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Abstract: The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are
still unknown, which represents a limitation for its broader use. Further, not knowing the effects
that different experimental electrical and biological parameters have on GET additionally hinders
GET optimization, resulting in the majority of research being performed using a trial-and-error
approach. To explore the current state of knowledge, we conducted a systematic literature review of
GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For
now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart
from the availability of the required electroporation device and electrodes, the choice of an optimal
GET approach depends on parameters such as the electroporation medium; type and origin of cells;
and the size, concentration, promoter, and type of the NA to be transfected. Equally important are
appropriate controls and the measurement or evaluation of the output pulses to allow a fair and
unbiased evaluation of the experimental results. Since many experimental electrical and biological
parameters can affect GET, it is important that all used parameters are adequately reported to enable
the comparison of results, as well as potentially faster and more efficient experiment planning
and optimization.

Keywords: gene electrotransfer; plasmid DNA; nucleic acid; pulse parameters; electroporation
medium; cell line

1. Introduction

Transfection, a method in which foreign nucleic acids (NAs) (DNA, RNA) are intro-
duced into cells to produce genetically modified cells, is an indispensable method in basic
genetic research, bioproduction, gene therapy, cell therapy, and vaccine approaches. Since it
was demonstrated in 1982 that naked NAs could be successfully transferred into cells using
high-voltage electric pulses [1], the method, now known as gene electrotransfer (GET), has
received considerable attention. It is relatively inexpensive, flexible, and safe for clinical
use. Moreover, it can be used to treat many individual cells within a short time in in vitro
conditions, and it delivers naked pDNA into cells without the use of additional chemicals
or viruses. GET increases plasmid DNA (pDNA) transfection rates by 100–2000-fold and
improves transfection reproducibility compared with injecting pDNA without applying
electric pulses [2]. However, because the mechanisms of GET in cells [3] and the role
of experimental electrical and biological influencing parameters are still unclear [4], the
efficiency of GET could still be improved. Electrical parameters are determined by the
choice of generator of the electric pulses, also named the electroporator, and the electric
pulse parameters, as well as by the geometry and material of the electrodes [5,6]. Biolog-
ical parameters include the biological properties of the cells or tissue [7], the biological
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and physical properties of the extracellular environment [3,8,9], and the properties and
amount of the used NA [10]. Finally, when GET efficiency is measured, the methods used
to determine the GET efficiency and the time at which GET is evaluated are also important.

GET is achieved when NAs enter the cell and produce a protein or shut down a
defective or overexpressed gene. GET is most often used to deliver pDNA, but in recent
years, different RNAs have also been delivered by electroporation. Depending on the type
and size of NAs introduced into cells, they must cross several barriers before reaching
the cytoplasm of the cell (in the case of RNA) or the cell nucleus (in the case of DNA) to
exert their therapeutic effect [2]. GET is a multistep process that includes, in the case of
plasmid DNA (pDNA), interaction of pDNA with the cell membrane, translocation across
the cell membrane, migration through the cytoplasm, translocation through the nuclear
envelope, and gene expression [3]. At GET, the electric field present when electric pulses
are applied to cells allows the permeabilization of the cell membrane and electrophoresis
of negatively charged NA molecules from the cathode to the anode, bringing them into
contact with the cell membrane in greater numbers compared to free diffusion [11]. Larger
pDNA molecules (greater than 1 kb) interact with the cell membrane and form aggregates
on the cell membrane during pulse delivery [12]. These pDNA aggregates must then be
transferred into the cell, transported intracellularly through the cytoplasm, and imported
through the nuclear envelope into the nucleus [3,13]. Endocytosis and cell membrane repair
mechanisms following the delivery of electric pulses have been suggested as a possible
mechanism for pDNA internalization [2,14]. Small NA molecules enter the cell mainly
by electrophoresis during pulse delivery through permeable sites in the cell membrane.
For RNA molecules, it was shown that they enter the cell through permeable sites of cell
membrane during pulse delivery without forming aggregates on cell membrane, and thus
have direct access to cell cytoplasm [15]. Still, the exact mechanism enabling different NAs
to cross the abovementioned barriers is largely unknown.

The electric field leading to cell membrane permeabilization, a crucial step of GET,
is governed by the electrode geometry, dielectric properties of the load (i.e., cells in vitro
or tissue in vivo), and the amplitude of the electric pulses delivered by the electroporator.
In vitro, two-plate electrodes with a spacing of at least 1 mm (i.e., macroelectrodes) are
most often used, where the cells are exposed to the electric field. They are very commonly
provided in the form of commercially available cuvettes. Other types of electrodes include
single-cell chambers, microelectrodes (glued to cover glass), and flow-through chambers
(i.e., polyethylene or polypropylene as an insulating material combined with stainless
steel electrodes) [16,17]. Not only the geometry but also the material of the electrodes is
important because electrochemical reactions occurring at the electrode-electrolyte interface
during the delivery of high-voltage electric pulses. Electrolysis, the formation of radicals,
and the release of metal ions from the electrodes lead to the corrosion and contamination of
the electrodes, as well as the chemical alteration of the medium [8,9,18,19].

The parameters of electric pulses are the pulse shape, amplitude and duration, num-
ber of pulses, pulse repetition frequency, and polarity [16]. The exponentially decaying
pulses originally used have been largely replaced by GET protocols that favor the use of
long monopolar millisecond pulses, which provide sufficient electrophoresis to bring a
sufficient number of NA molecules into contact with the cell membrane [3,11]. However,
long monopolar pulses also cause considerable electrode oxidation, pH changes near the
electrodes, bubble formation, and Joule heating [18,20–22]. All these phenomena are un-
desirable in GET applications. In applications in vivo, the additional disadvantages are
discomfort and pain, requiring the use of muscle relaxants, anesthesia, and synchroniza-
tion of pulse delivery with the electrocardiogram [23]. The use of high-frequency bipolar
pulses (HF-BP) and nanosecond pulses (ns) [11] reduces electrochemical reactions [18],
muscle contractions, and pain [23–26]. In an attempt to improve the efficiency of GET,
various combinations of millisecond, microsecond, and nanosecond pulses have also been
used [27–29].
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Biological characteristics of the cells and the extracellular environment, such as the
composition of the cell membrane, the conductivity of the medium surrounding the
cells [30–32] and its pH [33], the volume fraction of the cells, and the arrangement of
the cells in the suspension [34,35] can also affect the efficiency of GET [3,8,9,33]. Different
papers have reported that GET is highly cell line-dependent, with primary cells usually
being harder to transfect compared to normal and tumor cell lines [11,36].

In vitro GET is often performed in a special electroporation media of low conductivity
to reduce the power requirements of the electroporation device. In vitro electroporation
is also often performed in a cell growth medium, which is an approximation of tissue
intracellular fluid [11,37]. However, the cell growth medium consists of many components
which can affect cell membrane permeabilization and, consequently, GET.

GET efficiency also depends on NA properties such as topology, size, concentration,
and mobility. Smaller pDNA molecules have been shown to lead to better GET efficiency,
presumably due to their higher mobility [32]. Higher pDNA concentration also resulted
in higher GET efficiency, especially when shorter (i.e., less than 10 µs) pulses were used,
but have led to a decrease in cell survival in some cell lines [11,37,38]. In the case of DNA
molecules, the promoter used can also affect the dynamics of transgene transcription and,
consequently, GET efficiency [39].

The fact that the exact mechanisms of NA delivery with GET are still unknow rep-
resents a limitation for its broader use. Further, not knowing the effects that different
experimental electrical and biological parameters have on GET additionally hinders GET
optimization. As a result, the majority of research is performed using a trial-and-error
approach, which is not always the most successful. In addition, a trial-and-error approach
results in a large number of papers. To explore the current state of knowledge on the
influence of electrical and biological parameters affecting the efficiency of GET, we con-
ducted a systematic literature review of GET papers in in vitro conditions and performed
meta-analyses of the reported GET efficiency. To our knowledge, this is the first systematic
review that summarizes all influential parameters considered in reporting GET efficiency.
We believe that the results of this study will improve our understanding of GET and provide
guidance for future study reports.

2. Materials and Methods
2.1. Eligibility Criteria

Only original research, peer-reviewed in vitro papers based on eukaryotic cells were
included in the review. Theoretical papers (modeling), in vivo, in ovo and clinical studies,
papers reporting GET on prokaryotes, papers in which GET was used only as a tool, papers
that did not test multiple electroporation parameters, and papers with only “nucleofection”
were excluded, as no parameters were reported that could be used in our analysis.

2.2. Search Strategy

A comprehensive electronic search was carried out in the Scopus, Web of Science, and
PubMed databases to identify eligible papers in English language only. The initial search
was performed in August 2018 and repeated in May 2021 and July 2022. The following
search terms/words were used:

Scopus: (ALL (gene AND transfer OR DNA AND vaccination OR plasmid AND DNA)
AND ALL (electroporation) AND ALL (optimi* OR compar* OR multiple AND parameter*))
AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)).

(ALL (gene AND electrotransfer OR electrogene AND transfer) AND ALL (optimi*
OR compar* OR multiple AND parameter*)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND
(LIMIT-TO (LANGUAGE, “English”)).

Web of Science: TOPIC: (gene transfer OR DNA vaccination OR plasmid DNA) AND
TOPIC: (electroporation) AND TOPIC: (optimi* OR compar* OR multiple parameter*)
Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT TYPES: (ARTICLE) Timespan:
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All years. Databases: WOS, BCI, CCC, DRCI, DIIDW, KJD, MEDLINE, RSCI, SCIELO,
ZOOREC. Search language = Auto.

TOPIC: (gene electrotransfer OR electrogene transfer) AND TOPIC: (optimi* OR com-
par* OR multiple parameter*) Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT
TYPES: (ARTICLE) Timespan: All years. Databases: WOS, BCI, CCC, DRCI, DIIDW, KJD,
MEDLINE, RSCI, SCIELO, ZOOREC.

PubMed: Search (gene transfer OR DNA vaccination OR plasmid DNA) AND electro-
poration AND (optimi* OR compar* OR multiple parameter*) Filters: Full text; English.

Search (gene electrotransfer OR electrogene transfer) AND (optimi* OR compar* OR
multiple parameter*) Filters: Full text; English.

2.3. Paper Selection

The first screening of potentially relevant papers was performed based on the title and
abstract. At this stage, papers that did not report GET or reported GET on prokaryotes,
in vivo, in ovo, clinical, and theoretical papers were excluded. We also excluded papers
in which GET was used only as a tool and thus did not test multiple electroporation
parameters, and papers in which only “nucleofection” was used. After initial screening,
full-text versions from the papers that compared GET efficiency depending on varying at
least one electrical or biological parameter were obtained if possible.

Since many abbreviations are used throughout the paper, we summarized them all in
Table 1.

Table 1. Summary of all abbreviations used throughout the paper.

cDNA Complementary DNA

CI Confidence intervals

CMV Cytomegalovirus

COM Combination of pulses

DNA Deoxyribonucleic acid

EXP-COM Combination of exponential pulses

EXP-long Long exponential pulses

EXP-medium Medium exponential pulses

EXP-short Short exponential pulses

HF-BP High-frequency bipolar pulses

GET Gene electrotransfer

gRNA Guide RNA

medium-BP Medium bipolar square wave pulse

MIDGE Minimalistic, immunologically defined gene expression

mod RF modulated square wave pulse

mRNA Messenger RNA

NA Nucleic acid

ns Nanosecond pulses

pDNA Plasmid DNA

RF Radio frequency

RNA Ribonucleic acid

short-BP Short bipolar square wave pulse
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shRNA Short hairpin RNA

SIN Sinusoidal pulses

siRNA Silencing RNA

SV40 Simian virus 40

2.4. Data Extraction

Bibliographic details of the papers, such as authors, journal, and year of publication,
were retrieved.

Electrical parameters: The type of electrodes, material of the electrodes, device used to
apply electric pulses (type and producer), amplitude and duration of electric pulses, and
potential measurement of output pulses were collected.

The types of electrodes were further divided into six groups: plate, wire, neon tip,
electroporation cuvette, custom-made electrodes, and not reported. All types of electrodes
that did not match the first four groups were classified into a custom-made electrodes
group. If the study reported that electroporation cuvettes were used and the material of the
electrodes was not reported, then we determined the material of the electrodes based on
the manufacturer of the electrodes.

Electroporation devices were separated into two groups, commercially available and
prototype electroporation devices. The devices sold on eBay and similar platforms were
also grouped under prototype devices.

Pulses were first divided in five groups based on pulse duration: short (1–499 µs),
medium (500 µs–9.9 ms), long (10 ms or longer), nanosecond pulses (ns) (less than 999 ns),
or combinations of pulses (COM). During the review, the need arose, and additional groups
were added: exponential pulse (EXP-long, EXP-medium, EXP-short, and EXP-COM), RF-
modulated square wave pulse (mod), sinusoidal (SIN), and bipolar square wave pulse
(short-BP and medium-BP).

Biological parameters: The type, concentration, size, promoter of NA, encoded trans-
gene, number of cells used for GET, whether cells were in the suspension or attached, cell
line, origin and type of cell line, and electroporation medium were collected.

Types of NA were further divided into plasmid DNA (pDNA), messenger RNA
(mRNA), silencing RNA (siRNA) and others which include guide RNA (gRNA), short
hairpin RNA (shRNA), oligonucleotides, chromosomal DNA, polymer-DNA complex,
MIDGE vectors, minicircles and complementary DNA (cDNA).

NA concentrations were divided into 5 categories (<10, 10–50, 51–100, 101–500,
>500 µg/mL), size was divided into 4 categories (<2, 2–7, 7–20, >20 kb), and promot-
ers were divided into 2 categories (inducible, constitutive). NA with encoded transgenes
were classified as reporter, therapeutic, or empty.

The number of cells used for GET was divided into 3 categories based on the cell
density (<105, 105–108, >108 cells/mL) or attached cells. Cell lines were classified as normal,
tumor, or primary cells.

Reporting of results: Data on GET efficiency and cell survival or overall GET effi-
ciency were collected. Data on the time of measurement and methods of GET efficiency
determination were also collected.

For statistical analysis, the standard deviation or error of the results and the sample
size were collected where possible. If it was not clear whether the paper reported the
standard deviation or standard error of the mean, then it was assumed to be a standard
error. If a range of sample sizes was given, the lowest value was extracted. The online
program GraphReader.com (Accessed on 2 May 2022, http://www.graphreader.com/) was
used to extract results presented in graphical form if not given in tables or text.

http://www.graphreader.com/
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2.5. Assessment of Risk of Bias

All included papers were assessed for the risk of bias. Since no standard quality
assessment tool exists for in vitro papers, we developed these criteria ourselves. Namely,
two reviewers independently assessed the risk of bias for the selected papers. The reporting
of each of the electrical and biological parameters of interest was investigated. Based on
the below described criteria, the reporting was arranged into three categories, namely
appropriate, poor, or inappropriate.

Because of the poor or inappropriate reporting of at least some parameters in most
papers for the overall paper risk of bias assessment, only 10 parameters were chosen
(bolded in Table 2) for the further evaluation of papers. The parameters were the controls
used, description of electrodes, pulses, pulse generators, concentration, size and promoter
of NA, number of cells, electroporation medium, and reporting of the results. Papers were
noted as appropriate only if all 10 parameters were appropriately described. If between
5 and 9 of the chosen parameters were described appropriately, then the overall paper risk
of bias was poor. If four or fewer of the parameters were described appropriately, then the
paper was noted as inappropriate.

Table 2. Criteria for assessment of risk of bias.

Appropriate Poor Inappropriate

Controls

Were adequate control groups used? At least control group
without electroporation

Just control group without pDNA;
not clear if it is control group

without electroporation or without
pDNA; other control groups

Not reported

Electrical parameters

Is the pulse generator
adequately reported?

Output pulse parameters or design
of the electroporator is known

The type of the electroporator is
reported but the specifications

of the output pulses or the design
is not reported

Not reported

Are amplitude and duration of
pulses adequately reported?

Amplitude and duration of
pulses is reported

Amplitude and pulse waveform is
known, but not the time constant Not reported

Are the electrodes
adequately reported?

Distance between the electrodes
and the design (geometry to

determine electric field
distribution) is reported

Distance between the electrodes is
reported but not the design

(geometry to determine
electric field distribution)

Not reported

Was electric pulses delivery
controlled adequately?

The user measures output pulses
with an oscilloscope

The user measures or in any
other way assesses output pulses;

pulse generators that measure
output pulses

Not reported

Is the material of electrodes described?

Material of solid electrodes is
reported or thickness and material

of basal and plated material
of the electrodes is reported

Basal and plated materials are
reported but not the thickness Not reported

Biological parameters

Is the amount of added NA reported? Amount or concentration
and volume Just concentration or range reported Not reported

Is the size of NA reported? Size is described or manufacturer
is reported Not reported for all used pDNA-s Not reported

Is the promoter used reported? Promoter is reported or
manufacturer is reported Not reported for all used pDNA-s Not reported

Is the number of cells used for
GET reported? Number is reported Just concentration or range reported Not reported

Are growth, electroporation medium,
and other chemicals used reported?

Growth medium, electroporation
medium and other chemicals used

are reported

Electroporation medium
is not reported Not reported

Is it described if cells are in
suspension or attached?

Described if cells are in
suspension or attached / Not reported
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Appropriate Poor Inappropriate

Is the origin of cell line reported? Origin of cell line is reported Origin is not reported for
all cell lines Not reported

Is it described if it is normal, tumor cell
line or primary cells?

Described if it is normal, tumor cell
line or primary cells / Not reported

Is it reported when results
were measured? Reported when GET was measured Just time frame reported Not reported

Is the method used for evaluation of
results reported?

Method used for evaluation of GET
efficiency is reported / Not reported

Is reporting of results clear and
adequate? (Defined if it is

percentage of GET, overall GET)

Percentage of transfection and
survival are reported

Only percentage of
transfection is reported Not reported

2.6. Statistical Analysis

The meta-analysis was performed using MetaLab (available at https://github.com/
NMikolajewicz/MetaLab, accessed on 1 October 2020), with a free toolbox for meta-analysis
developed in MATLAB R2016b [40]. The main outcome selected from the papers was the
overall GET efficiency, which represents the percentage of transfected cells based on the
number of cells exposed to the electric pulses. If the overall GET efficiency was not reported,
it was calculated as the percentage of transfected cells multiplied by the percentage of
viable cells divided by 100. The standard deviation and standard error of the overall GET
were calculated from the standard deviations of transfected and viable cells and the sample
size according to the error propagation rule.

The papers with an appropriate overall risk of bias assessment and which also re-
ported the standard deviation or error of the results obtained using different experimental
electrical and biological parameters and the sample size were included in further analyses.
If the paper reported more than one electrical and/or biological parameters, each result
was treated as an independent experiment and included in the meta-analysis. The Cochran
Q-test of heterogeneity at a significance level of 5% was applied to evaluate statistical
heterogeneity of the data. In addition, H2 and I2 heterogeneity statistics were used to
quantitatively assess the heterogeneity of the data. A Baujat plot and single-data exclu-
sion analysis were used to identify the data that contributed most to heterogeneity and
affected the outcome. Cumulative data exclusion analysis showed that the threshold for
homogeneity of the data set was 79%. Because of statistically significant heterogeneity, a
random effect model was used to obtain the pooled overall GET efficiency. Inverse variance
weighting was used to calculate the weights of each data set, and 95% confidence intervals
(CI) were calculated using a t-distribution.

Moreover, 19 subgroup analyses were performed according to the type of cell line
(normal, tumor, primary), electroporation medium (cell culture media, sugar and salt-
based media, commercial electroporation medium, balanced salt solutions), pulses (short,
medium, long, exponential and combination of short and long, short-BP, ns), promoter
(CMV, SV40, others), and size of NA (<4 kb, between 4 kb and 5 kb, >5 kb). The heterogene-
ity of each subgroup was statistically significant. Therefore, a random effects model was
used to obtain the overall GET efficiency of each subgroup.

3. Results
3.1. Paper Selection and Characteristics

All papers were evaluated based on the defined selection criteria, and the risk of bias
assessment was performed for appropriate studies. Identifying the year 1982 as the year
that this field emerged, we found a remarkable increase in publications concerned with
GET up to 2022 (Figure 1).

https://github.com/NMikolajewicz/MetaLab
https://github.com/NMikolajewicz/MetaLab
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Figure 1. Number of papers retrieved by all 3 searches by year of publication (n = 4525).

The first search in August 2018 retrieved 6133 papers. After the elimination of dupli-
cates and ineligible papers, the full-text versions of the 182 remaining papers were obtained.
The second search in May 2021 retrieved an additional 781 papers, of which 32 were eligible
for our review. The third search was performed in July 2022. An additional 269 papers
were retrieved, of which 14 were eligible to include in our review. Finally, data from 228
eligible papers (Figure 2) were extracted by two investigators [6,13,31,33,37–39,41–261]
(Supplementary List S1). Of the 228 eligible papers, only 35 papers were appropriate
based on the risk of bias assessment [31,37,38,47,48,82,94,105,116,127,130,131,138–141,144–
146,157,158,169,173,176,177,186–190,196,199,214,238,253]. For the meta-analysis, data of
standard deviation or error and sample size were additionally needed. Of 35 eligible papers
based on the risk of bias, standard deviation or error and sample size were only reported in
23 papers [31,37,38,47,48,116,139–141,145,146,157,158,169,173,176,177,187,188,190,196,199,253]
(Figure 2).

3.2. Risk of Bias Assesment

The only parameters reported in all papers were whether GET was performed on
cells in suspension or attached and the type of cell line, namely tumor, normal, or primary.
The method used to measure the results was appropriately reported in all but one paper;
similarly, cell origin was appropriately reported in all but two papers. More than 90% of
papers appropriately described the promoter of NA and when the results were measured.
More than 80% of papers appropriately described the pulse generator, electric pulses, and
amount of used NA. Electrodes were appropriately described in 77% of papers, and the
number of cells used for GET was appropriately described in 70% of papers. The size of the
NA and electroporation medium were appropriately described in 69% of papers. In total,
64% of papers reported the used of adequate control groups. The results were appropriately
reported in only 55% of papers, and the material of electrodes was appropriately reported
in only 49% of papers. The worst reported parameter was the measurement of output
pulses; only 22% of papers appropriately measured delivered pulses (Figure 3).



Pharmaceutics 2022, 14, 2700 9 of 32

Pharmaceutics 2022, 14, x FOR PEER REVIEW 
 9 of 37 
 

 

 
Figure 2. PRISMA flow diagram of paper selection. 

3.2. Risk of Bias Assesment 
The only parameters reported in all papers were whether GET was performed on 

cells in suspension or attached and the type of cell line, namely tumor, normal, or primary. 
The method used to measure the results was appropriately reported in all but one paper; 
similarly, cell origin was appropriately reported in all but two papers. More than 90% of 
papers appropriately described the promoter of NA and when the results were measured. 
More than 80% of papers appropriately described the pulse generator, electric pulses, and 
amount of used NA. Electrodes were appropriately described in 77% of papers, and the 
number of cells used for GET was appropriately described in 70% of papers. The size of 
the NA and electroporation medium were appropriately described in 69% of papers. In 
total, 64% of papers reported the used of adequate control groups. The results were ap-
propriately reported in only 55% of papers, and the material of electrodes was appropri-
ately reported in only 49% of papers. The worst reported parameter was the measurement 
of output pulses; only 22% of papers appropriately measured delivered pulses (Figure 3).  

Figure 2. PRISMA flow diagram of paper selection.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 
 10 of 37 
 

 

 
Figure 3. Reporting quality and risk of bias in all 228 papers. Because of the poor or inappropriate 
reporting of at least some parameters in most papers, only 10 parameters were chosen for the overall 
paper risk of bias assessment (bolded in Table 2). 

3.3. Electrodes 
Please note that the sum of numbers at each parameter could be higher than the total 

number of papers used for analysis (228) since one paper could report many experiments 
using various electrical and/or biological parameters. (For example, a paper describing 
the use of two different types of electrodes, cuvettes, and wire electrodes, was counted in 
both categories.) 

Overall, the electrode type was well reported (Figure 4). By far, the most used were 
electroporation cuvettes. Therefore, the most common material of electroporation elec-
trodes was aluminum (Supplementary Figure S1), and the distance between the electrodes 
was 4 mm (Figure 5). The distance between the electrodes, which is critical for electric 
field calculation, was not well reported. Overall, 48 papers lacked this critical information 
(Figure 5).  

Figure 3. Reporting quality and risk of bias in all 228 papers. Because of the poor or inappropriate
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3.3. Electrodes

Please note that the sum of numbers at each parameter could be higher than the total
number of papers used for analysis (228) since one paper could report many experiments
using various electrical and/or biological parameters. (For example, a paper describing the
use of two different types of electrodes, cuvettes, and wire electrodes, was counted in both
categories.)

Overall, the electrode type was well reported (Figure 4). By far, the most used were
electroporation cuvettes. Therefore, the most common material of electroporation electrodes
was aluminum (Supplementary Figure S1), and the distance between the electrodes was
4 mm (Figure 5). The distance between the electrodes, which is critical for electric field
calculation, was not well reported. Overall, 48 papers lacked this critical information
(Figure 5).
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3.4. Electroporation Device

Fifteen papers did not report the data about the electroporation device used. Com-
mercial electroporators were used in the majority of papers. In total, 56 papers reported
the use of custom-made, prototype electroporation devices (Figure 6). Among commercial
electroporators, the most used were devices produced by Bio-Rad Laboratories, Inc. (Her-
cules, CA, USA) and BTX® (a division of Harvard Bioscience, Inc., Holliston, MA, USA)
(Supplementary Figure S2).
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Many different types of electrical pulses have been used in GET papers so far. The
most use electrical pulse was square wave pulses. Fewer than one-third of papers reported
the use of exponential discharge pulses (Figure 7).
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Figure 7. Amplitude and duration of the electric pulses used in the GET experiments. Short:
1–499 µs; medium: 500 µs–9.9 ms; long: 10 ms or longer; nanosecond pulses (ns): less than 999 ns;
or combinations of pulses (COM), exponential pulse (EXP-short, EXP-medium, EXP-long, and
EXP-COM), RF-modulated square wave pulse (mod), sinusoidal (SIN), bipolar square wave pulse
(short-BP and medium-BP), NR—not reported.
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3.5. Nucleic Acids

By far, the most used NA was pDNA (>90%). Among RNA molecules, siRNA and
mRNA were most often used. Fewer papers reported transfection with oligonucleotides,
minicircles, gRNA, and cDNA. Chromosomal DNA, polymer-DNA complex, MIDGE
vectors, and shRNA were each used only in one paper (Supplementary Figure S3).

The sizes of the NA transfected ranged from 23 bp to 48 kb. Overall, 2–7 kb was the
most used size. The size of the NA was one of the categories that was often not reported.
Around 25% of papers did not report the NA size (Figure 8).
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The promoters were divided into constitutive and inducible promoters. The majority
of papers reported the use of constitutive promoters (Figure 9). Among constitutive
promoters, CMV and SV40 were used most often.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 
 15 of 37 
 

 

 
Figure 9. Promoter of NA. NR—not reported. 

The NA concentration was also often not reported. Most papers reported concentra-
tions between 10 and 50 µg/mL. Concentrations lower than 10 µg/mL and higher concen-
trations of NA were also reported; in particular, 51–100 µg/mL and 101–500 µg/mL were 
also commonly used. Concentrations higher than 500 µg/mL were rarely reported (Figure 
10).  

 

Figure 9. Promoter of NA. NR—not reported.



Pharmaceutics 2022, 14, 2700 13 of 32

The majority of transgenes in the papers included in this study were reporters (>90%).
In eight papers, NAs that did not encode the transgene were used. They were classified as
empty (Supplementary Figure S4).

The NA concentration was also often not reported. Most papers reported concen-
trations between 10 and 50 µg/mL. Concentrations lower than 10 µg/mL and higher
concentrations of NA were also reported; in particular, 51–100 µg/mL and 101–500 µg/mL
were also commonly used. Concentrations higher than 500 µg/mL were rarely reported
(Figure 10).
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3.6. Cell Lines

Cell lines were divided into three groups, namely tumor, normal or primary cells. All
three groups of cells were used in a similar number of papers (Figure 11).
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The cells originated from 14 different species, with human, mouse, and hamster being
the most often used, followed by rat and monkey. Other origins that were less common
were goat, rabbit, dog, swine, cat, chicken, buck, bovine, and sheep. In two papers, the
origin of the cell line was not reported (Supplementary Figure S5).

Cells were more frequently electroporated in the suspension compared to the electro-
poration of attached cells (Supplementary Figure S6).

The density of cells electroporated in the suspension was divided into three groups:
up to 105, 105–108, and higher than 108 cells per milliliter. Most papers reported GET with
a cell density between 105 and 108 (Figure 12).
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3.7. Electroporation Medium

The media used for GET were divided into four groups. Most often, GET was per-
formed in media consisting of salts and sugars, followed by GET in cell culture medium,
GET in balanced salt solutions, and GET in commercial electroporation medium. The GET
medium was not reported in 33 papers (Figure 13).
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3.8. Time at Which GET Was Measured

The time at which GET was measured ranged from 3 to 288 h (12 days) after GET.
GET was most often measured 24 or 48 h after GET, followed by 72 h after GET. Overall,
18 papers did not report when GET was measured (Figure 14).
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3.9. Sets of Parameters That Result in the Most Efficient GET

The highest overall GET efficiency (86.49%) using pDNA under the control of the
constitutive CMV promoter was reported by Zhou et al. in 2020. Adherent HeLa cells in a
sugar- and salt-containing electroporation buffer were exposed to an overall equal electric
field intensity (100 V/cm) for 0.5 ms by individually addressable sequentially energizing
microelectrodes arranged in a nested and non-contact manner [157].

A high overall GET efficiency (80.75%) was also obtained by Cegovnik and Novaković
in 2003. They exposed a suspension of B16F1 cells in a sugar- and salt-containing elec-
troporation buffer with the addition of pDNA under the control of the constitutive SV40
promoter to exponentially decreasing and electronically controlled electric pulses in an
electroporation cuvette [173].

A somewhat lower but still high overall GET efficiency (77.26%) was also published
by Zu et al. in 2020. They constructed a micropillar array of electrodes integrated as the top
and bottom wall in a horizontal flow chamber. Then, 293T cells were exposed to an electric
field of 625 × 104 V/cm in a cell culture medium for 10 ms in the presence of pDNA under
the control of the constitutive CMV promoter [146].

3.10. Pooled Overall GET Efficiency

All 10 parameters for the overall paper risk of bias assessment were appropriately
described in 35 papers, but only 23 papers also reported the standard deviation or error
of the results and the sample size. Therefore, only these 23 papers were included in the
analysis, which, together, reported 143 overall GET efficiencies obtained using different
experimental electrical and biological parameters and could therefore be treated as inde-
pendent experiments (Supplementary Table S1). Since electric pulses were divided only
by pulse length and the electric field was not a separate electrical parameter, we included
88 optimal GET efficiencies disregarding the electric field.

The meta-analysis using the random effect model revealed that the pooled overall
GET efficiency was 25% (95% CI, 23.8–26.9) (Figure 15). According to the results of the I2

test, there was a high degree of heterogeneity in the primary meta-analysis (I2 = 99.94%,
p < 0.001).
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3.11. Subgroup Analyses

Subgroup analysis was conducted according to the type of cell line (normal, tumor, pri-
mary), electroporation medium (cell culture media, sugar and salt-based media, commercial
electroporation media, balanced salt solutions), pulses (short, medium, long, exponential
and combination of short and long, short-BP, ns), promoter (CMV, SV40, others), and size of
NA (<4 kb, between 4 kb and 5 kb, >5 kb). The results of the subgroup analyses are given
in Table 3.

Table 3. Results of the subgroup analysis. According to the results of the I2 test, there was a high
degree of heterogeneity in all subgroups (I2 > 98%).

Parameter No. of Experiments (No. of Papers) Overall GET Efficiency (%) (95% CI)

Normal 53 (15) 23.6 (±1.8)

Tumor 16 (7) 39.9 (±17.3)

Primary 19 (7) 15.2 (±2.18)

Electroporation medium

Sugar and salt-based media 43 (16) 22.8 (±2.0)

Cell culture media 32 (6) 30.1 (±9.0)

Commercial electroporation media 10 (4) 20.1 (±6.9)

Balanced salt solutions 3 (2) 33.4 (±20.9)

Pulses

Short 25 (9) 17.6 (± 1.9)

Medium 19 (10) 28.2 (± 12.4)

Long 20 (7) 28.2 (±4.4)

Short-long and exp 9 (3) 50.6 (±12.9)

BP 8 (2) 16.2 (±9.9)

ns 7 (2) 15.7 (±11.6)

Promoter

CMV 76 (20) 23.8 (±1.6)

SV40 8 (2) 51.2 (±29.3)

others 4 (2) 7.6 (±4.1)

Size of NA

<4 kb 19 (9) 26.2 (±2.6)

between 4 kb and 5 kb 51 (11) 25.0 (±4.2)

>5 kb 18 (5) 24.1 (±2.7)

From the cell line point of view, the overall GET efficiency in the tumor cell lines
(39.9%; 95% CI: ±17.3%) is statistically significantly higher than the overall GET efficiency
in the primary cell lines (15.2%; 95% CI: ±2.18%) and normal cell lines (23.6%; 95% CI:
±1.8%). In addition, the overall GET efficiency in the normal cell lines is statistically
significantly higher than the overall GET efficiency in the primary cell lines. In terms
of electroporation medium, the two media with the highest overall GET efficiency were
balanced salt solutions (33.4%; 95% CI, ±20.9%) and cell culture media (30.1%; 95% CI,
±9.0%). However, none of them were statistically significantly higher than the overall GET
efficiency, which was obtained after GET in sugar and salt-based media and in commercial
electroporation media. For electrical pulses, the overall GET efficiency after GET with
exponential and short-long pulses (50.6%; 95% CI: ±12.9%) is statistically significantly
higher than the overall GET efficiencies after GET with other types of pulses, while the
overall GET efficiencies according to GET with other types of pulses are not statistically
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different. In terms of the promoter, the overall GET efficiency after GET with the promoter
SV40 (51.2%; 95% CI, ±29.3%) is statistically significantly higher than the overall GET
efficiency after GET with the promoter CMV (23.8%; 95% CI, ±1.6%) and the overall GET
efficiency after GET with other promoters (7.6%; 95% CI, ±4.1%). In addition, the overall
GET efficiency after GET with the promoter CMV is statistically significantly higher than
overall GET efficiency after GET with other promoters. From the perspective of NA size, the
subgroup analysis shows that the overall GET efficiencies according to GET with different
sizes of NA are not statistically different. The set of continuous NA size variables was
additionally evaluated in a univariable meta-regression analysis. The results showed that
the size of the NA was not correlated with the overall efficiency of GET (slope = −1.19,
R2 = 0.0094, p = 0.37). Using meta-regression analysis, we also checked the dependence
of the overall GET efficiency on the concentration of the NA. The results demonstrated
that concentration of NA was not correlated with the overall GET efficiency (R2 = 0.00485,
p = 0.52).

4. Discussion

The interest in the use of GET has steadily increased since it was first reported in 1982.
Our systematic literature search revealed approximately 4600 papers reporting the use of
GET in various research studies and biotechnological applications. In this study, we focused
on the main experimental electrical and biological parameters affecting the efficiency of
GET under in vitro conditions. A large number of electrical and biological parameters
affect the efficiency of GET, which made GET protocol optimization more complex. It also
led to a high number of different GET protocols used in different papers, making it difficult
to identify the optimal one(s). Using a systematic review, we collected the papers reporting
the efficiency of GET as a function of the change in at least one experimental electrical
or biological parameter. In the meta-analysis, the overall GET efficiency was evaluated,
and the influence of the electrical and biological parameters that affected the overall GET
efficiency most were studied.

The experimental electrical parameters included the type and geometry of electrodes,
the material of the electrodes, the device used to apply the electrical pulses (type and
manufacturer), the amplitude and duration of the electrical pulses, and the method used
to measure the output pulses. The experimental biological parameters included the type,
dosage, size, promoter of NA, encoded transgene, number of cells used for EP, whether the
cells were electrotransfected in the suspension or attached, cell line, the origin and type
of cell line, and the electroporation medium. To allow a fair and unbiased evaluation of
the GET experimental result, the electrical and biological parameters must be specified,
appropriate controls must be included in the experiment, and the efficiency of GET with
the method of evaluation must be indicated. Although in 228 papers, the efficiency of GET
as a function of the change in at least one electrical or biological parameter was reported,
only 23 papers contained all desired information and were therefore reliable enough to
include in the meta-analysis. All experiments reported in 23 papers resulted in a pooled
overall GET efficiency of 25% (95% CI, 23.8–26.9). The highest overall GET efficiency was
above 85% [157]. The combinations of parameters that led to high overall GET differed
greatly, so we cannot recommend specific protocol as the most efficient. From this, we can
see that the optimization of GET protocol for each set of parameters is needed.

Due to the broad field of GET in this study, we focused only on the in vitro reports
that describe the use of different electrical and/or biological parameters. The papers that
reported only the electroporation program used but did not specify details of delivered
electric pulses, such as duration, number, and amplitude, could not be included in our
study. Therefore, for example, the papers using only “nucleofection” were excluded.

The risk of bias assessment was performed on 228 papers and included 17 param-
eters which were previously reported to influence GET efficiency. After the risk of bias
assessment, we realized that some parameters were appropriately reported in only a few
papers. Among the electric parameters, the measurement of output pulses and electrode
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material were the least reported. Biological parameters were reported more frequently than
electrical parameters; for example, the type of cell line and whether GET was performed on
the cell suspension or on the attached cells were reported in all papers.

For the meta-analysis, we reduced the number of parameters and the number of
categories describing each parameter to the type of cell line, electroporation medium,
electric pulses, promoter, and size of the NA. Although each parameter was initially
divided into several categories in order to describe all the different variants used in the
experiments, some categories were not represented in the experiments included in the
meta-analysis, so we merged similar categories.

Control groups are an essential part of any scientific experiment, yet 15% of papers
included in our review did not report the use of appropriate controls. GET experiments
include exposing cells to NAs and electric pulses, and the effect of each should be monitored
with appropriate controls. Therefore, GET experiments should include three controls: cells
exposed only to electric pulses, cells exposed only to NA, and cells exposed to neither NA
nor electric pulses.

The review of the collected papers revealed that, although the type of electrodes used
in the experiments was generally specified, more than 20% of the papers lacked geometric
parameters of the electrodes (e.g., the distance between parallel plate electrodes) that would
allow the determination of the electric field. Although it is known that high-voltage electric
pulses cause electrode oxidation and metal corrosion, which change the electrical properties
of the electrodes and the chemical composition of the surrounding medium depending on
the electrode material [18], the material of the electrodes was not specified in 15% of the
papers. Electroporation cuvettes were the most reported type of electrodes and are a good
choice because they are industrially manufactured with an accurate distance between the
electrodes. However, in the last few years, low-cost cuvettes of questionable quality have
also become available on the market. Therefore, researchers should always also report the
manufacturer of used electroporation cuvettes.

In the case of appropriate device use and development, custom-made, prototype
electroporation devices can sometimes be even more reliable than commercially available
devices. In 85% of the papers, the authors stated the electroporation device used in the
experiments, but only 22% of the papers mentioned the measurement or evaluation of the
output pulses. For successful and efficient GET, it is necessary that the output pulses are
well defined, and only the measurement of the pulses in each experiment ensures that the
pulses are delivered as desired. In most studies, rectangular monopolar electric pulses were
used, which replaced exponentially decaying pulses that have been used in the early years.

The meta-analysis showed that the overall GET efficiency after GET with exponential
and short-long pulses is statistically significantly higher than the overall GET efficiencies
after GET with other types of pulses. These results are expected and confirm the importance
of both cell membrane permeabilization and electrophoretic component of electric pulses
in GET in vitro [11].

Among biological parameters, only the type of cell line and whether GET was per-
formed on the suspension or attached cells were described in all 228 papers. The method
used for the evaluation of GET was reported in all but one paper, and the origin of the
cell line was reported in all but two papers. It was previously shown that GET efficiency
depends on the cell line [11]. Therefore, it is important that the cell line origin and type
are described.

Further, more than 90% of papers appropriately reported when results were measured
and the NA promoter. The plasmid must contain the necessary elements for expression
in mammalian cells. A proper promoter should be used to express the transgene. The
transgene can be expressed constitutively (it transcribes constantly) or inducible (its tran-
scription is controlled) [262]. Among constitutive promoters, CMV and SV40 were used
most often, which is in agreement with the literature reports that the viral promoters
CMV, RSV, and SV40 are the most widely used [262]. Although CMV was most often used
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promoter in papers included in our systematic review, the meta-analysis showed that the
SV40 promoter led to a significantly higher overall GET.

In addition, the time at which GET was measured is important since different NA
have different expression profiles. GET was most often measured after 24–72 h, with more
than 40% of papers reporting measuring of GET after 24 h. We recently showed that the
time dynamics of expression of the same NA can vary between cell lines [11]. Based on
this, it is important to report on when GET was measured and attempt different times of
measurement to detect the peak of expression.

The NA concentration and number of cells used for GET were appropriately re-
ported in 80% and 70% of papers, respectively. NA concentration is one of the parameters
which is reported to influence GET. A higher NA concentration usually leads to a higher
GET [11,37,38]. Contrary to expectations, our meta-analysis did not show a significant
effect of NA concentration on the overall GET. Previously, it was shown that the effect of
a higher NA concentration depends on the applied pulses. The increase of GET with the
increasing NA concentration was more pronounced when short (micro or nanosecond)
pulses were used, while with longer pulses, a plateau in GET efficiency with increasing NA
concentration was observed [11,37]. All pulse types were included in the meta-analysis.
Since shorter pulses, even with higher NA concentration, led to comparable (or lower) GET
efficiency compared to longer pulses, this could explain why NA concentration was not a
significant parameter in our meta-analysis.

Cell suspension density can influence the process of cell membrane permeabilization.
In a dense suspension (>108 cells/mL), pulses with higher amplitudes are needed to achieve
cell membrane permeabilization compared to more dilute cell suspension. In addition, cell
swelling, which occurs after cell membrane permeabilization, can limit the accessibility
and transport of NA between the cells and to the membrane [263]. Further, the number
of cells in the suspension also determines the distance between the cell and NA, with
higher cell density resulting in a smaller distance between the cells and NA [11]. Both
cell membrane permeabilization and the distance between the cell and NA influence GET
efficiency, meaning that the number of cells used for GET should always be reported.

The biological parameters which were most poorly reported were size of NA and
electroporation medium. Both categories were adequately described only in 69% of papers.
Contrary to our meta-analysis, some papers showed that NA size and electroporation
medium can affect GET. NA of smaller size was reported to enable higher GET [32,264,265].
Our meta-analysis did not show a significant effect of NA size on the overall GET. Papers
which were included in meta-analysis mostly reported the use of two commercially avail-
able reporter pDNA-encoding green fluorescent proteins with sizes 3.5 and 4.7 kb. The
difference in size between the pDNA was small and may have been too small to have an
effect on GET. Similar results were observed in a previous study [11]. Poor reporting of
NA size might also show that authors do not think NA size is important. This might be
because mobility and distribution of NA in the cell suspension is higher compared to the
in vivo distribution in tissue where NA size represents a bigger obstacle [2].

Interestingly, our meta-analysis showed the highest overall GET efficiency when
balanced salt solutions and cell culture media were used. Although the difference was not
statistically significant, we would still expect higher overall GET efficiency in commercial
electroporation media, which were supposedly optimized.

Conductivity and composition of electroporation medium can affect GET directly
by affecting the cell membrane permeabilization or formation of NA aggregates on the
cell membrane, or indirectly by affecting cell survival [3,33,141,266]. Consequently, the
medium used for GET should always be reported. In addition, the electroporation medium
composition also contributes to chemical and temperature changes during pulse delivery
depending on the pulse type and amplitude [37,267].

There are different ways of GET efficiency measurement, most often depending on
GET application. Nevertheless, to determine the overall GET and be able to compare the
GET efficiency between different papers, data on cell survival are also needed. In total, 75%
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of papers in our review only reported transfection efficiency without also providing data
on cell survival. Only 15% of papers reported both transfection efficiency and cell survival.

Based on the abovementioned poor reporting of electrical and biological parameters
affecting GET, we prepared a table of recommendations for reporting (Table 4).

Table 4. Recommendations for reporting of parameters of in vitro GET experiments.

Parameter What Should Be Included/Reported

Controls
Cells which were not exposed to EP and NA

Cells with NA but not exposed to EP
Cells without NA but exposed to EP

Pulse Generator Manufacturer and type
In the case of prototype devices, the construction design should be reported. *

Electric pulses

Shape, duration, number, pulse repetition frequency and amplitude.
Pulse delivery should always be monitored by an appropriate device and at least

two figures of delivered pulses should be provided, one of a single pulse zoomed and
another with reduced time scale, where all delivered pulses are displayed. *

Electrodes
Manufacturer and type of electrodes

In the case of custom-made electrodes geometry, material should be reported, and in case
of microelectrodes, the construction procedure should also be reported. *

NA concentration Final NA concentration or amount of added NA and volume of suspension

NA size Manufacturer and catalog number or specified NA size

Promoter Manufacturer and catalog number or specified promoter

Number of cells Number of cells exposed to GET or cell concentration and volume of suspension

Electroporation medium Manufacturer and catalog number or specified composition of electroporation medium

Cells Manufacturer and catalog number or specified type and origin of cell line.
It should also be reported if cells were treated in suspension or attached.

Results
Transfection efficiency and cell survival should be reported.

In addition, the method and time of transfection efficiency and cell survival measurement
should be described.

* see also [268,269].

5. Conclusions

For now, there is no single or universal GET strategy that is appropriate for all cell
lines and aims. Apart from the availability of the required electroporation device and
electrodes, the choice of an optimal GET approach or strategy depends on factors such as
the electroporation medium; type and origin of cells; and the size, concentration, promoter,
and type of the nucleic acids to be transfected. Equally important are the inclusion of
appropriate controls in the GET experiment and the measurement or evaluation of the
output pulses to allow a fair and unbiased evaluation of the experimental results. Our
systematic literature review of different electrical and biological parameters effect on
in vitro GET efficiency showed a pooled overall GET efficiency of 25%. The parameters
which significantly affected overall GET efficiency were the type of cell line, nucleic acids
promoter, and pulse parameters. Overall, GET was significantly higher in tumor cell lines
compared to normal and primary cell lines, and in normal cell lines compared to primary
cell lines. Overall, GET was also significantly higher when the SV40 promoter was used
compared to CMV or other promoters. In addition, exponential and short-long pulses led
to significantly higher overall GET compared to all other pulses. However, it needs to be
highlighted that these results were obtained based on the meta-analysis of only 23 papers
out of 228. This low number of analyzed papers was the result of an incredible and
unacceptable lack of reporting of essential information in GET in vitro papers. Since many
experimental electrical and biological parameters can affect GET efficiency, it is important
that all used parameters are adequately reported to enable the comparison of results, as
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well as potentially faster and more efficient experiment planning and optimization in
further studies. Only the adequate and detailed reporting of all used parameters can enable
successful future meta-analyses that could elucidate which electrical and/or biological
parameters significantly contribute to higher GET efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14122700/s1, Figure S1: Material of the electrodes;
Figure S2: Commercial electroporation device manufacturers; Figure S3: Type of nucleic acid; Figure
S4: Transgene coded by nucleic acid; Figure S5: Origin of cell line; Figure S6: Electroporation of cells
in suspension or attached cells; List S1: A list of all 228 papers used in systematic review; Table S1:
Overall GET efficiencies obtained using different experimental electrical and biological parameters.
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10. Kandušer, M.; Miklavčič, D.; Pavlin, M. Mechanisms Involved in Gene Electrotransfer Using High- and Low-Voltage Pulses–an in
Vitro Study. Bioelectrochemistry 2009, 74, 265–271. [CrossRef]
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