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Abstract: Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits
several biological activities, including the amelioration of memory impairment, prevention of breast
cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the
inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for
activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects.
P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant
CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the
samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking
simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions
between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-
mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory
manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM).
Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation
with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models
suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination
of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent
inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.

Keywords: Cassiae semen; chemoprevention; CYP1A2; inhibition; obtusifolin

1. Introduction

Cassiae semen (the seeds of Cassia obtusifolia L. and Cassia tora L.) is used as a tradi-
tional herbal medicine to protect the liver, improve vision, and treat photophobia in most
regions of Asia, including Korea, China, and Japan [1]. Numerous phytochemicals, includ-
ing anthraquinones, naphthopyrones, phytosterols, and volatile oils, have been isolated
from Cassiae semen [2]. Among these anthraquinones (chrysophanol, emodin, obtusifolin,
obtusin, and physcion) and naphthopyrones (rubrofusarin) are the primary bioactive sub-
stances present in Cassiae semen [1,3,4]. Obtusifolin, the most abundant anthraquinoid in
the seeds of Cassia tora [3], ameliorates memory impairment [5], prevents breast cancer
metastasis [6], and reduces cartilage damage in osteoarthritis [7].

Anthraquinones are a class of natural phenolic compounds with pharmacological prop-
erties, including anticancer, anti-inflammatory, antimicrobial, and antioxidant activities [8].
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Several anthraquinoids demonstrated CYP1A2 inhibitory potential. Emodin, purpurin, and
rubiadin selectively inhibited CYP1A2-mediated phenacetin-O-deethylation (POD) activity
with IC50 values of 0.5, 2.3, and 1.3 µM, respectively, in human liver microsomes (HLMs);
at the same time, these exhibited negligible inhibition of CYP2C9, CYP2C19, CYP2D6,
and CYP3A (IC50 > 9.6 µM) [8]. However, the effects of obtusifolin, chrysophanol, and
physcion, the major components of Cassiae semen, on cytochrome P450 (P450) have not
been investigated in HLMs to date.

In humans, the CYP1A family is composed of two major isoforms, namely CYP1A1
and CYP1A2 [9]. CYP1A enzymes are preliminarily regulated by their aromatic hydrocar-
bon receptors and exhibit aryl hydrocarbon hydroxylation activity [10]. They are critical
in activating procarcinogens such as aflatoxins and polycyclic aromatic hydrocarbons.
Reactive carcinogenic intermediates (aflatoxin B1-exo-8,9-epoxide or benzo[a]pyrene-7,8-
epoxide) produced by the upon the action of CYP1A enzymes ultimately form adducts
with DNA [11,12]. Previous reports suggest that CYP1A contributes to tumor forma-
tion. Therefore, selective and robust inhibitors of CYP1A enzymes may act as effective
chemopreventive agents for cancer treatment. Notably, resveratrol and sulforaphane have
been considered as potent chemopreventive agents because they directly inhibit CYP1A
enzymes [13,14].

CYP1A inhibitors share planar and compact structure with hydrophobic aromatic
rings. For example, α-naphthoflavone (ANF), emodin, and 7-ethynylcoumarins, which are
planar aromatic compounds, strongly inhibited CYP1A1 and CYP1A2 activities with IC50
values of <0.50 µM [15–17]. Obtusifolin, an anthraquinone isolated from Cassiae seeds, is
also a planar aromatic compound; however, enzyme inhibition studies assessing the effect
of obtusifolin on CYP1A activity have not been attempted.

Therefore, we evaluated the CYP1A2 inhibitory potential of obtusifolin, chrysophanol,
emodin, physcion, and rubrofusarin, which are the major components of Cassiae semen, in
HLMs. The difference in CYP1A2 inhibitory ability of the five phytochemicals was analyzed
based on the interaction between the active site structure of the CYP1A2 enzyme and
phytochemicals. An inhibition mechanism was identified for obtusifolin, which exhibited
the most substantial inhibition of CYP1A2 activity; the inhibitory potential of obtusifolin
against other nine P450 isoforms was also investigated to elucidate its selectivity in terms of
CYP1A2 inhibition. In conclusion, we have demonstrated that obtusifolin acts as a selective
CYP1A1 and CYP1A2 inhibitor in HLMs and also inhibits the activity of recombinant
CYP1A enzymes, and is a promising chemopreventive candidate.

2. Materials and Methods
2.1. Chemicals and Enzymes

The following chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA):
amodiaquine, bupropion, chlorzoxazone, dextromethorphan, 7-ethoxyresorufin, glucose-
6-phosphate (G6P), G6P dehydrogenase (G6PDH), β-nicotinamide adenine dinucleotide
phosphate (NADP+), omeprazole, phenacetin, and trimipramine. Coumarin, midazolam,
and tolbutamide were obtained from Toronto Research Chemicals (Toronto, ON, Canada).
We purchased resorufin from Tokyo Chemical Industry (Tokyo, Japan). Pooled human
liver microsomes (pHLMs, XTreme 200) were obtained from XenoTech (Kansas City, KS,
USA), and human recombinant CYP1A1 (rCYP1A1) and CYP1A2 (rCYP1A2) isoforms were
obtained from SPMED (Busan, Republic of Korea). Chrysophanol (95.0% purity), emodin
(94.3% purity), obtusifolin (95.4% purity), physcion (95.0% purity), and rubrofusarin (90.0%
purity) (Figure 1) were kindly provided by the Korea Institute of Science and Technology
(Gangneung, Republic of Korea).
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Figure 1. Chemical structures of four anthraquinones and one naphthopyrone from Cassiae semen:
chrysophanol (A), emodin (B), obtusifolin (C), physcion (D), and rubrofusarin (E).

2.2. CYP1A2 Activity Assays

The inhibitory potential of five major bioactive compounds from Cassiae semen against
CYP1A2-mediated phenacetin O-deethylase (POD) activity was evaluated using previously
developed methods with minor modifications [18]. Briefly, the compounds were dissolved
in methanol. The incubation mixtures containing pHLMs (0.25 mg/mL), phenacetin
(100 µM), and inhibitor (0, 0.5, 2, 5, 20, or 50 µM) were pre-incubated at 37 ◦C for 5 min. An
NADPH-generating system (NGS, 1.3 mM β-NADP+, 3.3 mM G6P, 1.0 U/mL G6PDH, and
3.3 mM magnesium chloride) was introduced after pre-incubation to initiate the reaction,
and further incubated for 15 min. The reaction was quenched by the addition of 50 µL
ice-cold acetonitrile containing internal standard (IS; 7nM trimipramine). Aliquots of
supernatants were analyzed by liquid chromatography–tandem mass spectrometry (LC-
MS/MS, LCMS 8060 system, Shimadzu, Kyoto, Japan). All microsomal incubations were
repeated three times.

2.3. Molecular Docking Simulation

The X-ray crystal structure of α-naphthoflavone bound to CYP1A2 was retrieved from
the protein data bank (PDB) under accession number 2HI4 [19]. The protein structure
was cleared of all water molecules except those at the active site. Building missing loops,
energy minimization, and protonation in Discovery Studio Client (DSC) v19.1 produced
the final protein structure with heme; this was used for further molecular docking analysis.
The anthraquinone structures were drawn using ChemDraw 20.1.1. These structures were
converted to a 3D format in DSC 19.1 by energy minimization after adding hydrogen atoms.
The grid center was derived using α-naphthoflavone in the crystal structure, and 1000 dock-
ing runs were performed for obtusifolin with SMINA, a fork of AutoDock Vina using
Gnina 1.0 [20]. The redundant final poses were filtered using root-mean-square deviation
(rmsd) values. The other four active compounds of Cassiae semen (three anthraquinones
and one naphthopyrone) were also docked by aligning to the obtusifolin-binding pose
(“Align to substructure” option in DSC v19.1) to understand the structural and molecular
interactions responsible for the variations in their inhibitory activity against CYP1A2. For
the docked CYP1A2-ligand complexes, AutoDock VINA scores were calculated using
the “score_only” option in Gnina 1.0. The molecular docking procedure was validated
by re-docking α-naphthoflavone in the crystal structure; the rmsd value of the docked
α-naphthoflavone and its crystal form was 0.3 Å, showing a high agreement (Figure S2).
The figures depicting the protein–ligand interactions were generated using DSC v19.1.

2.4. Time-Dependent Inhibition Assays

The IC50 shift approach was applied to assess the time-dependent inhibition of
CYP1A2 by obtusifolin [18]. For 30 min, obtusifolin was pre-incubated with pHLMs
in the presence of NGS. The reaction was started with 100 µM phenacetin and then in-
cubated for 15 min. Following reaction termination and centrifugation, aliquots of the
supernatants were subjected to LC-MS/MS analysis.

2.5. Kinetic Characterization of CYP1A2 Inhibition by Obtusifolin in Human Liver Microsomes
and Recombinant CYP1A2

The mechanism by which obtusifolin and α-naphthoflavone inhibit CYP1A2-mediated
POD activity was studied in pHLMs or recombinant CYP1A2 (10 pmol/mL). Obtusifolin
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(0, 0.02, 0.05, 0.2, and 0.5 µM) or α-naphthoflavone (0, 1, 2, 5, 10, and 20 nM) was added
to the reaction mixtures, each containing varied concentration of phenacetin (20, 50, and
100 µM). The other conditions were similar to those used in the P450 inhibition study, as
described earlier.

2.6. Inhibitory Effects of Obtusifolin against Human Cytochrome P450s Activity

The inhibitory potential of obtusifolin against the biotransformation of eight P450 probe
substrates was examined using previously reported methods with slight changes [21,22].
The following P450 isoform-specific substrates were used: coumarin (CYP2A6); bupropion
(CYP2B6); amodiaquine (CYP2C8); tolbutamide (CYP2C9); omeprazole (CYP2C19); dex-
tromethorphan (CYP2D6); chlorzoxazone (CYP2E1); and midazolam (CYP3A). Mixtures of
pooled HLM, P450 substrates, and obtusifolin (0, 0.05, 0.2, 0.5, 2, 5, or 10 µM for CYP1A2;
and 0, 0.5, 2, 5, 20, or 50 µM for the other P450 isoforms) were pre-incubated (5 min, 37 ◦C).
NGS was introduced to start the reaction, which was followed by an additional incubation
(15 min). Following reaction termination, aliquots of the supernatants were analyzed with
LC-MS/MS.

2.7. Inhibitory Effects of Obtusifolin on Human Recombinant CYP1A1 and CYP1A2 Enzymes

The inhibitory effects of obtusifolin on the CYP1A-mediated ethoxyresorufin O-
deethylation (EROD) activity of rCYP1A1 and rCYP1A2 enzymes (10 pmol/mL) were
investigated. Obtusifolin (0, 0.05, 0.2, 0.5, 2, 5, or 10 µM) was added to the reaction mixture
containing 7-ethoxyresorufin (2 µM). The other conditions, except for the incubation time
(20 min), were similar to those used in the P450 inhibition study, as described earlier.

2.8. LC-MS/MS Analysis

Reverse phase column (Kinetex XB-C18, 100 × 2.10 mm; Phenomenex, Torrance, CA,
USA) and triple-quadrupole mass spectrometer (LCMS 8060, Shimadzu, Kyoto, Japan) with
an ultra high-performance LC system (Nexera X2, Shimadzu) analyze all the metabolites.
Mobile phases were 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile
(B). The elution condition was as follows: 0–0.5 min (B: 8%), 0.5–5 min (B: 8%→60%),
5–6 min (B: 60%), 6–6.1 min (B: 60%→8%), and 6.1–10 min (B: 8%) for the analysis of
metabolites of the nine P450 substrates; and 0–1 min (B: 5%), 1–5 min (B: 5%→90%), and
5.1–7 min (B: 90%→5%) for the analysis of resorufin. Electrospray ionization was per-
formed in the positive- and negative-ion modes at 4.0 and −3.5 kV, respectively. For
each metabolite, quantitation was carried out in selected reaction monitoring (SRM)
mode using the following precursor-to-product ion transition: m/z 152 > 110 for ac-
etaminophen (CYP1A2), m/z 214 > 186 for resorufin (CYP1A1 and CYP1A2), m/z 163 > 107
for 7-hydroxycoumarin (CYP2A6), m/z 256 > 238 for 6-hydroxybupropion (CYP2B6), m/z
328 > 283 for N-desethylamodiaquine (CYP2C8), m/z 287 > 89 for 5-hydroxytolbutamide
(CYP2C9), m/z 362 > 214 for 4-hydroxyomeprazole (CYP2C9), m/z 258 > 157 for dextror-
phan (CYP2D6), m/z 184 > 120 for 6-hydroxychlorzoxazone (CYP2E1), m/z 342 > 203 for
1′-hydroxymidazolam (CYP3A), and m/z 295 > 100 for trimipramine (IS) [23,24].

2.9. Data Analysis

WinNonlin software (Pharsight, Mountain View, CA, USA) was used to calculate IC50
values. Based on Lineweaver–Burk double reciprocal plots, secondary plots of Lineweaver–
Burk plots versus obtusifolin concentrations, and visual inspection of Dixon plots, the type
of inhibition and apparent kinetic parameters for inhibitory activity (Ki) were estimated.

3. Results and Discussion
3.1. Inhibition of CYP1A2 Activity by Five Major Phytochemicals from Cassiae Semen

In the previous study, Tang et al. (2009) reported that rhein, an anthraquinone in
rhubarb root, inhibited CYP1A2-catalyzed POD activity with a Ki value of 62 µM in rat liver
microsomes [25]. Liu et al. (2021) also demonstrated that emodin more selectively inhibited
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CYP1A2-mediated POD activity (IC50 = 0.5 µM) than the activities of other P450 isoforms
(IC50 > 9.6 µM) in HLMs [8]. Based on these data, we explored the possibility of CYP1A2
inhibition by four anthraquinones (chrysophanol, emodin, obtusifolin, and physcion) and
one naphthopyrone (rubrofusarin), which were isolated from Cassiae semen in HLMs
(Figure 1). The amount of acetaminophen selectively produced by CYP1A2 was measured
using LC-MS/MS in SRM mode and determined by the area ratio (acetaminophen/IS area)
to quantify CYP1A2-mediated POD activity (Figure S1). Anthraquinones (IC50 < 2.2 µM)
more strongly inhibited CYP1A2 activity than naphthopyrone (IC50 > 6 µM). Among the
four anthraquinones, obtusifolin (IC50 = 0.19 µM) was found to be the strongest inhibitor
of CYP1A2 activity (Table 1 and Figure 2). The inhibitory potential of obtusifolin was
higher than those of furafylline (IC50 = 1.56 µM), isopimpinellin (IC50 = 0.46 µM), and
trioxsalen (IC50 = 0.79 µM) [8,26]. The inhibitory potential (IC50 = 0.79 µM) of emodin
against CYP1A2 in HLMs was observed to be similar to the previously reported value
(IC50 = 0.50 µM) [8]. The inhibitory potentials of chrysophanol (IC50 = 1.99 µM) and
physcion (IC50 = 2.16 µM) against CYP1A2 in HLMs were higher than those observed
against rCYP1A2 (IC50 = 0.29 and 0.88 µM, respectively) [16]. This could be attributed to
the differences in incubation conditions, such as enzyme source (HLM versus rCYP1A2)
or CYP1A2 probe substrate (phenacetin versus melatonin) [16,23]. For example, the IC50
value of mollugin for CYP1A2-mediated POD activity in rCYP1A2 was five-fold higher
than that in HLMs [27].

Table 1. Inhibitory effects of four anthraquinones (obtusifolin, emodin, chrysophanol, and physcion)
and one naphthopyrone (rubrofusarin) against CYP1A2-mediated phenacetin O-deethylase activity
in human liver microsomes.

Enzyme IC50 (µM) (1)

CYP1A2
Obtusifolin Emodin Chrysophanol Physcion Rubrofusarin
0.19 ± 0.01 0.79 ± 0.26 1.99 ± 0.23 2.16 ± 0.48 6.33 ± 1.38

(1) Values represent the average ± standard error of triplicate.
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Figure 2. Inhibitory effects of obtusifolin, emodin, chrysophanol, physcion, and rubrofusarin on
CYP1A2-mediated phenacetin O-deethylation in human liver microsomes. Pooled human liver
microsomes (0.25 mg/mL) were incubated with phenacetin (100 µM) in the presence or absence of
each chemical (0.5 µM) at 37 ◦C for 15 min. The activity is expressed as the percentage of the control
activity. The data are depicted as the average obtained from triplicate experiments (n = 3).

3.2. Binding Modes of Obtusifolin Assessed by Molecular Docking Simulation

To explore the critical interactions between anthraquinones from Cassiae semen and
human CYP1A2 from the perspective of protein–ligand interactions and to clarify the
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mechanism behind the enhanced CYP1A2 inhibitory activity of obtusifolin compared with
other anthraquinones, molecular docking simulations were performed using a previously
reported crystal structure of CYP1A2 (PDB ID: 2HI4) [19]. As shown in Figure 3, an-
thraquinones could be readily docked into the active site of the CYP1A2 enzyme, while
the binding area in the active site was highly overlapped with that of phenacetin (PDB
accession number: 3EBS), implying that anthraquinones could occupy the binding area of
the CYP1A2 substrate and thereby serving as inhibitors of CYP1A2 enzyme.
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Figure 3. Molecular docking pose of obtusifolin in CYP1A2 (PDB ID: 2HI4). The carbon atoms of the
interacting residues in CYP1A2 are displayed as cyan sticks and labeled. Heme is represented by red
sticks. The carbon atoms in the ligand are shown as yellow sticks. The non-classified hydrogen bond
and hydrophobic interactions are depicted by light green and black dotted lines, respectively. Leu382
is highlighted to demonstrate that steric bump formation with the ligand is not possible (Please find
more details in the Discussion section).

The potential critical interactions between anthraquinones and CYP1A2 enzyme were
comprehensively analyzed using the docking complex model. Obtusifolin binds to the
CYP1A2 active site with the lowest docking score of−12.78 kcal/mol (Table 2). As shown in
Figure 3, obtusifolin hydrophobically interacts mainly with heme, Phe226, Phe256, Phe260,
Gly316, Ala317, and Leu497 in the catalytic site of CYP1A2. It also forms a nonclassical
hydrogen bond with Asp313 through its methoxy group. The complex structure of CYP1A2
and α-naphthoflavone exhibited similar hydrophobic contacts with Phe226, Gly316, Ala317,
and Leu497; thus, these interactions may be conserved for CYP1A2 inhibition.
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Table 2. Interactions and binding energy of four anthraquinones (obtusifolin, emodin, chrysophanol,
and physcion) and one naphthopyrone (rubrofusarin) with CYP1A2 isoform.

Chemical IC50 (µM) Docking Score (kcal/mol) Interactions

Obtusifolin 0.19 ± 0.01 −12.78 Phe226, Phe256, Phe260, Ala317, Asp313, and Leu497
Emodin 0.79 ± 0.26 −11.38 Phe226, Phe260, Ala317, and Leu497

Chrysophanol 1.99 ± 0.23 −11.66 Phe226, Phe260, Ala317, and Leu497
Physcion 2.16 ± 0.48 −8.34 Phe226, Phe260, Ala317, and Leu497

Rubrofusarin 6.33 ± 1.38 −7.56 Thr124, Phe226, Phe256, Phe260, Ala317, and Leu497

Conversely, emodin was the second-best CYP1A2 inhibitor among the examined
compounds. Its hydroxyl group interaction with heme, along with hydrophobic contacts,
contributed to a high CYP1A2 inhibitory activity (Figure S3). Chrysophanol harbors a
methyl group in the same location as that in obtusifolin. However, it lacks a hydroxyl group
that would facilitate its interaction with heme like emodin. (Figure S4). Rubrofusarin, the
least potent inhibitor, likely has steric hindrance with Leu382, as its methoxy group is within
1 Å of this amino acid (Figure S5). Thus, the binding orientation of rubrofusarin might be
altered owing to these differences from obtusifolin, thereby reducing its CYP1A2 inhibitory
capacity. The bulky methoxy group in physcion, the second least effective inhibitor, might
have lessened its inhibitory action on CYP1A2; however, the lack of a hydroxyl group, as in
rubrofusarin, might have contributed to its superior CYP1A2 inhibitory function compared
with that of rubrofusarin (Figure S6).

As observed in rubrofusarin and physcion, the presence of bulky methoxy groups in
disadvantageous positions in the molecules may result in steric hindrance with Leu382,
which could result in inefficient CYP1A2 inhibition (Figures S5 and S6). However, as
observed in emodin, small functional groups, such as the hydroxyl group, may result in
moderate action against CYP1A2. The presence of a methyl group (equivalent to the 14th
atomic position in obtusifolin) in the molecules may result in moderate inhibitory activity,
as seen in the case of emodin and chrysophanol, if the methoxy group is absent in both the
favorable and unfavorable locations of the molecules (Figures S3 and S4).

In summary, the docking models suggest that the high inhibitory activity of obtusi-
folin against CYP1A2 primarily results due to the combination of extensive hydrophobic
interactions with three Phe residues (Phe226, Phe256, and Phe260) via its methyl group
and the non-classical hydrogen bond with Asp313 via the methoxy group (Figure 3). The
methoxy group at this particular position in obtusifolin is not present in other molecules,
suggesting its significant role in the effective inhibition of CYP1A2 (Figure 3).

3.3. Characterizatin of Inhibition Kinetics of Obtusifolin against CYP1A2

Obtusifolin inhibited microsomal CYP1A2 activity with IC50 values of 0.19 µM, there-
fore, we sought to clarify the underlying mechanism of this inhibition. We measured
the inhibition constant of α-naphthoflavone, a well-known CYP1A2 selective inhibitor, to
validate our experimental system. α-Naphthoflavone inhibited CYP1A2-mediated POD
activity with a Ki value of 0.0075 µM in HLMs. Our results with α-naphthoflavone are
consistent with that of a previous study, which reported potent inhibition of CYP1A2
activity in HLMs by α-naphthoflavone with a Ki value of 0.01 µM using phenacetin as
the CYP1A2 probe substrate [28]. This highlighted the suitability of our experimental
system for evaluating the inhibitory ability of obtusifolin against CYP1A2. According to the
Lineweaver–Burk plot (Figure 4A), obtusifolin presented a typical pattern of competitive
inhibition for CYP1A2-mediated POD activity in HLMs, with a Ki value of 0.11 µM (Table 3).
The secondary Lineweaver–Burk plot also demonstrated a linear correlation (Figure 4B,
R2 = 0.997). The Dixon plot intersected above the X-axis, indicating that obtusifolin inhib-
ited CYP1A2 in a competitive manner (Figure 4C) [29]. Obtusifolin exhibited a stronger
inhibitory potency than machilin A (Ki = 0.71 µM) [30], isopimpinellin (Ki = 1.2 µM) [31],
and mollugin (Ki = 3.74 µM) [27], but was less potent than α-naphthoflavone (Ki = 0.01 µM),
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a well-known strong selective inhibitor of CYP1A2 [26]. Obtusifolin also inhibited CYP1A2
activity in the rCYP1A2 isoform with a Ki value of 0.21 µM, which was similar to the value
observed in HLMs (Table 3).
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Figure 4. Representative Lineweaver–Burk (A), secondary Lineweaver–Burk (B), and Dixon plots
(C) obtained from the inhibition kinetics of CYP1A2-mediated phenacetin O-deethylation in the
presence of different concentrations of obtusifolin in human liver microsomes (HLMs). An increasing
concentration of phenacetin (20, 50, and 100 µM) was incubated with HLMs (0.25 mg/mL) and an
NADPH generating system at 37 ◦C for 15 min in the presence or absence of obtusifolin. The data are
depicted as the average obtained from triplicate experiments (n = 3).

Table 3. Enzyme inhibition constants (Ki values) for the inhibition of CYP1A2-mediated phenacetin
O-deethylation in human liver microsomes (HLMs) or recombinant CYP1A2 isoform by obtusifolin
and α-naphthoflavone.

Inhibitor HLM/rCYP1A2 IC50 (µM) Ki (µM)

Obtusifolin
HLMs 0.19 ± 0.01 0.11 ± 0.02

rCYP1A2 0.37 ± 0.11 0.21 ± 0.053
α-Naphthoflavone HLMs 0.0061 ± 0.0008 0.0075 ± 0.0010

In addition, several CYP1A2 inhibitors, including antofloxacin [26], furafylline [32] and
isopimpinellin [31], are time-dependent inhibitors of CYP1A2. We investigated the effect of
incubation time on the IC50 values of obtusifolin against CYP1A2. We found that obtusifolin
showed time-independent inhibition of CYP1A2-mediated POD activity with an IC50 shift
value of 1.46 (IC50 values of 0.13 and 1.19 µM, with and without NGS preincubation,
respectively). A chemical with an IC50 fold-shift decrease of <1.50 is considered a time-
independent inhibitor [33]. α-Naphthoflavone, a time-independent inhibitor [34], also
exhibited an IC50 shift value of 0.83.

In this study, we used in vitro experimental system such as human liver microsomes
and recombinant P450 isoforms for enzyme inhibition studies. Since these systems have
a limitation in that they can not reflect the exact intracellular concentration of the test
compounds, it will be necessary to conduct enzyme inhibition studies using cultured cells,
such as human hepatocytes.

3.4. Selective Inhibition of CYP1A2 Activity by Obtusifolin

Obtusifolin had a potent inhibitory effect on CYP1A2-mediated phenacetin O-deethylation
(IC50 = 0.19 µM). To evaluate whether obtusifolin selectively inhibits CYP1A2, we investi-
gated its inhibitory activity against eight other P450 isoforms. Obtusifolin showed weak
inhibition of CYP2C8 and CYP2C9, with IC50 values of 31.4 and 28.6 µM, respectively, and
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negligible inhibition (IC50 > 50 µM) of CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP2E1, and
CYP3A activities (Table 4 and Figure 5). Obtusifolin exhibited over 150-fold selectivity
(CYP1A2 vs. other P450s), whereas HYIpro-3-1 [35] and mollugin [27] showed 125- and
25-fold selectivity for CYP1A2 inhibition, respectively. At a 0.5 µM obtusifolin concentra-
tion, which is approximately seven-fold greater than the Ki value, obtusifolin was observed
to inhibit CYP1A2 activity by 73.3% and only slightly affected the enzyme activities of the
other eight P450s. Obtusifolin weakly inhibited CYP2E1-mediated chlorzoxazone hydroxy-
lase activity (30.7%) at 0.5 µM concentration (Figure 6). Similar to α-naphthoflavone and
furafylline, obtusifolin could also potentially be used as a potent and selective CYP1A2
inhibitor in drug metabolism studies.

Table 4. Inhibitory effects of obtusifolin against nine cytochrome P450 isoforms in human liver micro-
somes.

P450 Isoforms IC50 (µM)

CYP1A2 0.19 ± 0.01
CYP2A6 >50
CYP2B6 >50
CYP2C8 31.44 ± 9.85
CYP2C9 28.64 ± 6.98

CYP2C19 >50
CYP2D6 >50
CYP2E1 >50
CYP3A >50
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Figure 5. Inhibitory effects of obtusifolin on (A) phenacetin O-deethylation (CYP1A2, N) and
(B) coumarin 7-hydroxylation (CYP2A6, •), bupropion 6-hydroxylation (CYP2B6, #), amodiaquine N-
deethylation (CYP2C8, H), tolbutamide 4-hydroxylation (CYP2C9,4), omeprazole 4-hydroxylation
(CYP2C19, �), dextromethorphan O-demethylation (CYP2D6, �), chlorzoxazone 6-hydroxylation
(CYP2E1,
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3.5. Chemopreventive Effects of Obtusifolin 
The CYP1A family plays a vital role in the metabolic activation of carcinogens, in-

cluding mycotoxins, such as aflatoxin B1 [11], and polycyclic aromatic hydrocarbons, 
such as benzo[a]pyrene [12]. The most reactive metabolite, ben-
zo[a]pyrene-7,8-diol-9,10-epoxide, which is responsible for tumor production in new 
born mice, is produced by CYP1A enzymes [36]. Therefore, the selective inhibition of 

), and midazolam 1′-hydroxylation (CYP3A, 3) during incubation with human liver
microsomes (0.25 mg/mL). The activity was expressed as the percentage of the control activity. The
data are represented as the mean ± S.D. (n = 3).
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Figure 6. Inhibitory effects of obtusifolin [0.5 (�) and 2.0 µM (�)] on enzyme activities of nine P450
isoforms in human liver microsomes (0.25 mg/mL). The data are depicted as the average obtained
from triplicate experiments (n = 3).

3.5. Chemopreventive Effects of Obtusifolin

The CYP1A family plays a vital role in the metabolic activation of carcinogens, includ-
ing mycotoxins, such as aflatoxin B1 [11], and polycyclic aromatic hydrocarbons, such as
benzo[a]pyrene [12]. The most reactive metabolite, benzo[a]pyrene-7,8-diol-9,10-epoxide,
which is responsible for tumor production in new born mice, is produced by CYP1A en-
zymes [36]. Therefore, the selective inhibition of CYP1A-mediated activation of procarcino-
gens is potentially a crucial chemopreventive strategy. Sulforaphane [14], resveratrol [13],
and curcumin [37] are potent chemopreventive agents that directly inhibit CYP1A enzymes.
The CYP1A family contains only two functional isoforms, namely CYP1A1 and CYP1A2.
We evaluated it inhibitory potential against the CYP1A family to confirm the potential
of obtusifolin as a chemopreventive compound. Obtusifolin was incubated with human
rCYP1A1 and rCYP1A2 isoforms using 7-ethoxyresorufin as the substrate. Obtusifolin
similarly inhibited the CYP1A1- and CYP1A2-mediated EROD activities with IC50 values
of 0.39 and 0.57 µM, respectively (Figure 7), indicating that obtusifolin can be considered a
chemopreventive agent. The inhibitory potential of obtusifolin against CYP1A1 isoform
was higher than those of resveratrol (IC50 = 23 µM) [13] and curcumin (IC50 = 0.74 µM) [38],
which are well-known chemopreventive CYP1A inhibitors. However, it was less potent
than α-naphthoflavone (IC50 = 0.06 µM), a well-known strong inhibitor of CYP1A1 [39].
In addition, in terms of CYP1A-mediated POD activity, obtusifolin exhibited over six-
fold selectivity for rCYP1A1 (IC50 = 0.06 µM) over rCYP1A2 (IC50 = 0.37 µM) (Table 5).
Its selectivity for CYP1A1 inhibition over CYP1A2 is similar to that of 7-hydroxyflavone
(six-fold) [40]; however, it was lower than resveratrol which demonstrated 51-fold selectiv-
ity [13]. Based on this obtusifolin-mediated selective and potent inhibition of CYP1A1 and
CYP1A2 enzymes, the in vivo chemopreventive effects of obtusifolin should be evaluated
in the future.
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deethylation in recombinant human CYP1A1 (A) and CYP1A2 (B) enzymes. Recombinant human
P450s (10 pmol/mL) were incubated with ethoxyresorufin (2 µM) in the presence or absence of
obtusifolin (0–10 µM) at 37 ◦C for 20 min. The activity is expressed as the percentage of the control
activity. The data are depicted as the average obtained from triplicate experiments (n = 3).

Table 5. Inhibitory effects (IC50) of obtusifolin against recombinant CYP1A1 and CYP1A2.

Recombinant Cytochrome P450 Substrate IC50 (µM)

rCYP1A1
Phenacetin 0.06 ± 0.02

7-Ethoxyresorufin 0.39 ± 0.06
9-cis-Retinal >10

rCYP1A2
Phenacetin 0.37 ± 0.11

7-Ethoxyresorufin 0.57 ± 0.11
9-cis-Retinal 0.15 ± 0.03

3.6. Evaluation of Drug Interaction Potential of Obtusifolin

It was estimated that an in vivo interaction potential via the inhibition of P450 would
likely occur if the ratio of inhibitor Cmax/Ki exceeded 1.0, and would be possible if it
was between 0.1 and 1.0 [18]. Based on obtusifolin’s maximum concentrations (0.86 and
0.54 µM) in rat blood after a single oral administration of Semen Cassiae extracts (1.25 g/kg;
contents: 5.01 mg/g obtusifolin) [41] and obtusifolin (1.3 mg/kg) [42], the respective values
of Cmax/Ki were 7.82 and 4.91 from the data of pHLMs (Ki = 0.11 µM), suggesting that
obtusifolin has possible drug interaction potential with CYP1A2 substrate drugs. Thus far,
there have been no reports on the pharmacokinetics of obtusifolin in humans, therefore, it
is difficult to estimate the drug interaction potential of obtusifolin for humans. However,
rhein, which is one of the anthraquinone compounds like obtusifolin, has been reported
to reach a maximum plasma concentration of 9.52 and 18.8 µM after oral dose of 50 and
100 mg, respectively, in humans [43]. Therefore, obtusifolin might have drug interactions
with CYP1A2 substrate drugs, such as imipramine [44], olanzapine [45], and tizanidine [46].
Therefore, in vivo studies are necessary to determine whether drug interactions between
obtusifolin and CYP1A2 substrates have clinical relevance.

4. Conclusions

In this study, we investigated the inhibitory potential of four anthraquinones and
one naphthopyrone isolated from Cassiae semen on the activity of CYP1A2 isoform in
HLMs. Among five compounds tested, obtusifolin potently inhibited CYP1A2-mediated
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POD activity, with Ki values lower than 0.5 µM in HLMs and rCYP1A2. Furthermore,
obtusifolin selectively inhibited CYP1A1 and CYP1A2 enzymes; however, it had negligible
inhibitory effects on other P450 isoforms, highlighting its potential chemopreventive effects.
In conclusion, we confirmed the selective and potent inhibitory effects of obtusifolin against
CYP1A enzymes in HLMs and recombinant CYP1A enzymes.
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Molecular docking pose of α-naphthoflavone in CYP1A2; Figure S3: Molecular docking pose of
emodin in CYP1A2; Figure S4: Molecular docking pose of chrysophanol in CYP1A2; Figure S5:
Molecular docking pose of physcion in CYP1A2; Figure S6: Molecular docking pose of rubrofusarin
in CYP1A2.
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