect

[135]

imatinib sodium-deoxycholate, hyaluronic
acid, lecithin

ca. 159 nm HT-29 colorectal
adenocarcinoma
cellsColo-320-DMF
colon carcinoma

↑ cellular uptake
↑ anticancer effect

[136]

imatinib +
paclitaxel

1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[amino(polyethylene
glycol)-2000], cholesterol, folic
acid, phosphatidylcholine

ca. 122 nm MCF-7 breast cancer
cellsPC-3 prostate
cancer cells

↑ internalization and
accumulation in
cancer cells
↑ anticancer effect

[137]

imatinib +
tamoxifen

1,2-dipalmitoyl-sn-glycero-3-
phosphocholine,
monopalmitoyl-2-hydroxy-
sn-glycero-3-phosphocholine,
sorbitan monooleate

ca. 168 nm MCF-7, MDA-MB-231
breast cancer cells

synergistic inhibition
↑ anticancer effect

[138]

sorafenib maleimide-polyethylen
glycol-N-hydroxysuccinimide,
soya lecithin, trimethyl chitosan,
octreotide

ca. 127 nm HepG2 hepatocellular
carcinoma cells

sustained release
↑ accumulation in cancer
cells
↑ anticancer effect

[139]

sorafenib 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine, hydrogenated
soya phosphatidylcholine,
cholesterol

ca. 107 nm renal carcinoma cells sustained release
↑ cellular uptake
↑ anticancer effect

[140]

afatinib 1,2-distearoyl-sn-glycero-3-
phosphocholine,
1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine,
1,2-dioleoyl-sn-glycero-3-
phosphocholine,
1,2-dioleoyl-3-trimethylammo-
nium-propane chloride,
cholesteryl hemisuccinate

46–57 nm lung adenocarcinoma
H-1975, H-1650,
HCC-827 cells

↑ tumor-targetability
induction apoptosis in
H-1975 cells
↑ anticancer effect

[141]

3.2.2. In Vivo Tested Liposomal TKI Formulations

Liposomes encapsulating a multi-receptor TKI cabozantinib (CBZ) showed higher cyto-
toxicity than free CBZ and exhibited sustained inhibition of phosphorylation of Met, protein
kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways in renal cell car-
cinoma (RCC) cells. The liposomal formulation exhibited sustained inhibition of tumor
growth and was more efficient than free CBZ in a RCC tumor xenograft model due to the im-
proved accumulation of liposomes in the tumor [145]. Nanoformulation consisting of nano-
liposomes doped with a photoactivable benzoporphyrin derivative XL184 (activated by
NIR irradiation using a 690 nm) as a chromophore in the lipid bilayer—and containing CBZ
NPs, whereby the multikinase inhibitor was encapsulated inside nanoliposomes—were pre-
pared by Spring et al. [146]. Nanoliposomes were prepared using the following ingredients:
1,2-dioleoyl-3-trimethylammonium-propane, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine,
1,2-distearoyl-sn-glycero-3-phosphoethanol- amine-N-[methoxy(polyethylene glycol)-2000],
poly(D,L-lactic-co-glycolic acid)–polyethylene glycol, and had an average particle size of
50 nm. The system was tested in vitro on human pancreas adenocarcinoma ascites AsPC1
cells, and in vivo efficacy was verified in two mouse models of pancreatic cancer. Tumor
irradiation using near-infrared radiation (NIR) following intravenous (i.v.) administration
of these photoactivable multi-inhibitor nanoliposomes induced photodynamic impairment
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of tumor cells and microvessels, resulting in CBZ release inside the tumor. Even admin-
istration of a single dose of this formulation was able to extend tumor reduction in two
mouse models and restrain metastatic escape in an orthotopic pancreatic tumor model,
suggesting that using the prepared nanoliposomes, spatiotemporal control of drug release
can be achieved and toxic impact of systemic drug treatment can be reduced. Asolectin-
based liposomal formulation with encapsulated erlotinib (ERL), showing mean particle
size 121 ± 10.7 nm, zeta potential of –33.7 ± 2.30 mV and EE of 82.60% exhibited improved
effectiveness against PANC-1 cells in vitro compared to free drug (IC50: 1.1± 0.1 µg/mL vs.
2.0± 0.3 µg/mL), caused cell apoptosis and arrested the G0/G1 phase of cell cycle, whereby
a hemolysis study showed that this formulation was safer than the drug solution [147].

Li et al. [148] fabricated multifunctional liposomes with anti-EGFR aptamer-conjugated
chitosan (CS) able to deliver encapsulated ERL and perfluorooctylbromide (PFOB) to
EGFR-overexpressing non-small cell lung cancer (NSCLC), whereby the entrapped PFOB
promoted the uptake of liposomes in either normoxia or hypoxic condition. This liposo-
mal nanoformulation can contribute to overcoming hypoxia-evoked erotinib resistance
both in vitro and in vivo. An anionic liposome nanosystem consisting of lecithin, phos-
phatidylserine showing “sandwich” structure with encapsulated TPT in the lipid hy-
drophilic layer, indocyanine green sensitizer loaded into the hydrophobic layer and pos-
itively charged ERL adsorbed to the outermost layer of the microenvironment entered
the tumor through normalization of blood vessels after the action of ERL, whereby using
ultrasound ameliorated the vascular permeability enabling penetration of NPs into blood
vessels and reach tumor cells; in addition, TPT down-regulated the expression of hypoxia-
inducible factor (HIF)-1α, which led to prolongation of the vascular normalization time.
The obtained in vivo results from mouse model of breast cancer 4T1 confirmed improve-
ment of the tumor environment at treatment with liposomal nanoformulation and increased
anticancer effectiveness due to combination of vascular normalization combined with sono-
dynamic therapy and chemotherapy [149]. Ultrasound-triggered and magnetic-targeted
nanobubble system for dual delivery of pemetrexed (suitable for treatment of NSCLC)
and pazopanib were prepared by attaching of peptide drug conjugates to amine-modified
Fe3O4 and subsequently the formed NPs were encapsulated into liposomes, which were
extruded, and the nanobubble system showing sizes 491.1 ± 130.2 and 275.8 ± 117.8 nm
was fabricated. From the injected carrier system, 80.22% accumulated into the tumor area;
accumulation of nanobubbles responded to magnetic field application and focused acoustic
pressure resulted in the disruption of nanobubbles, leading to targeted drug delivery [150].

Axitinib (AXT)-loaded spherical polypeptide-coated hybrid liposomal core-shell NPs
prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol, and
dimethyldioctadecylammonium bromide (DDAB) via a thin-film hydration technique,
which were coated with PEG-b-poly(aspartic acid) (PAsp) through electrostatic interactions
(P-LNP/AXT), showed considerably slower drug release at pH 7.4 (ca. 8%) compared with
pH 5.4 (22%) within 48 h. This can be associated with increased swelling at lower pH or
by the modified fluidity of the liposomal bilayer membrane, whereby the release of AXT
from the core is controlled by the PEG-b-PAsp layer. P-LNP/AXT showed cytotoxicity
to SCC7, BT-474, and SH-SY5Y cells, although at a dose of 100 µM, the viabilities of cells
treated with free drug were lower than those treated with P-LNP/AXT due to the sustained
release of AXT from the nanoformulation. It can be supposed that P-LNP/AXT can evade
the reticuloendothelial system because it is not pronouncedly internalized by the mouse
macrophage cell line RAW 264.7. Treatment with P-LNP/AXT considerably increased the
level of expression of hydroxy-HIF-1α and remarkably inhibited the growth of tumors
in mice compared to the control group; based on the increased levels of caspase-3 and
poly (ADP-ribose) polymerase and reduced levels of platelet/endothelial cell adhesion
molecule 1 (PECAM1, also known as CD31) and Ki-67 protein in tumor cells apoptosis
of cancer cells and inhibition of angiogenesis within the tumor was proved [151]. Folate
receptor (FR)-targeting IMA-loaded liposomes with average particle size 143.5 nm, zeta
potential of −15.97 mV and EE > 90% exhibited >25% drug release in phosphate-buffered
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saline (PBS) at pH 5.5 within 72 h, while in PBS at pH = 7.4 the observed release did not
achieve 5%. The cytotoxicity of FR-targeted liposomes containing IMA against HeLa cells
(IC50: 150 µM) was 6-fold lower than that of non-targeted ones (910 µM) and also increased
apoptosis of HeLa cells in vitro. In addition, FR-targeted IMA liposomes enhanced HeLa
cell apoptosis in vitro compared to the non-targeted IMA liposomes. The improvement
of long circulation properties in Kunming mice was observed at treatment with both
targeted and non-targeted liposomes [152]. Magnetic nanocomposite based on ZnFe2O4-
IMA-liposomes suitable for targeted IMA delivery exhibited stimulated drug release under
alternative magnetic field in vitro due to motions of NPs in liposomal nanocomposite
caused by modified permeability of the bilayer, and in the in vivo experiment more efficient
accumulation of magnetically controlled liposomes in the targeted sites was observed [153].
Doxorubicin (DOX) and IMA co-loaded into pH-sensitive folate receptor targeted liposomes
with a particle size of about 100 nm preserved stability in blood circulation and exhibited
fast release of both drugs in tumor acidic microenvironment, considerably improved
anticancer effects both in vitro and in vivo, and were able to overcome DOX-associated
chemoresistance via inhibition ABC transporter function by IMA [154].

SOR-loaded glycol chitosan-coated liposome (GC-SF-Lip), and Eudragit® S100-glycol-
chitosan coated liposomes (SGC-SF-Lip) were stable at acidic and neutral pHs and pre-
vented drug leaching in contrast to their uncoated counterparts, which were unstable at
pH 1.2. Besides both of the above-mentioned coated liposomal formulations, the double
coated SGC-SF-Lip formulation also exhibited higher cellular uptake in Caco-2 cells than
the drug solution, although SGC-SF-Lip showing comparable cellular uptake to GC-SF-Lip
at pH 7.4, due to removal of the Eudragit® S100 coating layer, exhibited lower cellular
uptake than GC-SF-Lip at pH 6.5, suggesting lower toxicity of SGC-SF-Lip in acidic environ-
ment. Considerably improved effectiveness of SGC-SF-Lip after oral administration to rats
was reflected in observed maximum serum concentration of drug (Cmax) and area under the
curve (AUC), which were fourfold higher compared to free drug [155]. SOR and indocya-
nine green, a photodynamic therapy agent, co-loaded in NIR fluorescence imaging-guided
photothermally sensitive nanoliposomes showed improved biocompatibility, biotoxicity,
and anti-tumor effects in Hep3B tumor-bearing xenograft nude mice compared to free SOR
can be considered as promising nanoformulation for advanced hepatocellular carcinoma
therapy [156].

SUN-loaded liposomes decorated with cyclo-aminoprolineRGD units (cAmpRGD,
selective ligands for integrin alpha(v)beta(3) (αVβ3), which targets the liposomes to the
integrin αVβ3-overexpressing cells and supports their active cell internalization, resulting
in the accumulation of SUN, were in an in vivo study found to inhibit angiogenesis more
than the free drug or untargeted drug-loaded liposomes. The prepared SUN-loaded tar-
geted liposomes enable reduction of the administered drug, along with a decline of adverse
side-effects, and thus can ensure prolongation of the antiangiogenic therapy [157]. Targeted
liposomes (90–100 nm) prepared using D-α-tocopheryl PEG 1000 succinate (TPGS(1000))–
triphenylphosphine conjugate with encapsulated SUN or vinorelbine, which were tested
against highly invasive breast cancer MDA-MB-435S cells, showed prolonged blood circula-
tion, an enhanced permeability retention effect in cancer tissue of xenograft tumor BALB/C
nude mouse model, and a mitochondrial targeting effect. They accumulated in the mito-
chondria of MDA-MB-435S cells or vasculogenic mimicry (VM) channel-forming cancer
cells, causing acute cytotoxic damage and apoptosis, whereby caspase 9 and caspase 3 were
activated and VM channel-forming indicators (MMP-9, EphA2, VE-Cadherin, FAK and
HIF-1α) downregulated. Consequently, combination of targeted SUN liposomes and tar-
geted vinorelbine liposomes have potential to be used in effective treating of invasive breast
cancer along with preventing relapse originating from VM channels [158]. NIR-activated
IR780-loaded liposomes with encapsulated SUN, in which IR780 is situated in the liposome
phospholipid bilayer, and disruption of the bilayer by laser irradiation results in the re-
lease of SUN, which will be activated remotely at the tumor site and subsequently targets
multiple VEGF receptors on the tumor endothelial cell surface, leading to the inhibition
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of angiogenesis, were designed by Yang et al. [159]. In addition, IR780-loaded liposomes
kill the cancer cells by photothermal therapy. The advantage of this nanoformulation is the
controlled release of the encapsulated drug inhibiting angiogenesis along with photother-
mal therapy. This nanoformulation exhibited enhanced anti-tumor and anti-angiogenic
effects in vitro and in vivo on a syngeneic female BALB/c mouse tumor model which was
established with the 4 T1 cell line [159].

Encapsulation of the FGFR inhibitors ponatinib, PD173074, and nintedanib into lipo-
somes consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol, 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000)] with a particle
size from 96 to 122 nm, reduced short-term (up to 72 h) cytotoxicity in FGFR1-driven lung
cancer cell lines DMS114, NCI-H520 and NCI-H1703 at higher concentrations compared
to free drugs, although in long-term clonogenic experiments the drug-loaded liposomes
showed comparable or higher efficiency than free drugs. In contrast to free ponatinib, using
its liposomal formulation resulted in considerable tumor growth inhibition (up to 60.4%)
in an FGFR inhibitor sensitive murine osteosarcoma transplantation model (K7M2), along
with significantly reduced side effects [160].

3.3. Solid Lipid Nanoparticles

SLNPs consist of matrix materials, i.e., lipids such as triglycerides, fatty acids, choles-
terol, waxes, partial glycerides, fats, and the surface stabilizers, including phospholipids,
bile salts, soyabean lecithin, egg lecithin, phosphatidylcholine, poloxamers, and polysor-
bates, whereby the solid lipid core is enclosed into a lipid monolayer [161–164]. The size
of SLNPs ranges from 50 nm to 1000 nm, they can cross different physiological barriers
and limit mobility of drug molecules in a solid lipid matrix [161], whereby hydrophobic
compounds are solubilized within the central solid-lipid core of SLNPs in the presence
of suitable surfactants [162]. Thanks to their composition, SLNPs have low toxicity, good
biodegradability and high physical stability, which is also reflected in the increased sta-
bility of encapsulated drugs. They provide protection of drugs before the first pass effect,
increase the lymphatic transport of drugs, and by changing the lipid components, tun-
able properties can be achieved for the controlled release of hydrophilic and lipophilic
drugs [79,130,165,166]. A review paper discussing targeted delivery of anticancer TKIs
encapsulated in SLNPs was presented by Satapathy and Patro [167]. Lipid–polymer hybrid
nanoparticles (LPH NPs) are core–shell nanostructures, where a polymer core remains
enveloped by a lipid layer and the outer surface can be functionalized for active targeting
of anticancer therapy, used as a diagnostic imaging agent, etc. [168–170].

3.3.1. SLN-Based TKI Formulations Tested In Vitro

SLNPs were prepared and in vitro tested especially against lung, breast, and liver
cancer cell lines from the following TKIs: BG [171], gefitinib [172], ERL [173–176], IMA [177],
SOR [178–184], SUN [185,186], and AFT [187–189]. SLNP formulations demonstrated
good stability, sustained release, targeting, enhanced cellular uptake, and the induction
of apoptosis, resulting in higher anticancer effect in comparison with bulk drugs. Some
formulations are very interesting; on the one hand, they combine TKIs with other clinically
used antineoplastics (PTX, cisplatin) [176,183,189], while on the other hand, their surface is
covered with specifically targeting peptides (SP94, FD7/CCD) [181,188], or they enhance
the specific distribution also with the addition of magnetic particles [184].

Vivek and Jose designed SLNPs fabricated using IMA mesylate, Compritol® 888
ATO and Pluronic® F6 showing a mean particle size of 190 nm and an EE of 62.5% for
specific targeting to mesenteric lymph nodes, which was verified using various labora-
tory methods [190]. On the other hand, the time-dependent uptake and cytotoxicity of
IMA lipid nanocapsules with a mean particle size of 38.96 ± 0.84 nm, zeta potential of
−21.5 ± 0.61 mV, and 99.17% EE were tested on B16F10 murine melanoma cells [191].
Ponatinib has also been tested in vitro in murine cancer cell lines. Ponatinib-encapsulating
leukosomes, i.e., lipid NPs enriched with membrane proteins derived from activated leuko-
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cytes on the surface, exhibited cytotoxicity against murine osteosarcoma cell lines F420
and RF379 in a dose-dependent manner [192]. The specific composition, particle size,
and benefits of other formulations tested in vitro on human cancer cell lines are shown
in Table 4.

Table 4. In Vitro tested SLN-based TKI formulations.

TKI Ingredients Particle Size Tested Human Cancer Cell Lines Benefits Refs.

brigatinib stearic acid, soya lecithin 176–787 nm lung adenocarcinoma A549 cells sustained release
↑ anticancer effect

[171]

gefitinib Pluronic® F127, lecithin,
polyethylene glycol 2000, stearic
acid, cholesterol, glucosamine

ca. 187 nm lung adenocarcinoma A549 cells ↑ anticancer effect [172]

erlotinib Pluronic® F68, Transcutol®-P,
glycerol monostearate

300–800 nm lung adenocarcinoma A549 cells sustained release
↑ anticancer effect

[173]

erlotinib Compritol® ATO 888, Tween® 80,
Pluronic® 407

<100 nm lung adenocarcinoma A549 cells ↑ anticancer effect [174]

erlotinib 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[amino(poly- ethylene glycol)-2000],
hydrogenated soya
phosphatidylcholine,
polycaprolactone

ca. 170 nm lung adenocarcinoma A549 cells sustained release
↑ anticancer effect

[175]

erlotinib+
paclitaxel

Pluronic® 188, methoxy-
poly(ethylene glycol)-b-
poly(L-aspartic acid sodium, soya
lecithin, glyceryl monostearate,
didodecyldimethylammonium
bromide

ca. 195 nm lung adenocarcinoma NCI-H23 cells pH-dependent and
sustained release
induction of apoptosis
↑ anticancer effect

[176]

imatinib glyceryl palmitostearate, quillaja
saponin, hyaluronic acid

ca. 92 nm MCF-7 breast cancer cells sustained release
CD44 targeting
↑ cellular uptake
↑ anticancer effect

[177]

sorafenib 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[amino(poly- ethylene glycol)-2000],
folic acid, chitosan,
chondroitin sulfate

ca. 178 nm hepatocarcinoma SMMC-7721 cells sustained release
induction of apoptosis
↑ anticancer effect

[178]

sorafenib thymidine 3′-(1,2-dipalmitoyl-sn-
glycero-3-phosphate), 2′,3′-dioleyl-
5′-deoxy-5′-trimethyl-
ammonium-uridine

ca. 200 nm hepatocarcinoma HuH7,
HepG2 cells
breast cancer MDA-MB-134,
T-47D cells

↑ anticancer effect [179]

sorafenib poly(D,L-lactic-co-glycolic acid),
1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[amino(poly- ethylene glycol)-
2000], lecithin

ca. 190 nm breast cancer MDA-MB-231 cells
prostate cancer PC3-MM2 cells

sustained release
long-term stability
↑ anticancer effect

[180]

sorafenib +
MK-siRNA

1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[maleimide- (polyethylene
glycol)-2000], cholesterol,
polyethylenimine,
1-methyl-4,4-bis[(9Z,12Z)-9,12-
octadecadien-1-yloxy] piperidine,
egg phosphatidylcoline, SP94
targeting peptide

140–160 nm HepG2 hepatocellular
carcinoma cells

specific delivery
targeting
↑ drug accumulation
↑ anticancer effect

[181]

sorafenib +
selumetinib

1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine, 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-
N-[maleimide(polyethylene
glycol)-2000], poly(D,L-lactic-co-
glycolic acid), polyvinyl alcohol,
cholesterol, N-acetylgalactos- amine

ca. 170 nm hepatocellular carcinoma HepG2,
Hep3B cells
glioblastoma DBTRG-05MG cells

induction of apoptosis
↑ anticancer effect

[182]
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Table 4. Cont.

TKI Ingredients Particle Size Tested Human Cancer
Cell Lines

Benefits Refs.

sorafenib +
paclitaxel

distearoyl
phosphoethanolamine-polyethylene
glycol, (1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy-
(poly(ethylene glycol)-2000], cetyl
palmitate, Pluronic® F68,
polyvinyl alcohol

ca. 200 nm human glioblastoma
U87-MG cells
lung adenocarcinoma
A549 cells

↑ drug accumulation
↑ cellular uptake
avoided drug efflux pumps
↑ anticancer effect

[183]

sorafenib +
iron oxide

cetyl palmitate, Tween® 80, EMG1300
(iron oxide with surfactant)

ca. 420 nm HepG2 hepatocellular
carcinoma cells

magnetically driven
accumulation
↑ drug accumulation
↑ cellular uptake
↑ anticancer effect

[184]

sunitinib Roghan Kermanshahi Ghee oil, fat tail
sheep, dioctyl sulfosuccinate sodium
salt, chitosan, gum tragacanth

110–156 nm acute myeloid leukemia
THP-1 cells

sustained release
↑ anticancer effect

[185]

sunitinib Phospholipon® 90H, soya lecithin,
polyvinyl alcohol, chitosan

ca. 439 nm MCF-7 breast cancer cells induction of apoptosis
↑ anticancer effect

[186]

afatinib (1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy-
(poly(ethylene glycol)-2000],
poly(D,L-lactic-co-glycolic acid),
1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy-
(polyethylene glycol)-2000], lecithin

147–183 nm colorectal adenocarcinoma
Caco-2 cells

↑ targeting
pH-sensitive penetration
↑ cellular uptake
↑ anticancer effect

[187]

afatinib 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[carboxy(poly- ethylene glycol)-2000],
1,2-di- stearoyl-sn-glycero-3-phospho-
ethanolamine-N-[methoxy(poly-
ethylene glycol)-2000], lecithin, tight
junction-modulating short
peptides FD7/CCD

ca. 66 nm lung adenocarcinoma
PC9 cells

tight junctions perturbation
blood-brain barrier
permeation
sustained release
↑ targeting
↑ anticancer effect

[188]

afatinib +
cisplatin

1,2-dilauroyl-sn-glycero-3-
phosphocholine, 1,2-distearoyl-sn-gly-
cero-3-phosphoethanolamine-
N-[amino(polyethylene glycol)- 2000],
poly(DL-lactide- co-glycolide)

ca. 138 nm nasopharyngeal carcinoma
HONE1cells

reduced cell viability
induction of apoptosis
synergistic efficacy
↑ anticancer effect

[189]

3.3.2. In Vivo Tested SLN-Based TKI Formulations

Pazopanib-loaded SLNPs with a particle size of 210.03 ± 7.68 nm, EE of 79.05 ± 2.55%
and zeta potential of −18.29 ± 1.89 mV showed improved cellular uptake and powerful
cytotoxicity to A549 lung cancer cells in vitro associated with apoptotic mechanism and
inhibited tyrosine kinase. The formulation was characterized with considerably enhanced
bioavailability and sustained-release pattern, releasing 92.67 ± 4.68% of drug within 24 h,
as well as excellent lung targeting as was verified in Wistar albino rats [193].

ERL NPs prepared by nanoparticulation using fat and supercritical fluid with a mean
size of 250 nm strongly inhibited epidermal growth factor (EGF) signaling and suppressed
proliferation of A549, a human NSCLC cells; in vivo study with A549 xenografts in BALB/c
nude mice showed that the NPs not only regressed the tumor more efficiently than Tarceva®,
but also exhibited more efficient inhibition of lung metastasis than Tarceva®; these NPs
showed 5.5-fold higher bioavailability of ERL than Tarceva® [194]. In an in vivo study
with Sprague Dawley rats, the comparison of free ERL with ERL hydrochloride-loaded
SLNPs with mean particle size 177 nm and zeta potential of –33 mV showed that the SLNPs
exhibited a 2.12-fold increase in the oral bioavailability and a reduction of variability in the
AUC from 2.5 to 1.4 from fed to fasted state [195]. PEGylated core–shell type polypeptide
lipid nanocapsules (LNCs) with encapsulated ERL, showing mean size of 200 nm and zeta
potential of −20 mV were able to control drug release from the nanocapsules, showing
faster drug release under acidic conditions and dose-dependent cytotoxicity in NCl-H358
and HCC-827 lung cancer cells. This nanofomulation also effectively suppressed tumor
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growth in a xenograft tumor model compared to free ERL and control, achieving 5- and
2-fold smaller tumor volume in treated mice compared to control nanocapsules and free
drug, suggesting its potential to be used for lung cancer therapy [196]. Poly(acrylic acid)-
cystamine-oleic acid-modified ERL-loaded NPs (PAA-ERL-NPs) with mean size 170 nm,
zeta potential of −32 mV and 85% EE showed sustained cumulative drug release for
72 h and exhibited higher in vitro cytotoxicity against A549 and NCI-H460 cells (IC50:
3.3 ± 0.3 and 4.6 ± 0.5 µM) than non-functionalized ERL-loaded SLNPs (IC50: 9.5 ± 0.7
and 17.2 ± 1.1 µM) and ERL solution (IC50: 36.8 ± 2.3 and 46.5 ± 3.1 µM). Similarly, also in
an in vivo experiment using a xenograft nude mouse model with human lung cancer cells
the tumor inhibition rate after 21 days decreased as follows: PAA-ERL-NPs (84.5%) > ERL
NPs (68.7%) > ERL (38.1%). Hence, redox-responsive poly(acrylic acid) ligands showing
pH sensitivity stimulated NPs to deliver drug into the tumor cells and the structure of NPs
enabling delayed drug release ensured a long-lasting drug delivery in tumor tissues [197].

SLNPs fabricated by Ganthala et al. [198] using CS-maleic anhydride-TPGS polymer,
which were loaded with ERL and quercetin, showed average particle size of 87.3 ± 0.78 nm,
zeta potential of +13.4± 1.12 mV and 77% and 71.4% EE for ERL and quercetin, respectively.
These SLNPs reduced the expression of P-glycoprotein and nuclear EGFR, showed pH de-
pendent sustained release till 72, with higher release at acidic pH, and enhanced the uptake
of both drugs, achieving 55.80% apoptotic cell percentage in ERL resistant A549/ER cells.
In an in vivo study increased uptake of SLNPs containing both drugs in lung tissue was
associated with the enhanced permeability and retention (EPR) effect, pH-responsive prop-
erties, diminished P-glycoprotein efflux, and activated antioxidant defense in normal cells
by quercetin. Remarkable inhibition of the expression of nuclear EGFR/PI3K/AKT protein
in ERL resistant A549/ER cells in vitro and in C57BL6 mice with metastatic lung tumors
tissues in vivo was observed as well. This nanoformulation can be used in targeted therapy
of NSCLC with minimum side effects [198]. He et al. [199] designed a pH-sensitive lipid
bilayer (HHG2C18-L) using zwitterionic oligopeptide lipid, 1,5-dioctadecyl-L-glutamyl-2-
histidyl-hexahydrobenzoic acid, for coating NH2-functionalized mesoporous SiO2 NPs and
incorporated ERL and DOX in this nanoformulation.

ERL, which was sequestered in the exterior lipid bilayer, released faster than DOX
during the cellular transport. At tumor intracellular pH the HHG2C18-L became more
positive resulting in increased gradual release of both drugs, and remarkable synergistic
effects in antiproliferation and apoptosis of A549 human cancer cells was observed in vitro.
In an in vivo study, the nanoformulation with incorporated ERL and DOX exhibited pro-
nounced accumulation of nanoformulation and powerful inhibition of tumor growth in
Lewis lung carcinoma tumor bearing mice and prolongation of survival period without
any sign of systemic toxicity was observed. pH sensitive LPH NPs co-encapsulating ERL
and bevacizumab (BEV) (HA-ERL/BEV-LPH NPs), which were functionalized with HA
containing pH sensitive adipic acid dihydrazide (HA-ERL/BEV-LPH NPs), with sizes ap-
prox. 100–120 nm and negative zeta potentials exhibited faster drug release at pH 5.5 than
at pH 7.4, in contrast to non-functionalized LPH NPs showing comparable drug release at
both pH. HA-ERL/BEV-LPH NPs exhibited higher in vitro cytotoxicity on A549 and H1975
cells compared to free drugs and single drug loaded formulation; HA-ERL-LPH NPs also
achieved higher (>70%) uptake into A549 cells compared to ERL/BEV-LPH NPs (52.3%),
and in an in vivo experiment using the NSCLC mice model, they reduced tumor volume to
greater extent and showed higher tumor inhibition rate in tested animals than HA-ERL-
LPH NPs and HA-BEV-LPH NPs. Using HA-ERL/BEV-LPH NPs maximum plasma ERL
concentration, life period and tumor tissue accumulation of ERL were 21.6 µg/mL, 7.57 h,
and 25.3 µg/mL [200].

Combined NPs, in which celastrol (CST) was loaded in the mesoporous SiO2 NPs and
AXT was loaded in the coating consisting of PEGylated lipidic bilayers, strongly inhibited
angiogenesis and mitochondrial function. These combine NPs were effectively internalized
in SCC-7, BT-474, and SH-SY5Y cancer cells, greatly reduced HIF-1α expression under hy-
poxic conditions in tested cancer cells and induced synergistic cancer cell apoptosis. In such
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combined NPs AXT controls VEGFRs and CST acts on target cell mitochondria, what results
in synergistic effect. Besides strong tumor inhibition in vivo using the tumor xenograft
mouse model, increased caspase-3 and poly (ADP-ribose) polymerase and reduced CD31
and Ki-67 expression was observed, suggesting tumor apoptosis via mitochondrial and
antiangiogenic effects [201].

SLNPs incorporating LPT with mean particle size 88.6 nm and a zeta potential of
20 mV were efficiently taken up into C6 glioma cells, and in vivo showed a relative higher
AUC compared to Tykerb® and LPT suspension and a half lethal dose > 250 mg/kg [202].
NPs consisting of a lipid corona and LPT and albumin as a core were efficiently taken
up by BT-474 cells and induced apoptosis; in vivo they were passively distributed into
a tumor via the EPR effect and showed improved antitumor activity in breast cancer
cells [203]. NPs containing LPT bound to albumin as a core, and egg yolk lecithin forming
a lipid corona with mean particle size 62.1 nm and zeta potential of 22.80 mV applied
at a dose 20 µg/mL induced considerable cell arrest at G0/G1 phase compared with the
same concentration of drug suspension; after intravenous administration to mice bearing
BT-474 xenograft they targeted and accumulated in tumors and co localized with HER2
and SPRAC (secreted protein, acidic and rich in cysteine) [204]. LPH NPs consisting of
poly[lactide-co-glycolide]-D-α-tocopheryl polyethylene glycol 1000 succinate enveloped by
a PEGylated DSPE lipid layer, which were loaded with LPT, showed accelerated release
at pH 5.5, superb internalization and inhibition of proliferation of MCF-7 cancer cells as
well as higher apoptosis of cancer cells than the free drug, Moreover, these LPH NPs were
able remarkably enhance the blood circulation time of drug due to reduced uptake by a
reticuloendothelial system what supported preferential accumulation of drug in the tumor
tissues. The LPH NPs showed antitumor activity also in vivo what was reflected in reduced
tumor cell proliferation and enhanced apoptosis in cancerous mice [205]. In an in vivo study
it was shown that combine treatment with LNCs encapsulating SN-38 (an antineoplastic
drug) and LNCs encapsulating regorafenib reduced CT26 murine colorectal tumor growth
and prolonged median survival time. Encapsulation of drugs into nanocapsules also
considerably reduced the haemolysis [206].

SOR encapsulated in LNCs showing a size 54 ± 1 nm and EE > 90% inhibited in vitro
angiogenesis and reduced human U87MG GB cell viability; their intratumoral administra-
tion to nude mice bearing an orthotopic U87MG human GB xenograft reduced the amounts
of proliferating cells in the tumor relative to control groups, whereby the LNCs were more
efficient compared to free drug and were able to induce early tumor vascular normalization
via increasing tumor blood flow and reduction of tumor vessel area [207]. SOR-loaded
lipid-coated nanodiamond system increased drug oral bioavailability 7.64-fold, enhanced
drug concentration in gastric tumor tissue 14.95-folds and also strongly suppressed tumor
growth in tumor xenograft model; in addition, the metastasis of liver and kidney were
greatly suppressed as well [208]. SOR-loaded lipid-based nanosuspensions consisting of
particles showing a size 164.5 nm and zeta potential of −11.0 mV exhibited higher in vitro
cytotoxicity against HepG2 and Bel-7402 cancer cells than free SOR, and in vivo, using
H22-bearing liver cancer xenograft murine model, exhibited improved antitumor efficacy
reflected in reduced tumor volume and higher accumulation in the tumor tissue compared
to free drug administered per os or intravenously [209]. HA/lipid hybrid NPs encapsu-
lating SOR released the drug in response to hyaluronidase and exhibited enhanced SOR
accumulation at tumor site in vivo, resulting in ameliorated antitumor efficacy [210].

Lipid prodrug containing HA and cisplatin prepared using PEG as a linker and SOR
incorporated into SLNPs with mean particle size 173.2 ± 5.9 nm, and zeta potential of
−21.5 ± 3.2 mV showed antiproliferative activity against MKN28 and SGC7901 human
gastric cancer cells, and in an in vivo study reduced tumor volume from 1532.5 ± 41.3 mm3

to 259.6 ± 16.3 mm3 within 21 days without body weight loss of animals, while admin-
istration of free drug resulted in body weight loss from 15–20 g within 3 weeks [211].
N-Acetylgalactosamine modified and pH sensitive LNPs co-encapsulating DOX and SOR
showing synergistic effects of both drugs in antitumor activity on human hepatic carcinoma
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(HepG2) cells in vitro and in antihepatic carcinoma mice model in vivo was reported previ-
ously by Duan et al. [212]. Optimized SLNPs modified with tumor-targeting peptide iRGD
showing a shell-core structure with incorporated DOX and SOR exhibited cytotoxicity,
pro-apoptotic impact and increased internalization rate of HepG2 cancer cells in synergistic
manner; in vivo they prolonged circulation and bioavailability of drugs and considerably
increased antitumor effectiveness in HCC xenograft mouse models [213].

Low-density lipoprotein (LDL)-mimetic lipid nanoformulations composed of
apolipoprotein B to improve efficiency for LDL receptor-over expressed liver tumors, which
were used for co-delivery of SOR and dihydroartemisinin, reduced the viability of HepG2
cells and ensured 3-fold higher SubG1 percentage of cells compared to the treatments with
a single drug; they also strongly delayed tumor growth in vivo, achieving considerably
lower proliferation index (22.1 ± 5.6%) in xenograft tumor model compared to control
(86.2 ± 6.9%), pure SOR (75.4 ± 4.89%) or pure dihydroartemisinin (69.4 ± 6.9%) [214].
Arginine-glycine-aspartic acid (RGD) modified lipid-coated PLGA NPs co-loaded with
SOR and quercetin suppressed viability of HCC cells more than the single drug formulated
into NPs or their solutions and showed remarkable tumor growth inhibition in vivo [215].
Cellular uptake, cytotoxicity, and gene-silencing studies in HepG2, and Hepa 1–6 cells
supported the selectivity to HCCs compared to HeLa cancer cells and FL83B normal cells,
whereby using pH-sensitive lipid, YSK05, resulted in enhanced cytotoxic and gene knock-
down efficiencies and restricted extracellular drug release. Anti-GPC3 antibody tagged
cationic switchable lipid-based NPs encapsulating SOR and anti-miRNA27a showed pH-
responsive release of SOR, specific affinity towards the GPC3-overexpressed HepG2 cancer
cells and exhibited reduction of viable cancer cells along with considerable increase of apop-
tosis compared to free SOR, which was associated with the presence of anti-microRNA27a
considerably increasing the protein expression of forkhead box protein O1 (FOXO1), and
peroxisome proliferator-activated receptor gamma (PPAR-γ), which are key components
involved in the proliferation and apoptosis of tumor cells. The lipid-based NPs also ef-
ficiently suppressed tumor burden in vivo, and in liver cancer xenograft model reduced
tumor burden, and caused apoptosis without causing toxicity to animals [216].

SLNPs co-encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) and
SOR showing mean size of <200 nm retained their superparamagnetic behavior, showed
enhanced accumulation inside the HepG-2 liver cancer cells in vitro under application of an
external magnetic field and over 72 h exhibited more controlled and sustained release than
free SOR. In an in vivo experiment, an under-skin implantation of separated two magnets
above the mouse liver ensured better targeting and improved accumulation of SPIONs in
the mouse liver along with ameliorated targeting, which was greatly affected by magnetic
field topography [217]. A nanocomposite consisting of superparamagnetic iron oxide
nanocubes and pH responsive synthetic peptides with lipid tails (octadecylamine p(API-L-
Asp)(10)) able to release encapsulated SOR at acidic pH was designed by Park et al. [218] for
magnetic resonance imaging (MRI)-monitored transcatheter delivery of SOR. In an in vivo
study using an orthotopic HCC rat model and transcatheter hepatic intra-arterial injection
of the nanocomposite, the drug was effectively delivered, and what was confirmed with
MRI and considerable suppression of tumor growth in a rodent HCC model was observed.
Based on these results it can be stated that such nanocomposites containing SOR have
potential to be used for liver-directed intra-arterial treatment of unresectable HCC.

Transferrin-modified redox-sensitive SLNPs loaded with AFT with average particle
size 103.5 ± 4.1 nm and zeta potential of −21.2 ± 2.4 mV showed glutathione (GSH)-
triggered drug release behavior and higher in vitro cytotoxicity to H1975, and PC-9 cells
(NSCLC cell lines) in hypoxic conditions than unmodified AFT–SLNPs and bulk AFT, and
also in vivo, in Balb/c-nude mice with subcutaneously injected H1975 cells, they inhibited
the tumor volume from 919 mm3 to 212 mm3 [219]. Investigation of inhaled microspheres
systems prepared by AFT loading in stearic acid-based SLNPs, which were subsequently
loaded together with PTX into PLGA-based porous microspheres, showed that AFT and
PTX exhibited a synergistic effect and high efficiency against drug-resistant NSCLC cells.
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High lung concentration of drugs for 96 h was maintained in Sprague-Dawley rats, while
in other tissues it was low. Thus, such drug combination therapy can be effective for drug-
resistant lung cancer and enables to overcome resistance that often occurs after 9–13 months
of EGFR TKIs administration in NSCLC [220].

3.4. Nanostructured Lipid Carriers

NLCs are the second generation of the SLNPs system, in which a portion of solid
lipid is replaced by oil, and this unstructured, less ordered lipid matrix can ameliorate the
loading efficiency of drugs and hinder leaching and oxidation of drugs during storage,
whereby at room and body temperature the NLCs exist as a solid matrix of lipids [164,221].
NLCs are suitable for controlled drug delivery [222], improve the solubility of hydrophobic
drugs, and via their surface modification site specific targeting of drugs can be achieved
and drug resistance in cancer chemotherapy can be overcome [223,224].

3.4.1. NLC-Based TKI Formulations Tested In Vitro

NLCs of different composition were prepared with the following TKIs: ERL [225],
gefitinib [226], IMA [227,228], SOR [229], SUN [230] and osimertinib [231]. Their specific
composition and particle size is given in Table 5. These nanoformulations demonstrated
enhanced bioavailability, sustained release over several hours, and enhanced cellular
uptake, which led to an increased anticancer activity resulting in overall lower dose-related
side effects. An exception to the above-mentioned formulations is the work of Gorle,
who did not perform in vitro test on cancer cells of his optimized final form in vitro. He
designed AXT-loaded NLCs consisting of Compritol® ATO 888, oleic acid and Tween® 80
prepared by the high-pressure homogenization technique with average particle 202.2 nm,
zeta-potential of−21.5 mV and 88% EE, exhibited in vitro a burst release of drug for the first
2 h followed by a sustained release profile for >10 h, and due to improved bioavailability
of AXT reduction in dose and dosing frequency can be achieved, along with suppression of
dose-related side effects [232].

Table 5. In Vitro tested NLC-based TKI formulations.

TKI Ingredients Particle Size Tested Human Cancer Cell Lines Benefits Refs.

erlotinib Precirol®, Miglyol®, poloxamer 407 ca. 109 nm lung adenocarcinoma A549 cells ↑ cellular uptake
apoptosis induction
↑ anticancer effect

[225]

gefitinib +
paclitaxel

trilaurin, α-tocopherol, 1,2-distearoyl-sn-
glycero-3-phosphocholine,
(1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-
[methoxy(polyethylene glycol)-2000],
luteinizing hormone release hormone

100–300 nm lung adenocarcinoma A549,
H-1975, PC-9, PC-9GR cells

↑ anticancer effect [226]

imatinib Compritol® ATO 888, oleic acid,
Gelucire® 48/16, Gelucire® 43/01, Span
80, Tween® 80

ca. 96 nm gastric adenocarcinoma
CRL-1739 cells

sustained release
↑ anticancer effect

[227]

imatinib stearic acid, sesame oil, sodium lauryl
sulphate, Tween® 80

ca. 104 nm MCF-7 breast cancer cells ↑ anticancer effect [228]

sorafenib tripalmitin, Captex® 355 EP/NF <300 nm hepatocellular carcinoma HepG2,
Hep3B, Huh7, PLC/PRF/5 cells

sustained release
↑ cellular uptake
↑ anticancer effect

[229]

sunitinib Pluronic® F127, cholesterol, Labrafac™,
biotin, stearylamine

ca. 125 nm lung adenocarcinoma A549 cells sustained release (>8 h)
↑ cellular uptake
↑ anticancer effect

[230]

osimertinib stearic acid, Labrafil® M 1944CS,
poloxamer 407

ca. 162 nm lung adenocarcinoma A549 cells sustained release
↑ permeation
↑ anticancer effect

[231]

3.4.2. In Vivo Tested NLC-Based TKI Formulations

Nintedanib mesylate NE-loaded NLCs with mean particle size 125.7 ± 5.5 nm, zeta
potential of −17.3 ± 3.5 mV and EE of 88.5 ± 2.5% releasing 6.8 ± 2.72% of drug at pH 1.2
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and 92.72 ± 3.40% at pH 6.8, were efficiently taken up by Caco-2 cells and exhibited
higher cytotoxicity against A549 cells compared to free drug. NE entrapped into NLCs
showed even 26.31-folds higher oral bioavailability than NE suspension, but the intestinal
lymphatic uptake of NLCs formulation in cycloheximide treated mice was lower than that
observed with control without cycloheximide treatment [233]. IMA-loaded NLCs with
mean particle size 148.80 ± 1.37 nm, zeta potential of −23.0 ± 1.5 mV, and 97.93% EE
exhibited sustained drug release in vitro, pronouncedly increased drug bioavailability after
i.v. and oral administration, and showed stronger in vitro cytotoxicity on human lung
non-small carcinoma cells NCI-H727 compared to pure drug, particularly at doses >5 µM
after 48 h incubation. Intravenous or oral administration of drug-loaded nanoformulation
to rats resulted in more prolonged circulation of the drug and considerably higher mean
residence time compared to free drug; pronouncedly increased bioavailability of the drug,
entrapped in NLC, was reflected in 2.5-fold higher AUC0–∞ values compared to free drug.
In addition, oral administration of IMA-loaded NLCs resulted in a 3-fold increase in Cmax
suggesting ameliorated solubility and absorption, and thus, improved bioavailability of
the drug [234].

4. Clinical Applicability of TKI Lipid-Based Delivery Nanosystems

Lipid-based nanosystems for the delivery of several TKIs, including SNEDDSs, lipo-
somes, SLNs, and NLCs, are discussed in detail in the manuscript. Although promising
results of in vitro screening performed on various cancer cell lines have been described
for all mentioned drug delivery nanosystems, the most studied are nanosystems based on
liposomes and SLNs, where in vivo studies performed on mice or rats have been described.
For this reason, it can be assumed that formulations based on these two nanosystems can be
expected in the future in clinical trials for drug delivery enhancing stability, bioavailability,
cellular absorption, and enabling sustained release and targeted delivery.

Among FDA-approved clinical trials, TKIs such as SUN, ERL, LPT, CBZ can be
found, but only as drugs in approved standard formulations in combination with PTX
albumin-stabilized NP formulations, see, e.g., NCT00748163, NCT00553462, NCT00733408,
NCT00331630, NCT01455389, NCT00709761, NCT9031359, NCT03942068,
NCT05092373 [235–238]. Therefore it can be concluded that no pure nano-TKI formu-
lations have yet been used for clinical trials, but this fact does not exclude that they could
not be successful candidates for clinical trials in the future.

5. Conclusions

After the discovery of imatinib, the boom of various TKIs followed, most of which
are anticancer agents and some are used for reduction of inflammations (rheumatoid
arthritis or lung fibrosis). However, in general, the side effects of TKIs are so serious
that they are designated for only severe, progressive, debilitating, or potentially fatal
conditions. TKIs are hepatotoxic; in addition, they are intensively metabolized and have
limited bioavailability, and resistance to them often occurs. These negative aspects can
be bridged by designing TKIs of newer generations or technological reformulation. The
use of lipid-based nanoformulations have great potential for increasing drug solubility in
water and oral absorption and ensuring the minimization of dose variability for patients
and overall chemical stability, as well as limited metabolization (especially the so-called
first pass effect). All these facts lead to a significant improvement of TKI efficacy and
reduction of side effects, which makes these delivery carriers effective platforms, which are,
moreover, easily prepared and highly modifiable and have high carrying capacity with the
potential of passive or active targeting of cancer sites. In addition, the anticancer effect of
TKIs can be improved by their co-encapsulation with an effective conventional anticancer
drug. On the other hand, there are only a few in vivo studies that look into the safety
of the use of these lipid-based carriers encapsulating TKIs, mechanisms of actions, and
pharmacokinetic studies (absorption, distribution, metabolism, and elimination), especially
in humans, to accurately determine the safety margins and parameters that should be
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integrated as standards for the design of new formulations that would have a chance to get
into clinical studies in the near future and could provide safer and more effective systems
for administration of these promising chemotherapeutics.
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