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Abstract: The clinical translation of messenger mRNA (mRNA)-based therapeutics requires safe and
effective delivery systems. Although considerable progress has been made on the development of
mRNA delivery systems, many challenges, such as the dose-limiting toxicity and specific delivery
to extrahepatic tissues, still remain. Cell-derived vesicles, a type of endogenous membranous
particle secreted from living cells, can be leveraged to load mRNA during or after their biogenesis.
Currently, they have received increasing interest for mRNA delivery due to their natural origin, good
biocompatibility, cell-specific tropism, and unique ability to cross physiological barriers. In this review,
we provide an overview of recent advances in the naturally occurring mRNA delivery platforms
and their biomedical applications. Furthermore, the future perspectives on clinical translation of
cell-derived vesicles have been discussed.

Keywords: cell-derived vesicles; extracellular vesicles; exosome; microvesicles; mRNA delivery

1. Introduction

Messenger RNA (mRNA) was first discovered in the early 1960s as a critical interme-
diary between genes and proteins [1]. Since then, significant work has been done towards
improving mRNA’s stability and reducing its immunogenicity [2–4]. Additionally, the
creation of mRNA delivery devices has drawn the attention of numerous researchers [5–8].
Recently, two coronavirus disease 2019 (COVID-19) mRNA vaccines have just received
approval to prevent severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. These
progresses have paved the road for mRNA as a new class of drug [2,5–7,9,10]. Nowadays,
mRNA-based therapeutics have displayed broad applications in prophylactic vaccines,
protein replacement therapy, cancer immunotherapy, and gene editing [9–14].

It is difficult to exert physiological effects for exogenous mRNA without the assistance
of delivery systems, indicating the importance of carriers for mRNA-based therapeutics [5–8].
Currently, a variety of nanomaterials including lipid- and polymer-based nanoparticles
have been developed for mRNA delivery [15–18]. Among them, lipid nanoparticles are
commonly used in preclinical and clinical trials [19–21]. Despite the growing number of
studies on delivery platforms, many challenges, such as the dose-limiting toxicity and
specific delivery of mRNA to extrahepatic tissues, still remain [22–24]. In this context,
cell-derived vesicles such as extracellular vesicles (EVs) have received increasing attention
in the field of mRNA delivery due to their good biocompatibility, cell-specific tropism, and
unique ability to cross physiological barriers, such as blood–brain barriers [25,26]. This
review summarizes the recent advances in cell-derived vesicle-mediated mRNA delivery
and their applications in biomedicine.

2. Cell-Derived Vesicles for mRNA Delivery

Cell-derived extracellular vesicles refer to a heterogeneous population of membra-
nous particles that are secreted from living cells, including mammalian cells, bacteria, and
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fungi [27]. They can be roughly classed into exosomes, microvesicles (MVs), and apoptotic
bodies, depending on their biogenesis pathway and size [28]. Exosomes (30–150 nm) are
formed as intraluminal vesicles through inward budding of early endosomes and subse-
quently released into the extracellular space. The plasma membrane directly protrudes
outward to generate microvesicles, which range in size from 100 to 1000 nm. When cells
die, apoptotic bodies (100–5000 nm) leak out through blebbing plasma membranes. EVs
secreted from the source cells (also known as producer cells) transport endogenously
produced biomolecules to the nearby recipient cells, or the distant cells through biologi-
cal fluids [27,29]. Upon entry into the recipient cells, EVs exert important physiological
and pathophysiological activity such as modulation of the tumor microenvironment, im-
munostimulatory functions, and tissue regeneration [29–35]. Due to their unique biological
functions, natural origin, and good biocompatibility, as well as the ability to cross physio-
logical barriers, EVs have attracted great interest as drug delivery platforms for delivery of
small molecules (Curcumin, Doxorubicin, Paclitaxel, etc.) and biomacromolecules (siRNA,
miRNA, tumor antigen, etc.) [36–42]. Recently, they have also been leveraged in the field
of mRNA delivery and shown promise in multiple therapeutic applications (Table 1) [25].
Other cell-derived vesicles are still relatively unexplored. Until recently, virus-mimicking
cell membranes have been reported for coating mRNA-loaded poly (lactic-co-glycolic acid)
(PLGA) nanoparticles for enhancing their delivery efficiency, both in vitro and in vivo [43].

Table 1. Cell-derived vesicles for mRNA loading and delivery.

Cell-Derived
Nanocarriers

Surface
Markers Size Source Cell Loading

Strategies
mRNA
Cargos

Target
Strategies Application Ref.

Exosomes TSG101 and
CD9 50–200 nm 293T Passive loading Luciferase or

PGC1α

miRNA-
dependent

mRNA
expression and

ultrasound

Obesity [44]

Exosomes
CD9,

TSG101, and
CD63

30–160 nm 293T Passive loading Bmp7 Ultrasound Obesity [45]

MVs NA Mostly
100–150 nm HEK-293T Passive loading CD-UPRT-

EGFP Prodrug Schwannoma
tumor [46]

Exosomes TSG101 and
CD9 50–200 nm HEK293T Passive loading Il-10

miRNA-
dependent

mRNA
expression

Inflammation
of atheroscle-

rosis
[47]

Exosomes
Lamp2b,

CD63, Alix,
and Tsg101

20–500 nm HEK293 Passive loading
Nerve
growth
factor

RVG-Lamp2b Cerebral
ischemia [48]

Exosomes
CD9, CD63,
CD47, and

Tsg101
NA MEFs and

DCs

Passive loading
based on a

cellular
nanoporation

system

PTEN

Fuse glioma-
targeting

peptides to
CD47

Glioma
tumor [49]

Exosomes CD9, TSG101 30–150 nm AML12 Passive loading Ldlr NA
Familial

hypercholes-
terolemia

[50]

Exosomes

CD63,
Lamp2b,
CD9 and
TSG101

50–200 nm HEK-293T

Active loading
based on

L7Ae-CD63
fusion protein

nluc or
catalase RVG-Lamp2b Parkinson’s

disease [51]

Exosomes Lamp2b and
CD63 50–200 nm 293FT TAMEL

platform
DTomato or

Cas9 NA NA [52]

Exosomes CD63, CD9,
and TSG101 100–200 nm 293T

Active loading
based on

CD9-HUR
fusion protein

Cas9 NA NA [53]
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Table 1. Cont.

Cell-Derived
Nanocarriers

Surface
Markers Size Source Cell Loading

Strategies
mRNA
Cargos

Target
Strategies Application Ref.

Exosomes CD9 and
Lamp2b 100–300 nm 293T

Active loading
based on a

specific DNA
aptamer

GFP, PGC1α
or Il-10 ATS-Lamp2b

Obesity and
intestinal in-
flammation

[54]

Exosomes CD63, Alix,
and TSG101

Average
~100 nm HEK293T

Active loading
based on

L7Ae-CD63
fusion protein

ZPAMt NA HIV-1
infection [55]

Exosomes
CD63, CD81,

and
lactadherin

30–100 nm; HEK293

Active loading
based on

EV-loading
zipcode

sequence

HChrR6 Prodrug
HER2 + ve

human
breast cancer

[56]

MVs ARRDC1 <100 nm 293T

Active loading
based on

Tat-ARRDC1
fusion protein

GFP or p53 NA NA [57]

Outer
membrane

vesicles
ClyA average 28.1

nm

BL21 (DE3)
Escherichia

coli

Active loading
based on

ClyA-L7Ae
fusion protein

EGFP, OVA
or ADPGK NA

Melanoma
and colon

cancer
[58]

Exosomes
Glycophorin
A, ALIX, and

TSG1–1
120–200 nm Red blood

cells

Post-loading
based on REG1
loading reagent

Luciferase An enzymatic
method NA [59]

A mixture of
exosomes and

MVs

ALIX,
TSG101,

hemoglobin
A, and

Stomatin

100–300 nm
(average
~140 nm)

Red blood
cells

Post-loading
based on

electroporation
Cas9 NA NA [60]

Exosomes CD63 ~110 nm

HEK293T or
lung

spheroid
cells

Post-loading
based on

electroporation
GFP NA NA [61]

Exosomes NA ~200 nm

HEK293T or
lung

spheroid
cells

Post-loading
based on

electroporation

GFP or
SARS-CoV-2
spike protein

NA COVID-19 [62]

Cell
membrane-

coated PLGA
NPs

NA average 185
nm B16F10

Double
emulsion

method with the
assistance of

G0-C14

EGFP or
Cypridina
luciferase

NA NA [43]

MEFs, mouse embryonic fibroblasts; DCs, dendritic cells; HUR, human antigen R; ARRDC1, arrestin domain
containing protein; Cas9, CRISPR-associated protein 9; GFP, green fluorescent protein; nluc, NanoLuc luciferase;
EGFP, enhanced green fluorescent protein; OVA, ovalbumin; Ldlr, low density lipoprotein receptor; RVG, rabies
viral glycoprotein. PTEN, a tumor suppressor phosphatase and tensin homolog deleted on chromosome 10;
Lamp2b, lysosome-associated membrane protein 2; SARS-CoV-2, severe acute respiratory coronavirus 2; COVID-
19, coronavirus disease 2019; NA, not applicable.

2.1. Preparation of Cell-Derived Vesicles

Commonly, EVs with or without mRNA cargos should be produced firstly from
the producer cells for further isolation and purification. Several types of cells have been
explored as source cells of EVs, such as red blood cells, human embryonic kidney 293T
cells, bone marrow-derived dendritic cells, and Gram-negative bacteria [58,63–66]. For
EV-based mRNA delivery, 293T were the mostly commonly used cells, accounting for
about 80% in all source cells (Table 1). Following secretion, multiple techniques such as
ultra-centrifugation, density gradient centrifugation, size exclusion chromatography, and
filtration methods have been exploited to obtain purified EVs from source cells [67–70].
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To boost the capability of exosomes production, potential production boosters in-
cluding STEAP3, syndecan-4, and a fragment of L-aspartate oxidase were employed [51].
STEAP3 and L-aspartate oxidase-related fragment involve the biogenesis and cellular
metabolism of exosomes, while syndecan-4 contributes to the inward budding of early en-
dosomes membranes [51]. Co-overexpression of all three boosters in 293T cells significantly
increased exosome production [51]. Apart from production boosters, cellular nanoporation
(CNP) consisting of a nanochannel array (~500 nm in diameter) has also been proposed for
increasing the production of mRNA-loaded exosomes via transient electrical pulses [49].
The yield of mRNA-bearing exosomes for CNP was more than 50-fold higher in comparison
with the traditional electroporation method [49]. Furthermore, abundant EVs (1013–1014

EVs) were produced by treating red blood cells with calcium ionophore [60].
It is worth noting that the heterogeneity of EVs resulted from the process of production

and separation has an important impact on their delivery efficiency. Thus, thorough charac-
terization of EVs, including the particle size, zeta potential, morphologies, and surface mark-
ers, is necessary for subsequent quality control and biomedical applications [35,67,69,71].

2.2. Strategies for mRNA Loading into Cell-Derived Vesicles

Strategies for mRNA loading into cell-derived vesicles could be simply classified into
two main categories, namely pre-loading methods and post-loading methods (Figure 1) [25,72].
Pre-loading methods (also called pre-separation or endogenous loading methods) heavily
rely on the producer cells to pack the mRNA cargos into EVs during their biogenesis
(Figure 1) [72]. Sometimes, mRNA-encoded proteins are also simultaneously packaged
into cell-derived vesicles during the endogenous loading process [46,48]. Pre-loading
methods can be further divided into passive and active categories (Figure 1), as described
below [52]. Post-loading methods are also called post-separation or exogenous loading
methods (Figure 1) [72]. In this case, exogenous mRNA is loaded into isolated EVs via
electroporation or chemical transfection reagents [59,60].

2.2.1. Passive Pre-Loading Methods

The most common approach for passive pre-loading methods is to introduce plasmid
into producer cells to obtain the transcribed mRNA of interest. Overexpression of target
mRNA could facilitate its enrichment into EVs. Such strategy has been employed by
several studies for loading various mRNA into EVs (Table 1) [47,48,50]. For example,
low-density lipoprotein receptor (Ldlr) mRNA was encapsulated into exosomes via forced
overexpression in the source cells [50]. After plasmid transfection, the level of Ldlr mRNA
in source cells increased more than 100-fold compared with cells transfected with control
plasmid, thus leading to a similar increase in mRNA cargos in the secreted exosomes [50].

Because small RNAs are the dominant modalities of RNAs within secreted exosomes,
encapsulation of large mRNA into nano-sized exosomes is technically challenging for pas-
sive pre-loading method [25,73]. It is revealed that the aforementioned CNP technology not
only increases the yield of exosomes but also improves mRNA content in the exosomes [49].
In comparison with exosomes produced endogenously without external stimulation, the
mRNA loading efficiency of CNP-treated exosomes produced by the same source cells
increased by three or four orders of magnitude (one mRNA within every 103 exosomes
vs. two to ten mRNA per exosome) [49]. Additionally, this strategy also led to a 100-
folded higher loading of mRNA into exosomes relative to conventional electroporation
method [49].
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2.2.2. Active Pre-Loading Methods

Another strategy to improve the loading efficiency of mRNA cargos is to transfect the
producer cells with two types of plasmid. One type of the plasmid encodes fusion pro-
teins comprised of mRNA binding components and EV-enriched proteins such as surface
markers CD9, CD63, or cytosolic protein Hspa8 (Figure 1) [51–53]. Generally speaking, the
mRNA of interest transcribed from plasmids contains intentionally engineered recognition
sites, which can specifically bind with the mRNA binding components of fusion proteins.
The remaining part of the fusion proteins, EV-enriched proteins, are then incorporated into
EVs during their biogenesis to achieve active mRNA pre-loading.

Targeted and Modular EV loading (TAMEL) is an active loading platform developed
for actively loading mRNA into exosomes via fusing a EV-enriched protein such as Lamp2b,
CD63, and Hspa8 to the MS2 bacteriophage coat protein (Figure 1) [52]. The cognate MS2
stem loop sequence was then incorporated into the mRNA cargos to promote mRNA
binding and loading into the EVs interior [52]. It has been found that the loading efficiency
decreases with the increase in mRNA size [52].

Several other fusion proteins have also been designed for active loading of mRNA
into EVs (Figure 1) [51,53]. Archaeal ribosomal protein L7Ae or human antigen R fused
to surface marker of EVs are leveraged to bind to the introduced C/D box RNA structure
and AU-rich elements in the mRNA cargos, respectively [51,53]. In addition, fusing the
transactivator of the transcription protein to the C-terminus of arrestin domain containing
protein 1, which mediated the budding of MVs, confers high affinity for binding the
stem-loop-containing trans-activating response element introduced at the 5′ end of mRNA
cargos [57]. In general, the high binding affinity between mRNA binding components and
mRNA recognition site facilitates the active packaging of specific mRNA into EVs.
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Apart from these mRNA binding components, DNA aptamer was also used to specif-
ically recognize and actively load the mRNA of interest (Figure 1) [54]. In this case, a
specific DNA aptamer consisting of two parts was designed as a bridge for connection
between mRNA cargos and EVs [54]. The single strand part of the DNA aptamer could
recognize the region surrounding start codon AUG of target mRNA, which was thought to
be beneficial for the sorting of mRNA into EVs [54]. The double strand part of the DNA
aptamer could be recognized by zinc finger motifs (ZF) that were tailored to specifically
bind to the sequence of any double-stranded DNA [54]. To facilitate the recruit of DNA
aptamer as well as sorting of the complexed mRNA into EVs, the ZF was fused with an
exosomal surface marker, CD9 [54]. As a result, this designed DNA aptamer resulted in a
~2.5-fold increase in the enrichment effect of large PGC1α mRNA into EVs [54].

2.2.3. Post-Loading Methods

So far, post-loading mRNA into EVs largely depends on electroporation and commer-
cial loading reagents (Table 1 and Figure 1). Electroporation is a commonly used method for
loading of various molecules, including siRNA and miRNA, as well as mRNA, to purified
EVs [60–62,74,75]. About one fifth of Cas9 mRNA can be loaded into red blood cell-derived
EVs by electroporation [60]. Furthermore, a commercial loading reagent named REG1 has
also been used for loading mRNA into EVs after their isolation [59].

2.3. Strategies for Tissue-Specific mRNA Expression

To enhance the tissue specificity of cell-derived biomimetic vesicles, several strategies
have been proposed, as below (Figure 2).
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2.3.1. Tissue-Specific miRNA-Dependent mRNA Expression

It has been found that the internal ribosome entry site (IRES) at the 5′ end of the
hepatitis C virus RNA can be specifically recognized by liver-specific miRNA-122, and thus
initiates its tissue-specific mRNA translation [76]. Replacement of this miR-122 recognition
site at the IRES with sequences recognized by other tissue-specific miRNA enables miRNA-
specific activation of mRNA translation in specific tissues (Figure 2A). According to this
principle, an adipose-specific translation system (miR-148a-IRES-PGC1α) was constructed
by substituting miR-122 recognition sites at the IRES with sequences recognized by adipose-
specific miR-148a at the upstream of the PGC1α mRNA coding sequence [44]. Injection of
exosome loading with such a system resulted in a significant increase in PGC1α protein ex-
pression in the adipose tissue of mice, but a decrease in lung, spleen, and kidney [44]. Using
a similar strategy, the same group also constructed inflammation-responsive Il-10 mRNA by
replacing miR-122 with miR-155 enriched in the inflammatory sites of atherosclerosis [47].
The expression of Il-10 mRNA in exosomes was specifically activated by miR-155 in the
inflamed macrophages, while its expression in other tissues without obvious inflammation
was rare [47].

2.3.2. Ultrasound Assisted Tissue-Specific Delivery

To minimize the off-target effects, exosomal delivery strategies assisted by ultrasound
have been explored [44,45]. Recently, two ultrasound-assisted exosomal platforms have
been established for the specific delivery of mRNA to adipose tissue [44,45]. In one study,
target uptake of EVs was achieved with the assistance of ultrasound-targeted microbubble
destruction (UTMD) as well as the tissue-specific miRNA-dependent expression system
mentioned above [44]. As the microbubble destruction at the ultrasound site may enhance
the cell membrane permeability and cellular uptake of recipient cells, the delivery of
exosomes into the adipose tissue should be increased by UTMD. Consistent with this
assumption, the distribution of DiR-labeled exosomes in the adipose tissue significantly
increased under the assistance of UTMD [44].

In the other study, a smart exosome-based delivery platform was designed for escaping
from phagocytosis and locally delivering mRNA to the omental adipose tissue [45]. Firstly,
CP05-thioketal (TK)-mPEG was anchored onto exosomes through interaction between
the peptide CP05 and the CD63 marker of exosomes (Figure 2B) [45]. The mPEG chain
could protect the carrier platform from aggregation, opsonization, and phagocytosis, thus
prolonging the in vivo circulation time [45]. Then, reactive oxygen species produced by
sonosensitizer chlorin e6 under ultrasound triggered the break of TK bonds between CP05
and mPEG (Figure 2B) [45]. Eventually, the carrier core was exposed by removing the PEG
corona and specifically internalized by recipient cells at the ultrasound site, thus leading to
a dramatic increase in the expression of exosome-encapsulated mRNA in adipose tissue
under ultrasound [45].

2.3.3. Targeted Modification

Conjugation of targeting ligands to EVs via genetic engineering, enzymatic, or affinity-
based methods was proven to be effective for exosome-based targeted delivery [77–80].
For example, when the central nervous system-specific rabies viral glycoprotein (RVG)
was fused to an exosomal membrane protein Lamp2b, the fusion protein RVG-Lamp2b
facilitated transport of EVs across the blood–brain barrier (Figure 2C) [48,51]. To fulfill
the targeted delivery of EVs to adipose tissues, an adipocyte-targeting sequence (ATS,
CKGGRAKDC) was also fused to the N-terminus of Lamp2b (Figure 2C) [54]. Moreover, an
anti-HER2 single chain variable fragment was connected to a lactadherin leader sequence
(Figure 2D) [56]. The former was capable of targeting HER2 overexpressing cells via
antigen–antibody interactions, while the latter could bind to EVs based on affinity with
their surface phosphatidylserine (Figure 2D) [56]. As a consequence, the modified EVs
were selectively internalized by HER2-positive cells [56].
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Despite its straightforwardness, the fusion protein-based targeting method always
require genetic engineering. Therefore, covalently conjugating peptides or nanobodies onto
EVs without any genetic modification of source cells provide an alternative method for
the targeted modification of EVs [59]. The versatile targeting platform leverages protein-
ligating enzymes (Sortase A and OaAEP1 ligase) to catalyze covalent-bonding reactions
between the membrane proteins of EVs and targeting ligands, including targeting peptides,
‘self’ peptides, as well as nanobodies (Figure 2E) [59].

3. Application

EVs themselves, or when used as drug delivery systems, are currently being assessed
in clinical trials for diagnostic or therapeutic purposes [37]. When functioning as mRNA
delivery systems, EVs exhibit a great potential for biomedical applications, including tumor,
central nervous system diseases, obesity, and anti-inflammation (Table 1).

3.1. Tumor

In 2013, Arda Mizrak et al. pioneered the use of MVs as mRNA carriers for the
treatment of tumor [46]. In that study, mRNA encoding cytosine deaminase (CD)-uracil
phosphoribosyltransferase (UPRT) fusion proteins were encapsulated into MVs and injected
into tumors, in combination with intravenously injected prodrug 5-fluorocytosine (5-FC).
The expression of CD and UPRT in tumor cells promoted the conversion of 5-FC to the
cytotoxic drug 5-fluoro-deoxyuridine monophosphate, thus inhibiting DNA synthesis and
inducing tumor cell apoptosis. The remarkable inhibition of schwannoma tumor growth
and regression of tumor size in two animal models indicated the feasibility of MVs as
mRNA carrier for tumor therapy [46].

Subsequently, the therapeutic potential of exosomes as mRNA carriers was also ex-
plored for tumor therapy [56]. HChrR6 is an optimized bacterial enzyme that could convert
prodrug CNOB into cytotoxic drug MCHB. Sequential injection of anti-HER2 scFv antibody-
modified HchrR6 mRNA-loaded exosomes and CNOB led to the specific activation of
CNOB and subsequent MCHB generation at tumor site, causing near-complete inhibi-
tion of orthotopic HER2-positive BT474 xenografts [56]. Additionally, glioma-targeting
peptide-modified exosomes carrying PTEN mRNA were applied to brain tumor therapy
and increased survival time for U87 or GL261 glioma-bearing mice [49].

EVs derived from BL21 (DE3) Escherichia coli with intrinsic function of innate immu-
nity stimulation have also been employed as an mRNA delivery platform for a personalized
tumor vaccine [58]. This nanocarrier platform possessed a “Plug-and-Display” feature and
allowed the rapid display of various tumor antigens, thus enabling rapid preparation of
personalized cancer vaccines. After subcutaneous injection, ovalbumin or ADPGK mRNA
delivered by this platform led to significantly strong inhibition of melanoma progression.
Moreover, complete regression was observed for three out of eight mice bearing colon
cancer [58].

3.2. Central Nervous System Diseases

The ability to cross blood–brain barriers makes EVs a promising carrier candidate for
the treatment of various brain diseases. Ryosuke Kojima et al. constructed an EXOsomal
Transfer Into Cells system (EXOtic) consisting of an exosome production booster, a specific
mRNA packaging device, a cytosolic delivery helper, and a brain targeting module (RVG-
Lamp2b) [51]. Implantation of exosome producer cells engineered by the EXOtic system
into living mice was adopted for the in situ production and delivery of a therapeutic
mRNA-containing exosome for treatment of Parkinson’s disease [51]. It has been found
that catalase mRNA was delivered into brain tissue by the in situ produced exosomes,
resulting in attenuation of neuroinflammation and area-specific rescue of neuronal cell
death [51]. Recently, the utility of an EV-based delivery strategy for treatment of cerebral
ischemia has also been reported [48]. RVG-modified exosomes loaded with nerve growth
factor both in mRNA and protein format were able to reach the ischemic region of the
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brain following tail vein injection and alleviate ischemic injury by reduced inflammation,
improved cell survival, and promoted neurogenesis in ischemia mice [48].

3.3. Obesity

Obesity is becoming a health burden worldwide that increases risks for various dis-
eases. EV-mediated mRNA delivery holds promise for obesity therapy [44,45,54]. Two
studies have revealed that ultrasound assisted exosome delivery platforms were capable of
enhancing the efficacy of functional mRNA at the adipose tissue [44,45]. As both PGC1α
(an essential transcription factor for fat browning) and the bone morphology protein 7
(Bmp7, an important inducer of brown adipocyte differentiation) play great roles in the
induction of brown adipose tissue, delivery of Bmp7 mRNA or PGC1α mRNA-exosomes to
the adipose tissues under ultrasound significantly induced the browning effect, decreased
body weight, and reduced off-target effects [44,45]. Furthermore, PGC1α mRNA has been
selectively delivered to the adipose via exosomes modified with adipocyte-targeting se-
quence, eventually leading to a significant decrease in body weight along with an increase
in brown adipose tissue [54].

3.4. Anti-Inflammation

Il-10, a soluble anti-inflammatory cytokine, plays an important role in inflammation.
Thus, Il-10 mRNA-loaded exosomes have been used for the treatment of inflammation
related diseases, including atherosclerosis [47] and inflammatory bowel disease [54]. For
atherosclerosis, the inflammation responsive Il-10 mRNA-loaded exosomes were efficiently
delivered to inflammatory macrophages and precisely translationally activated in inflamed
tissues after systemic administration, demonstrating on-demand anti-inflammatory effects
with decreased expression of inflammation cytokines, including Il-1β, Tnf-α, and Il-6 [47].
Furthermore, the anti-inflammatory effects also alleviated the atherosclerosis in ApoE-/-
mice, with lower atherosclerotic plaques and lesion size [47]. Recently, Il-10 mRNA deliv-
ered by exosomes has been reported for the treatment of inflammatory bowel disease [54].
Systemic injection of Il-10 mRNA-loaded exosomes not only reduced inflammatory re-
sponses, but also prevented body weight loss and colon length shortening in a mouse
model [54].

3.5. Other Diseases

Most recently, new attempts to deliver mRNA with cell-derived vesicles have been
made in treating other diseases, including familial hypercholesterolemia, acquired immun-
odeficiency syndrome, and COVID-19 [50,55,62]. Exosomes carrying Ldlr mRNA could
restore Ldlr protein expression and further decreased the high serum cholesterol level in
Ldlr-/- mice following intravenous injection. Systemic administration of exosomes loaded
with ZPAMt mRNA targeting CPG methylation of the 5′ long terminal repeat achieved
stably repression of HIV-1 [55]. Furthermore, such exosomes were found to be useful for
crossing the blood–brain barrier and inhibiting HIV-1 expression in the brain [55]. More
recently, mRNA vaccines against COVID-19 were prepared by electroporation of mRNA
encoding SARS-CoV-2 spike into lung-derived exosomes. Such vaccines were able to elicit
more potent immune responses than liposome-based counterpart in mice by dry powder
inhalation [62].

4. Conclusions and Outlook

Cell-derived vesicles hold promise for delivering various small molecules, siRNA, and
miRNA. In recent years, these naturally occurring vesicles have been adapted for mRNA
delivery. They offer a promising opportunity to enhance the efficacy of mRNA in treating
a variety of diseases, ranging from tumor to COVID-19. Nevertheless, some barriers
have yet to be solved before translational applications. These include standardization
of the critical parameters of inherently heterogeneous EVs, such as surface signatures
and internal autologous contents. Furthermore, biodistribution in target organs merits
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further improvement. Future work on hybrid EVs containing synthetic nanocarriers or
the rational design of engineered EVs would provide great value for the development of
more effective and selective cell-derived vesicles for mRNA delivery, thus accelerating their
clinic translation.
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