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Abstract: Mitochondria are implicated in a wide range of functions apart from ATP generation,
and, therefore, constitute one of the most important organelles of cell. Since healthy mitochondria
are essential for proper cellular functioning and survival, mitochondrial dysfunction may lead to
various pathologies. Mitochondria are considered a novel and promising therapeutic target for
the diagnosis, treatment, and prevention of various human diseases including metabolic disorders,
cancer, and neurodegenerative diseases. For mitochondria-targeted therapy, there is a need to develop
an effective drug delivery approach, owing to the mitochondrial special bilayer structure through
which therapeutic molecules undergo multiple difficulties in reaching the core. In recent years,
various nanoformulations have been designed such as polymeric nanoparticles, liposomes, inorganic
nanoparticles conjugate with mitochondriotropic moieties such as mitochondria-penetrating pep-
tides (MPPs), triphenylphosphonium (TPP), dequalinium (DQA), and mitochondrial protein import
machinery for overcoming barriers involved in targeting mitochondria. The current approaches used
for mitochondria-targeted drug delivery have provided promising ways to overcome the challenges
associated with targeted-drug delivery. Herein, we review the research from past years to the current
scenario that has identified mitochondrial dysfunction as a major contributor to the pathophysiology
of various diseases. Furthermore, we discuss the recent advancements in mitochondria-targeted drug
delivery strategies for the pathologies associated with mitochondrial dysfunction.

Keywords: mitochondrial dysfunction; nanoparticles; drug delivery; pathophysiology

1. Introduction

Mitochondria are among the most important organelles in eukaryotic cells and have
a distinctive structure composed of lipid-bilayer membranes [1]. A mitochondrion has
a unique structure comprising four parts: the outer mitochondrial membrane (OMM),
the inter-membranous space (IMS), the inner mitochondrial membrane (IMM), and the
matrix, with each part performing a specific role. The permeability of mitochondrial lipid
membranes differs; the outer membrane is permeable to a broad range of small molecules,
but the inner membrane is selective [2]. The passage of molecules through the IMM is
controlled by a variety of specialized channel proteins [3]. Therefore, compared to the
cytoplasm, the mitochondrial matrix has a remarkably different electrochemical potential
and composition. Moreover, mitochondria are the only organelles that have their own
genomes, i.e., a circular form of DNA with 16,500 circular base pairs and 37 genes. These
mitochondrial DNAs (mtDNAs) encode 2 ribosomal RNAs (rRNAs), 13 messenger RNAs
(mRNAs), and 22 transfer RNAs (tRNAs), which are all required for the synthesis of 13 pro-
teins that are components of the electron transport chain (ETC) for performing oxidative
phosphorylation [4]. Mutations in either mtDNA or nuclear DNA genes coding for mito-
chondrial proteins may lead to the onset of mitochondrial diseases [5,6]. The identification
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of mitochondria as an emerging pharmaceutical target has led to the development of several
mitochondria-targeting strategies for the effective treatment of diseases associated with
mitochondrial dysfunction. Some of the current drugs’ limitations include low solubility,
non-selective biodistribution, and poor bioavailability. Nanopreparations have the potential
to overcome the present barriers by providing a sustained and targeted medication delivery
system to mitochondria. Recently, NPs and traditional chemotherapeutic drugs have been
conjugated to create biocompatible, multifunctional mitochondria-targeted nanoplatforms.
Furthermore, nanopreparations may also improve therapeutic compounds’ pharmacoki-
netic characteristics and bio-distribution patterns. This technique is also being utilized to
create targeted medicine delivery systems and hybrid nanostructures that can be activated
by light (also known as photodynamic and/or photothermal therapy). In this review, we
have discussed the role of mitochondrial dysfunction in the pathophysiology of various
diseases. Further, we have also focused on mitochondria-based therapy involving different
targeting mechanisms and the current approaches for mitochondria-targeted drug delivery.

2. Physiological Importance of Mitochondria
2.1. Mitochondria and Oxidative Phosphorylation

Mitochondria are implicated in various critical processes in animal cells, such as oxida-
tive phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, fatty-acid oxidation,
calcium ion homeostasis in association with the endoplasmic reticulum (ER) [7], amino acid
metabolism [8], and the regulation of apoptosis [9]. The production of ATP for energy is the
primary function of mitochondria. There are two ways by which cells produce ATP; in the
cytosol through glycolysis and in mitochondria by oxidative phosphorylation. Substrates
such as pyruvate and fatty acids are oxidized through TCA and β-oxidation pathways,
respectively. The by-products of both the processes, flavin adenine dinucleotide (FADH2)
and nicotinamide adenine dinucleotide (NADH) are used by the electron transport chain
(ETC) of mitochondria to generate ATP. The ETC comprises protein complexes that lie
within the inner mitochondrial membrane [10]. The electrons transported by NADH and
FADH2 are transferred to complex I (NADH dehydrogenase) and complex II (succinate de-
hydrogenase) of protein complexes. After that, these electrons are transported by coenzyme
Q to complex III (cytochrome bc1) and finally through complex IV (cytochrome c oxidase)
to oxygen molecules. This sequential passage of electrons along these protein complexes
is accompanied by the generation of a proton gradient across the IMM, which is further
utilized by FO F1 ATP synthase in the formation of ATP. Therefore, it is clear that any dam-
age that impairs the mitochondrial capacity to carry out these critical functions will have a
significant impact on ATP synthesis that would be detrimental to cellular functioning [11].

2.2. Mitochondria and Reactive Oxygen Species (ROS)

ROS are produced as a consequence of oxygen metabolism, which includes hydrogen
peroxide (H2O2), superoxide anions (O2

−), and hydroxyl radicals (OH•) [12]. These ROS
are mainly generated from oxidative phosphorylation. The primary member of ROS is a
superoxide anion (O2

−) produced by both complex I and complex III of the ETC [13]. These
overproduced superoxide anions are endogenously controlled by superoxide dismutase
(SOD) via their conversion into hydrogen peroxide, which in turn is converted into water by
catalase or peroxidase enzymes. However, in various diseases such as neurological diseases,
cardiovascular disorders, and autoimmune diseases, a disturbance of this redox balance
occurs in mitochondria, which activates inflammasomes, RIG-I-like receptors (RLRs), and
mitogen-activated protein kinases (MAPK), leading to the activation of innate immune
and inflammatory responses [14]. Numerous anti-oxidants such as coenzyme Q10 [15],
vitamin E [16], apocynin [17], and SOD mimetic [18] in conjugation with small cationic
molecules such as triphenylphosphonium (TPP+) have been used in controlling imbalanced
redox species in mitochondria.
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2.3. Mitochondria and Calcium Homeostasis

The endoplasmic reticulum in cells is primarily responsible for storing calcium cations;
however, mitochondria can also temporarily store calcium [19]. In different kinds of healthy
cells, mitochondria can withstand intracellular calcium concentrations between 50 and 500 nM.
This buffering capacity is maintained via the calcium uniporter located in the IMM [20].
Ca2+ ions can permeate through the outer mitochondrial membrane; when the Ca2+ ion
concentration surpasses a 1 mM concentration in extreme conditions, the calcium uniporter
channel opens and transfers Ca2+ ions from the cytosol to the matrix of mitochondria [21].
Calcium homeostasis is important for various metabolic functions. Calcium is intricately
involved in synaptic plasticity, organelle movement, and neurotransmitter vesicle release
in brain [22]. In cellular signaling pathways, Ca2+ ions are critically involved and balance
cellular signaling among cells [23].

2.4. Mitochondria and Apoptosis

A highly controlled type of cell death called apoptosis is managed by mitochondria.
It is a crucial process in the development (e.g., in the modeling of limbs and neurodevel-
opment) and lifelong maintenance of tissue homeostasis. In terms of morphology, cells
undergoing apoptosis show membrane blebbing and chromatin condensation. Therefore,
apoptosis can also be easily characterized. The mitochondrial pathway (extrinsic) and
the death receptor pathway are the two pathways through which apoptosis manifests
itself in mammalian cells [24]. The mitochondrial apoptosis pathway can respond to both
intracellular and extracellular cues, as exemplified by DNA damage. Cytochrome c, which
typically transports electrons between complexes III and IV of the ETC, is the most effective
signaling molecule in the apoptotic pathway. In apoptosis, however, cytochrome c release
leads to the loss of mitochondrial membrane potential, resulting in the permeabilization of
the OMM. This release of cytochrome c from the mitochondrial intermembrane space to
the cytosol activates various caspase enzymes that cause apoptosis [25].

2.5. Mitochondria and Fe/S Clusters

The biosynthesis of various protein cofactors, including Moco, heme, lipoic acid, biotin,
and iron–sulfur (Fe/S) clusters, is another important function of mitochondria [26]. Among
these, Fe/S clusters are of particular importance due to their involvement in electron
transfer reactions as well as in catalytic and regulatory processes. Moreover, they also serve
as sulfur donors during the synthesis of lipoic acid and biotin. There are many types of
Fe/S clusters, but [2Fe-2S] and [4Fe-4S] are the most prevalent and simplest clusters [27].
Mitochondrial Fe–S biosynthesis is initiated by the iron–sulfur cluster (ISC) assembly, which
consists of more than 15 components [28]. Apart from mitochondrial Fe/S, this iron–sulfur
cluster (ISC) assembly machinery in mitochondria is also required for the biosynthesis of
cytosolic Fe/S clusters [29]. In mitochondria, these Fe/S proteins are specifically involved
in the TCA cycle (aconitase), fatty acid oxidation (ETF-ubiquinone oxidoreductase), the
electron transfer chain (respiratory complexes I–III), and in biotin and lipoate biosynthesis
(lipoate and biotin synthases) [29]. Dysfunction in assembly with respect to the formation
of Fe/S proteins is linked with severe and frequently fatal neurodegenerative, metabolic,
or hematological diseases [30,31].

3. Role of Mitochondrial Dysfunction in Pathophysiology

The functioning of every enucleated cell in the human body depends on healthy
mitochondria. A disturbance of the basic mitochondrial functions such as bioenergetic
functions, the regulation of oxidative stress, and the homeostasis of ions is typically charac-
terized as mitochondrial dysfunction. In the process of an ETC, the release of ROS from the
mitochondria causes many detrimental effects, such as mtDNA/RNA damage, lipid oxida-
tion, protein oxidation, the activation of the Ca2+-dependent mitochondrial permeability
transition pore, and the release of cytochrome c, which causes the formation of apopto-
somes and eventually leads to apoptosis. Both the oxidative stress-related and hereditary
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mitochondrial DNA abnormalities result in mitochondrial dysfunction, which triggers the
cascade of cell death signals leading to organ failure and diseases. Numerous diseases,
including diabetes [32], heart failure and ischemia-reperfusion damage [33], cancers [34],
Alzheimer’s, and Parkinson’s disease [35], have recently been linked to mitochondrial
dysfunction. Therefore, numerous studies are being undertaken to clarify the way in which
mitochondrial dysfunction relates to the pathophysiology of different diseases. Herein, we
have discussed the pathophysiology of mitochondrial dysfunction in various diseases.

3.1. Mitochondrial Dysfunction and Cancer

Several past investigations have demonstrated that mitochondria play a key role in
the etiology of several ailments, including cancer. There are several reports suggesting the
involvement of mitochondrial dysfunction in tumors or cancers [34,36]. The commonly
found pathologies include reduced oxidative phosphorylation/ATP synthesis, reactive oxy-
gen species over-production, altered calcium homeostasis, and a surge in inflammation [37].
When compared to normal cells/tissues, cancer cells are more prone to fluctuations in
energy metabolism. Faster cell proliferation, longevity, and the reoccurrence of tumor cells
are also linked to mitochondrial dysfunction. Furthermore, it has been repeatedly observed
that mitochondrial failure results in physiological conditions such as hypoxia and acidosis
in cancer patients [38]. In addition, there are studies reporting that cancer cells usually
have a higher membrane potential of 220 mV than the 140 mVof normal cells [39,40], which
may lead to enhanced anabolism, irresponsiveness towards anti-growth factors, and, most
importantly, unregulated apoptosis and futile autophagy [41]. Several notable differences
in the structure and function of mitochondria between normal and cancer cells have been
revealed. A few of the key differences are listed below.

3.1.1. Metabolic Alterations Associated with Cancer

In cancer, various alterations in the functions of mitochondria have been reported, viz.,
lactic acid over-production accompanied by decreased pyruvate oxidation [42], enhanced glu-
taminolytic activity [43], gluconeogenesis increment [44], and lower fatty acid oxidation [45].
The bioenergetics guided by mitochondrial functions show a metabolic anomaly in the case
of tumor cells in terms of respiratory substrate selection, calcium-buffering capability, or the
reduced catalytic activity of mitochondrial enzymes (e.g., Cytochrome c oxidase) [46].

3.1.2. Structural Differences Associated with Cancer

The lipid distribution of inner membrane of a tumorous cell has a higher percentage
of cholesterol, altered total phospholipid content, and/or variations in the number of indi-
vidual phospholipids [47]. When compared to their non-malignant counterparts, cancer
cells display variations in the structure and/or relative distribution of numerous proteins.
A typical example includes the altered function of F1 ATPase in hepatic cells due to a sig-
nificant decline in the levels of the b subunit of the F1 component of mitochondrial ATPase
accompanied by the up-regulation of ATPase inhibitor protein (IF 1) [48,49]. Conversely,
the expression of an pro-apoptotic IMM protein called BAX is decreased in some cancer
cell lines [50,51].

3.1.3. OXPHOS Pathway Differences Associated with Cancer

OXPHOS is the process by which ATP is generated in normal cells. However, certain
cancer-causing agents, such as radiation, carcinogens, and/or oncogenes, convert normal
cells to cancer cells, and these cancer cells subsequently alter the ATP generation process
from OXPHOS to Glycolysis [52]. This switch in the metabolic pathway is associated
with variations in the normal values of several elements such as mitochondrial membrane
potential (MMP; m), glutathione (GSH), pH, and reactive oxygen species (ROS) [53,54].
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3.1.4. Physiological Differences Associated with Cancer

In normal cells, ATP production consumes the majority of mitochondrial oxygen, only
leaving a small percentage for other processes such as ROS production, whereas cancer
cells have significantly higher mitochondrial oxygen levels than normal cells due to the
hypoxic extra-tumoral environment [53]. This is owning to the fact that there is reduced
ATP production in the mitochondria of tumor cells, which, in turn, results in a 2.5-fold
lower oxygen consumption rate (OCR) than that of the mitochondria of healthy cells [53].

3.1.5. Necrosis Associated with Cancer

The role of mitochondria in necrotic cell death has long been recognized [55]. A few
situations, most notably oxidative stress and calcium build-up inside mitochondria, can
cause a high-conductance leak resulting in the opening of IMM [56]. As a consequence,
the electrochemical proton gradient falls, halting ATP synthesis followed by activating
ROS generation. In addition, some physiological conditions of necrotic cell death like
pH-dependent ischemia/reperfusion injury have also been reported to cause mitochondrial
failure [57,58]. Tumor cells were able to strategically prevent hypoxia-mediated cell death by
down-regulating p53, a cancer suppressor protein that controls cellular stress response [59].

3.2. Mitochondrial Dysfunction and Neurodegenerative Diseases

The aberrant folding and consequent accumulation of proteins within the cell body of
neurons are indications of neurodegenerative disorders. This is plausible due to pertur-
bations in mitochondrial function that can have profound repercussions on the structure
and functioning of the neurons, thereby resulting in neurodegeneration. Some of these
disorders will be discussed in this section in relation to mitochondrial dysfunction. A vast
number of studies indicate that impaired brain metabolism or mitochondrial dysfunctions
are some of the best-documented anomalies and early signs in brains affected by major
neurodegenerative disorders. Mitochondrial dysfunction associated with non-maternal
inheritance has been extensively reported in several neurological diseases, most notably
amyotrophic lateral sclerosis (ALS) [60], Parkinson’s disease (PD) [61], Alzheimer’s dis-
ease (AD) [62], multiple sclerosis [63], schizophrenia [64], epilepsy [65], neuropathic pain,
and Huntington’s disease (HD) [65]. Figure 1 depicts the association between mitochon-
drial dysfunction and various neurodegenerative diseases. Despite the varying mode
of transmission and the unknown specific cause, the common and remarkable signature
of mitochondrial dysfunction in such diseases is the malfunctioning of the respiratory
chain, resulting in a variety of clinical manifestations. Other causes of mitochondrial
malfunction and abnormal mitochondrial morphology include mtDNA mutations [66], ox-
idative damage, and mitochondrial protein aggregation [67]. The imbalance between ROS
production and oxidation leads to oxidative stress, which disrupts the functioning of mito-
chondrial respiratory chain, affects calcium homeostasis, alters membrane permeability, in-
creases heteroplasmic mt DNA levels, and weakens mitochondrial defense systems [68,69].
Oxidative stress may damage cellular components of mitochondria such as proteins, nucleic
acids, and lipids, and contribute to the production of intracellular ROS, leading to mtDNA
mutations in neurodegenerative disorders. These involve a variety of proteins that regulate
oxidative phosphorylation (OXPHOS) and mitochondrial dynamics and are thus involved
in regulating the integrity of the mitochondrial structure. Furthermore, mitochondrial fail-
ure largely affects mitochondrial biogenesis and dynamics, which are both associated with
a variety of age-related neurodegenerative disorders [70]. In this section, we have briefly
explored the role of mitochondrial dysfunction in various neurodegenerative diseases.
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3.2.1. Alzheimer’s Disease

Alzheimer’s disease is the most common cause of dementia and is becoming one of
the most costly, fatal, and burdensome diseases of the 21st century [71–73]. Its patholog-
ical hallmarks include nerve cell degeneration, the appearance of neurotic plaques, and
neurofibrillary tangles [74–76]. Even though the precise mechanism of AD pathogenesis
remains unknown, increasing evidence implies that mitochondrial dysfunction and oxida-
tive stress play a significant role in the disease’s etiology [62]. Previous research has found
that mtDNA and enzyme abnormalities in the brains of AD patients were followed by the
altered morphology and mass of the organelle [77]. These patients were found to have
altered mitochondrial enzymatic activity in their brains that led to impaired mechanisms of
OXPHOS and the tricarboxylic acid (TCA) cycle [78,79], which further results in low ATP
production and an increase in oxidative stress [80,81]. According to the most widely ac-
cepted explanation, tau (τ) and Aβ (amyloid β) damage neuronal cells in AD by interfering
with the supply of energy and the antioxidative response, resulting in mitochondrial and
synaptic dysfunction. The α-ketoglutarate dehydrogenase enzyme complex (α-KDHC) is a
crucial mitochondrial enzyme for oxidative metabolism, and its activity diminishes with
age. The mechanism of its inactivation is unknown; however, Q. Shi et al. have found that
α-KDHC function can be restored, and can be a viable therapeutic method for Alzheimer’s
disease [82]. Another study indicates that AD disrupts mitochondrial biogenesis as well as
the dynamics of fission and fusion, resulting in an unequal distribution of mitochondria
in the neurons [83]. Aβ is thought to be responsible for activating downstream cascades
in microglia that cause mitochondrial dysfunction and exacerbate inflammation and cy-
totoxicity in AD patients [84]. Thus, investigations explaining the operative pathways of
mitochondrial anomalies in AD may aid in a better understanding of the etiology of this
neurodegenerative illness and may assist in the advancement of therapeutic options to
safeguard synaptic activity and consequent cognitive function.

3.2.2. Parkinson’s Disease

The role of mitochondrial dysfunction as an activator, propagator, or bystander in
Parkinson’s disease (PD) has been a mystery for decades. PD is the second most prevalent
neurodegenerative disorder in the world, and it, like AD, has both hereditary and envi-
ronmental risk factors [85]. The continuous loss of dopaminergic neurons as well as the
aggregation of fibrous protein such as α-synuclein deposits in the cytoplasm of neurons
(i.e., Lewy bodies) and nerve fibers (i.e., Lewy neurites) in the substantia nigra of the brain
are pathological signatures of PD [61]. This disease manifests both motor and non-motor
symptoms, wherein some motor symptoms include myotonia, rest tremors, hypokinesia,
and aberrant posture [86], while non-motor symptoms include anxiety, sadness, consti-
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pation, frequent micturition, sleep behavior disorder (SBD), complications in rapid eye
movement (REM), and cognitive difficulties [87]. In rare cases, PD is caused by muta-
tions in the PINK1 (PTEN-induced kinase 1) or PRKN (parkin RBR E3 ubiquitin protein
ligase) genes, which affect the selective autophagic clearance of damaged mitochondria
(mitophagy) [88]. According to F. Wauters et al., the most prevalent monogenic cause of
PD is a mutation in the gene encoding LRRK2 (leucine-rich repeat kinase 2) [89]. RAB10, a
GTPase-activating protein (GAP) and a substrate of LRRK2, accumulates on the depolarized
mitochondria via signals from activated PINK1 and PRKN genes. It further binds the au-
tophagy receptor OPTN (optineurin), which enhances OPTN accumulation on depolarized
mitochondria and aids mitophagy [90]. Moreover, several studies have also suggested that
mtDNA mutations [91,92] and abnormalities in complex I of the mitochondrial ETC [93]
play an essential role in the etiopathogenesis of PD. According to theories put forth by
researchers [94], the substantia nigra—a group of dopaminergic neurons of the midbrain
that undergoes age-related neurodegeneration in PD patients, has high oxidative capacities,
and that seems to be particularly sensitive to mitochondrial dysfunction [95], loss in the
respiratory chain and, subsequently, high oxidative stress—that is uniquely susceptible to
the accumulation of somatic mtDNA mutations and deletions over time [96]. Post-mortem
samples revealed that the levels of somatic mtDNA deletions in the substantia nigra of PD
patients were marginally higher than those in controls of a comparable age [96] and other
neuropathological disorders [97]. Consequently, deletions may result from a compromised
mitochondrial replication system, specifically, from mitochondrial DNA polymerase γ

(POLG) mutations in the mitochondrial polymerase [98]. In accordance with these findings,
it is essential to explore drug development strategies to prevent mtDNA dysfunction as a
potential way in which to slow the progression of PD.

3.2.3. Multiple Sclerosis

Multiple sclerosis (MS) is a metabolically dependent neurodegenerative disorder
that is caused by persistent axonal loss of the brain and the spinal cord, which thereby
initiates cognitive decline and physical disability among the affected. This chronic and
progressive autoimmune disease has a complex pathophysiology that is characterized by
flare-ups of inflammation and the breakdown of the myelin sheath (an insulating layer of
fat that protects nerve fibers) in the central nervous system (CNS) [99]. A disrupted myelin
sheath may result in the blocking or impedance of nerve signals and hamper the control of
various physiological functions such as vision, sensation, muscle coordination, and strength.
In the past several years, it has become obvious that malfunctioning mitochondria are key
contributors to axonal and neuronal damage [100]. Animal and histological investigations
indicate that invading leukocytes and activated microglia play a critical role in neuronal
mitochondrial dysfunction [63]. Disruptions in mitochondrial function were accompanied
by significant alterations in the morphology and density of the organelle, which cause
inflammatory lesions in MS patients. However, at the onset of disease manifestation, the
biochemical activity of mitochondrial complex I was specifically compromised in these
spinal tissues [101]. So, it can be concluded that these mechanisms create an imbalance in
energy and further contribute to irreversible impairment and neurodegeneration. Thus,
extensive research and multiple mitochondria-targeted neuroprotective treatments must be
developed as a part of the standard MS treatment regimen.

3.2.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease (MND) characterized
by the loss of upper motor neurons in the motor cortex and lower motor neurons in
the brain stem and the spinal cord. Progressive limb degeneration results in muscular
atrophy, paralysis, and, eventually, the death (respiratory failure) of the patient [102].
From a genetic standpoint, ALS can be of two types, namely, familial and sporadic, the
latter one being most common (~90%) amongst affected individuals [103]. Further, the
pathology of the aforementioned disease includes mitochondrial degeneration, oxidative
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stress, glutamate excitotoxicity, decreased axonal transport, glial cell disease, and defective
RNA metabolism [102]. Thiol is oxidized during mitochondrial dysfunction, resulting in a
cascade of multiple processes such as calcium imbalance and the breakdown of the mito-
chondrial membrane promoting cell death [104]. Analysis of ALS models revealed that the
build-up of aberrant mitochondria in motor neuron axons leads to defective mitochondrial
transport in ALS [104]. Furthermore, mitochondrial damage limits NAD+ and ATP produc-
tion while increasing ROS production, leading to mtDNA mutations, structural deformity,
aberrant protein aggregation, and, eventually, the loss of motor neurons [104]. Addition-
ally, cell culture and animal investigations have revealed faulty calcium homeostasis and
ROS overproduction in relation to abnormal oxidative metabolism in mitochondria [105].
Moreover, abnormalities in mitochondrial dynamics and the interruption of axonal trans-
port were also identified in ALS models [106]. As a result, mitochondrial degradation is
determined to be the cause of most familial or sporadic ALS cases and addressing ALS-
associated mitochondrial deregulation pharmacologically may present a possibility for
delaying disease progression.

3.3. Mitochondrial Dysfunction and Cardiovascular Diseases (CVD)

In 2019, Asia accounted for 58% of the 18.6 million CVD deaths globally [107]. Many
cardiac illnesses, including atherosclerosis, ischemia-reperfusion injury, heart failure, and
hypertension, are thought to be accompanied by mitochondrial dysfunction, most likely as
a result of insufficient cellular energy production and unchecked ROS production. mtDNA
damage is a significant contributor to mitochondrial dysfunction and is a key phenotypic
feature [6]. In these cases, apoptosis, inflammation, fibrosis, and cardiac remodeling are
stimulated, and sarcomere protein function is impaired. Other characteristics of mitochon-
drial dysfunction include decreased numbers of mitochondria in tissues, the stimulation of
apoptosis and inflammation, the absence or dysfunction of mitochondrial enzymes, and
impaired mitochondrial biogenesis [108,109]. In this section, we have briefly discussed the
role of mitochondrial dysfunction in various cardiovascular diseases.

3.3.1. Atherosclerosis

Atherosclerosis, a chronic inflammatory disease, is characterized by the accumulation
of lipids, primarily cholesterol, and other compounds such as fatty materials, cellular waste
products, calcium, and fibrin within the artery wall [110]. The progression of atherosclero-
sis depends on numerous factors and one of its hallmarks is ROS overproduction, which
is involved in various processes. Proteins, lipids, and nucleic acids can suffer oxidative
damage from prolonged exposure to ROS or excessive ROS production [111]. Endothelial
nitric oxide synthase (eNOS) converts L-arginine into L-citrulline to produce the majority
of the nitric oxide (NO) produced in the endothelium. Intracellular arginine levels, which
are, in turn, governed by mitochondrial arginase II, are the primary regulators of NO levels.
As a result, NO needs a functioning mitochondrial respiratory chain (MRC) to maintain
proper levels [112]. The major causes of decreased NO concentrations in the cell are eNOS
breakdown brought on by elevated ROS levels and the loss of mitochondrial membrane
potential. Lower NO secretion and production are the initial signs of endothelial change
in early atherosclerosis [113]. Improper mitophagy also increases mitochondrial damage
and the release of ROS, mtDNA, and K+ into the cytoplasm, which encourages NLRP3 in-
flammasome activation. Mitophagy is a biological mechanism involved in mitochondrial
rejuvenation. In fact, the NRLP3 protein can directly interact with released mtDNA to start
an inflammatory response [114].

3.3.2. Ischemic Stroke

Strokes continue to number among the major causes of death in developed nations
and constitute the primary cause of physical and intellectual disability in adults. Stroke
is still the most common cause of mortality in affluent countries and the main factor in
adult physical and intellectual disability [115,116]. When the blood supply to the brain
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tissue provided by blocked arteries is reduced, an ischemia event takes place. Cell death
ultimately results from altered cellular homeostasis caused by a scarcity of oxygen and
nutrients [117–119]. Various enzymes have been shown to play a role in ischemia [120].
Numerous isoforms of nitric oxide synthase (NOS) activated post-ischemic stroke, such as
neuronal, endothelial, and inducible NOSs, mediate excessive NO production [121–124].
The B-cell lymphoma (BCL-2) protein family is a significant regulator of the permeability
of the OMM and is essential for the intrinsic apoptotic pathway [125]. BCL-2 may have a
significant role in the regulation of neuronal death in cerebral ischemic strokes according to
several reports [126–130].

Aside from the BCL-2 pathway, several other major apoptotic pathways involve the
release of pro-apoptotic factors such as apoptosis-inducing factor (AIF) and the second
mitochondrion-derived activator of caspase (SMAC) from the mitochondria. The pro-
apoptotic factor SMAC releases from mitochondria and binds to the X-chromosome-linked
inhibitor of apoptosis protein (XIAP), suppressing its anti-apoptotic activity and prevent-
ing serial procaspase activation and thus further inducing apoptosis following cerebral
ischemia [131,132]. Another major pro-apoptotic factor, AIF, is a mitochondrial protein
which was discovered to be a caspase-independent modulator of the degradation phase of
apoptosis. AIF was proposed to serve as a mitochondrial effector of apoptotic cell death
after its transfer from the mitochondria to the nucleus [133]. BH3-interacting domain death
agonist (Bid) is a cytosolic protein that induces the release of cytochrome c, which leads
to programmed cell death. The Bid protein has been demonstrated to maintain AIF in
the nuclei, which speeds up and strengthens the apoptotic process [134]. Moreover, AIF
has also been proven to block poly (ADP-ribose) polymerase. Experiments performed
on animal models of ischemic stroke show the translocation of AIF with apoptotic DNA
fragmentation, which happens prior to or concurrently with the release of cytochrome c
from mitochondria [135]. Furthermore, the role of AIF is also seen to govern neuronal
death brought about by oxygen-glucose deprivation, glutamate-induced toxicity, and
experimental ischemic stroke in vivo [134].

4. Strategies for Mitochondria-Targeted Therapy

The identification of mitochondria as an emerging pharmaceutical target has led to
the development of several mitochondrial targeting strategies for the effective treatment
of diseases based on mitochondrial dysfunction. The primary challenge in exploiting
mitochondria as a target is the delivery of therapeutic molecules. As we described above,
permeability of both the membranes in mitochondria is different. The transition pore
in the OMM is wider, and it is through this pore that therapeutic molecules can easily
traverse. Whereas the highly folded hard IMM has narrower transition slits that separate
the intermembrane space and the mitochondrial matrix, making it difficult for many
therapeutic molecules to cross the mitochondrial matrix. Thus, research has been directed
towards improving therapeutic delivery and reducing the unwanted effects of the delivered
drugs. Numerous drug delivery approaches are being developed in light of the specific
properties of mitochondria, including their membrane potential and lipophilicity [136],
specialized protein import machinery [137], and distinctive phospholipid composition
in the IMM [138], as shown in Figure 2. The first characteristic of a mitochondrion is
that it contains a negative charge. The potential (∆Ψm) between the matrix and the
intermembranous space is around 180 mV; mitochondria exploit this potential as a proton-
motive force for ATP production [139]. However, this ∆Ψm was exploited for mitochondrial
targeting by using positively charged ions (cations) that are attracted to the mitochondria
via electrostatic forces. The second distinguishing feature of mitochondria is the unique
structure of their IMM and lipid composition, which mostly consists of cardiolipin and
may be exploited for targeted drug delivery to the mitochondria. The phospholipid
cardiolipin plays a key role in apoptosis and provides structural support for respiratory
chain complexes [140].
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Figure 2. Different strategies for mitochondria-targeted drug delivery. (I) Peptides conjugated with
drugs imported to the mitochondria through binding with phospholipid cardiolipin (CL). (II) Cellular
proteins with N-terminal mitochondrial targeting sequences are imported into mitochondria via TOM
and TIM channels. (III) Mitochondrial uptake of drug-conjugated lipophilic cations such as triph-
enylphosphonium (TPP+) occurs due to difference in transmembrane potential (∆Ψm) of mitochondria.

Mitochondria generally lose most of their genetic material while forming endosymbi-
otic interactions with the host eukaryotic cell, forcing them to require proteins encoded in
the nuclear genome. As a consequence, mitochondria possess protein import machinery
that identifies proteins with a specific amino acid sequence [141]. Thus, drug delivery to
mammalian mitochondria is accomplished using one of these approaches, or by a combina-
tion of both. Herein, we have discussed various molecules that are being used for drug
delivery in mitochondria.

4.1. Small Lipophilic Cationic Molecules Targeting Mitochondria
4.1.1. Triphenylphosphonium Cation (TPP+)

In mitochondria, there is a significant transmembrane potential of 140–180 mV (neg-
ative inside) that may be used to transport positively charged molecules to mitochon-
dria [142]. Murphy and colleagues pioneered the use of lipophilic cations as mitochondrial
carriers, which are also known as mitochondriotropic ligands [143]. TPP+ is a lipophilic
cation, and the potential gradient created by its charge dispersion over the surface area
causes its accumulation inside the mitochondrial matrix [144]. The percentage of the TPP+

concentration inside the negatively charged membrane compartments rises by one order
of magnitude for every 60 mV of negative membrane potential. The plasma membrane
voltage typically varies between −30 and −60 mV, which is enough to cause an up to
10-fold buildup of TPP within the cell. Typical mitochondria, on the other hand, have a
membrane potential of −180 mV, which facilitates an increased accumulation of TPP+ in-
side the mitochondria by 1000 times [144]. TPP+ aids in the delivery of mitochondrial drugs
such as AP39 [145], Mito-Vit-E [136], Mito-Q [146], SkQ1 [147], and 2,2,6,6-tetramethyl-4-[5-
(triphenylphosphonium) pentoxy] piperidine-1-oxybromide (Mito-TEMPOL) [148]. The
structural formulas of all these drugs have been depicted in Figure 3. AP39 is mitochondria-
targeting motif that comprises TPP+ attached to a H2S donor moiety (dithiol-77 ethione)
through an aliphatic linker. There is emerging evidence regarding the roles of H2S in reduc-
ing the release of mitochondrial death signals and maintaining mitochondrial integrity [149].
Several studies suggested that AP39 are capable of preventing hyperglycemia-induced
oxidative stress [150], reducing amyloid-β deposition in the brain, and ameliorating spatial
memory deficits in APP/PS1 mice [151]. Mito-Vit-E was made by combining vitamin E with
TPP+, with the latter driving the compound in mitochondria. Mito-Vit-E is an anti-oxidant
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that has been shown to revive mitochondrial activity and prevent cell death [136]. Mito-Q
is produced through the conjugation of ubiquinone with TPP+ and is commonly utilized as
an antioxidant to prevent cell death. SkQ1 are the derivatives of plastoquinone attached
via the C10 hydrophobic linker to the TPP cation. SkQ1 has shown greater anti-oxidant
activity and binding affinity with cardiolipin as compared to mito-Q, and has shown de-
creased protein oxidation, the prevention of cell apoptosis, decreased ROS levels, and
the prevention of lipid peroxidation [147]. Several studies reported that SkQ1 showed
high efficacy in a wide variety of eye diseases such as glaucoma, retinopathy, and dry
eye syndrome [152,153]. Mito-TEMPOL is a well-known superoxide scavenger that tar-
gets mitochondria. Mito-TEMPOL therapy may reduce ATP depletion-induced necrosis
and apoptosis by maintaining mitochondrial integrity and lowering BAX translocation to
mitochondria. Mito-Q, Mito-TEMPOL, and Mito-Vit-E were shown to be more effective
than untargeted antioxidants (vitamin E and ubiquinone10) at lower concentrations in
protecting cells against peroxide-induced oxidative damage and death [146]. However,
murphy et al. reported that a TPP+ concentration above 10 µM might have detrimen-
tal effects on mitochondrial damage control due to proton leakage and mitochondrial
membrane depolarization [143].
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4.1.2. Rhodamine

Rhodamine derivatives have a high binding affinity for mitochondrial membranes so
they can be used as agents that specifically target the mitochondria and disrupt the electron
transport chain [154]. Rhodamine’s lipophilic and cationic characteristics, which enable it
to pass through double mitochondrial membranes and stay inside the negatively charged
mitochondrial matrix, are thought to constitute the mechanism causing its accumulation
in mitochondria [155]. When TPP+ was replaced with rhodamine 19, it was found to be a
potential drug carrier to mitochondria. This was accomplished by the chemical alteration
of a TPP–drug conjugate so as to produce rhodamine 19–drug conjugates [147]. It inhibited
stroke-induced brain swelling and averted neurological impairment, providing a potential
example of a moderate uncoupler that is effective in the treatment of brain pathologies
related to oxidative stress [156].
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4.1.3. Pyridinium Salts

Pyridinium salts are lipophilic delocalized cations that can be utilized as mitochondrial
targeting groups. Large conjugated systems are created by modifying pyridinium salts
with ethylenic bonds. The pyridine salts’ ability to withdraw electrons and their conjugated
systems can induce or govern molecular luminescence, which is useful for the optical
detection of mitochondria. However, pyridine salts’ lipophilicity hampers their ability to
reach tissues in vivo.

A breakthrough in the use of pyridinium salts in vivo was made by Cheng’s team
when they created a human serum albumin-facilitated pyridine salt complex that could
easily access tumor tissue, had mitochondria-targeting ability, and caused tumor cell
apoptosis [157]. The pyridine salt molecule’s cytotoxicity was a flaw in its mitochondrial
detection, but it showed advantages in the treatment of tumors [157].

4.2. Mitochondria-Targeting Signal Peptides

The nuclear genome contains the genetic information for more than 1000 mitochondrial
proteins. Cells usually utilize the mitochondrial protein import machinery to import
nuclear-encoded mitochondrial proteins. These proteins typically have a 20–40-amino
acid cleavable targeting region at their N-terminus. This sequence is generally positively
charged, has amphiphilic helices, and is not conserved [158]. The movement of the imported
proteins to the translocase of the inner membrane (TIM) complex at the IMM is carried out
by the translocase of the outer membrane’s (TOM) importing complex, which is situated
on the OMM. Following their passage through the IMM, mitochondrial peptidases break
the targeting sequence, and mitochondrial chaperones fold the imported protein into a
mature structure [159]. The majority of research efforts have focused on developing a
mitochondrial targeting sequence for DNA or gene delivery into the mitochondria as a
potential treatment to cure mitochondrial diseases [137,160]. This method is also utilized
to investigate the precise involvement of mitochondria in the onset of some diseases,
such as the modification of mitochondrial function and cell death caused by Aβ-peptide
accumulation in mitochondria [161]. However, no prospective medicine including signal
peptides for mitochondrial targeting has yet been evaluated, as this strategy has several
practical limitations, i.e., effective targeting peptides are lengthy, large molecules are
difficult to transport, the hydrophilicity and cellular permeability of these peptides are low,
and the cost of chemical production is quite high. These limitations significantly restrict the
application of mitochondria-targeted compounds (MTCs) based on mitochondrial targeting
signal peptides.

4.3. Cardiolipin Targeting (Penetrating Peptides)

Peptide-based delivery is an additional method utilized to facilitate mitochondrial tar-
geting. The advantages of peptide-based delivery scaffolds are their simplicity in synthesis,
adaptability, biocompatibility, and high absorption in both cells and in vivo [162]. The prop-
erties of lipophilicity and a positive charge were used to design small peptides with which
to target mitochondria. Recent studies have shown that many cell-penetrating peptides can
penetrate the mitochondrial membrane [163]. Szeto–Schiller (SS peptides) is an illustration
of a small peptide-targeting moiety that targets mitochondrial cardiolipin with specificity
in order to enhance mitochondrial plasticity and re-establish optimal bioenergetics. Based
on their lipophilicity and charges, alternate aromatic residues and basic amino acids are
being used to design such types of peptides to target mitochondria [164]. The accumulation
of these peptides occurs specifically in the IMM, where they scavenge ROS, prevent the
opening of the mitochondrial permeability transition pores, and, ultimately, prevent the
release of cytochrome c. Various peptides (SS-01 to SS-31) were prepared by using these
amino acids with slight modifications, from which (SS-01, SS-02, and SS-31) have shown
antioxidant efficacy. This effect was due to the presence of aromatic amino acids, such
as Dmt (dimethyl tyrosine) and Tyrosine, which subsequently scavenged ROS because
unreactive tyrosyl or dityrosine radicals can react with superoxide radicals to form tyrosine
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hydroperoxide [138]. Contrary to TPP+, which causes toxicity at 10 µM, Szeto–Schiller
peptides did not show toxicity even at 1 mM. Preclinical studies of SS-31(D-Arg-Dmt-Lys-
Phe-NH2) suggest beneficial effects with respect to muscle aging, atherosclerosis, ischemia,
osteoarthritis, diabetes, and glaucoma. To determine the efficacy and safety of these pep-
tides, several clinical trials are undergoing for different diseases such as cardiovascular
diseases, kidney diseases, cerebral ischemia, etc. [138,164].

Many other peptides such as cationic amphipathic α-helical D-(KLAKLAK)2 have also
been synthesized in an attempt to improve the potencies of anticancer peptides [165,166].
In their study, Li et al. developed a peptide (P11LRR) consisting of arginine-modified
polyproline amphiphilic molecules that formed a helical structure [167]. It was observed
that the accumulation of P11LRR in mitochondria was driven by the mitochondrial trans-
membrane potential, as the elimination of mitochondrial potential leads to the inhibition of
peptide localization. P11LRR-conjugated dimethyl tyrosine (a molecule that is supposed
to be antioxidant) was able to reduce the chemically induced reactive oxygen species
within the mitochondria, thereby serving as an excellent mitochondrial drug delivery vec-
tor [167]. Similar to this, various cell-penetrating peptides have been designed [168] despite
having some drawbacks, such as fast elimination from the body, intracellular/vesicular
entrapment, and non-specific internalization [169].

4.4. Nanoparticle (NPs)-Based Drug Delivery
4.4.1. Dequalinium (DQA)

Dequalinium, a single-chain amphiphilic compound with two delocalized cation
centers that self-assemble into liposome-like cationic vesicles, has been shown to possess
mitochondria-targeting characteristics [170]. It is capable of transporting DNA and drugs
via nonspecific endocytic pathways to mitochondria, as shown in Figure 4. Various studies
have suggested that DQA is capable of delivering DNA, and antisense RNA specifically, to
the mitochondria [171,172]. Owing to this property, DQAsomes could also be utilized to
encapsulate anti-cancer drugs such as curcumin and paclitaxel. These studies demonstrated
that the free forms of curcumin and paclitaxel have less antioxidant and tumoricidal activity
as compared to the encapsulated drug in DQAsomes [173,174]. DQAsomes are now
considered to constitute a unique drug-delivery system due to the selective accumulation
of the drug DQA in mitochondria and its anticarcinoma activity.
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4.4.2. Liposomes

Liposomes are globular structures formed from phospholipid-based vesicles that con-
tain one or more lipid bilayers and cholesterol [175]. They are suitable for the incorporation
of both hydrophobic and hydrophilic drugs due to their aqueous center and the lipid
bilayer surrounding them. Liposomes are used to deliver drugs since they are biologi-
cally compatible, biodegradable, can self-assemble, nontoxic, can carry large drugs, and
have several properties that can be changed to control their biological characteristics [176].
Drugs can be loaded into liposomes in a variety of ways, such as by encasing them in the
aqueous region of the liposomes or lipophilic bilayers or by electrostatically adsorbing
them to the liposome’s surface [177]. Various liposome systems have been developed for
mitochondria-targeted delivery. In a study, chlorine e6 (Ce6, a photosensitizer) and IR
780 iodide (photothermal and near infra-red agent) were encapsulated in biocompatible
liposomes and the attachment of TPP+ on the surfaces of liposomes greatly facilitated
their mitochondria-targeted delivery and showed higher toxicity in HeLa cells in vitro,
leading to the enhanced efficacy of photodynamic therapy [178]. Further research has
been directed in this field and involved the use of the liposystem as a vehicle for the
controlled release of a drug [179]. In another study, a stearyl residue was conjugated to
TPP+ and this conjugated form was incorporated into a liposome. The ceramide-loaded
stearyl-conjugated TPP liposomes (STPP) showed significantly decreased tumor volumes
in BALB/c mice with non-specific toxicity [180]. For specific targeting, a novel polyethy-
lene glycol-phosphatidylethanolamine (PEG-PE) conjugate was synthesized by attaching
a TPP+ group to the distal end of the PEG block (TPP-PEG-PE). Further, this conjugate
was encapsulated into a liposome and its toxicity, mitochondrial targeting capacity, and
efficacy in delivering paclitaxel (PTX) to cancer cells were investigated in vitro and in vivo
as compared to STPP conjugates. They found that the TPP-PEG-PE-modified liposomes
were less cytotoxic and showed enhanced mitochondrial targeting capacity compared to
the STPP-liposomes [181]. In another study, STPP-liposome hybrid cerasomes (CER), which
are based on the Si–O–Si framework and liposomes, were developed to combat the insta-
bility and aggregation of the liposome system. Wang et al. synthesized this nano-hybrid
cerasome modified with triphosphonium (TPP) and it showed excellent biocompatibility,
good stability, and sustainable drug release behavior in mitochondria [182].

Yamada et al. created the MITO-Porter liposome to transport genome-targeting nucleic
acids to the mitochondria. It is a liposome-based transporter that effectively transports
molecules to the cytoplasm [183,184], as well as to mitochondria through membrane
fusion [185]. High-density octa-arginine (R8) was used by Yamada et al. to coat the MITO-
Porter surface, which led to macropinocytosis rather than clathrin-mediated endocytosis
and enabled particles to reach the cell without being harmed. Later, Yasuzaki et al. em-
ployed MITO-Porter to encapsulate propidium iodide, a fluorescent dye used for staining
nucleic acids that could enable the visualization of mtDNA. Further investigation into this
strategy is being conducted for photodynamic cancer therapy [186] and mitochondrial
gene therapy [187,188].

4.4.3. Polymeric Nanoparticles

Polymeric NPs could be used to target mitochondria for drug delivery since they
are biodegradable and biocompatible. Additionally, as they are simple to make, surface
alterations can be performed easily and can be customized to drug-release characteristics.
Various polymers such as poly (lactic-co-glycolic acid) (PLGA), poly (glycolic acid) (PGA),
poly (lactic acid) (PLA), and polycaprolactone (PCL) can be formed into nanoparticles
through emulsification-solvent evaporation or nanoprecipitation [189,190]. These NPs can
encapsulate both hydrophilic and hydrophobic drugs with minor modification of FDA-
approved hydrophilic blocks such as polyethylene glycol (PEG). These PEG molecules
augment the residence time in vivo and are generally used to conjugate the targeting
moieties [2]. Through various chemical reactions, numerous nanocarriers have been made
for drug delivery. To assess the use of these nano-carriers, different drugs have been employed
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as their payloads, including 2, 4-dinitrophenol (an anti-obesity treatment), curcumin (AD), and
α-tocopheryl succinate (a cancer medication) [191]. In comparison to non-targeted constructs
or treatments in their free form, the drug therapeutic index for cancer, AD, and obesity is
noticeably improved by targeted nanocarriers such as PLGA-b-PEG-TPP NP [191].

4.4.4. Inorganic Nanoparticles

Inorganic nanoparticles have a smaller and more homogeneous particle size than or-
ganic NPs. In contrast to liposomes, dendrimers, and micelles, metallic nanoparticles (Metal
NPs) such as silver and gold have features including surface plasmon resonance (SPR),
enhanced Rayleigh scattering, and abilities beneficial for imaging biological systems [192].
These metallic nanoparticles can be easily conjugated with peptides, antibodies, DNA,
and RNA to target certain cells, and with biocompatible polymers (polyethylene glycol)
to extend their circulation in vivo for medication and gene delivery applications. There-
fore, metal NPs have been employed as core components because of their bio-inertness,
simplicity in synthesis, and characterization.

The use of silver nanoparticles (AgNPs) as nanocarriers for the treatment of can-
cer has shown promising results [193]. They possess special antiviral, antibacterial, and
antimicrobial activities. Additionally, AgNPs, with or without conjugates, have been rec-
ognized for their anticancer activities, which makes them effective drug carriers for the
treatment of cancer [23]. AuNPs have been used to provide targeted medication delivery
by conjugating with various mitochondrial moieties. We have summarized the differ-
ent mitochondria-targeting nanoformulations in Table 1. In the human cancer cell lines,
Caco-2, HeLa, and MCF-7, Oladimeji et al. investigated the mitochondria-targeted delivery
of betulinic acid (BA) via mitochondriotropic TPP+-functionalized epigallocatechin gal-
late (EGCG)-capped gold NPs (AuNPs). The IC50 values of these nanocomplexes were
3.12–13.2 µM in vitro, compared to 9.74–36.31 µM for free BA, and they likewise demon-
strated a considerable reduction in cancer cell proliferation [194]. The majority of traditional
chemotherapeutics have harmful side effects that restrict the maximum tolerable dose and
compromise their therapeutic efficiency by indiscriminately killing both healthy and ma-
lignant cells. To solve this issue, Sun et al. created the DNA-guided missile-integrated
nanospacecraft (GM-NSC), a nanocomposite formed of gold nanoparticles (AuNPs) and
a high-density multilayer DNA crown that is constructed from highly organized DNA
tetrahedral units (DNA Tetra). Each DNA tetrahedral unit consists of three parts: an
explosive bolt (E-bolt), a triphenylphosphonium (TPP) unit that targets mitochondria,
and an aptamer that targets cancer cells [195]. Good biocompatibility, high cargo-loading
capacity, adequate in vivo biodistribution, and therapeutic efficiency without side effects
were demonstrated by GM-NSC, making it a viable alternative drug delivery system for
targeted cancer treatment [195]. Figure 5 depicts the various nanoformulations currently in
use for mitochondria-targeted drug delivery.

Table 1. Summary of mitochondria-targeting nanoformulations.

Vector Mitochondriotropic
Moiety Drug/Cargo Model Effect Ref.

Liposomes TPP+ Paclitaxel,
Doxorubicin

Hela and 4T1 cancer
cell line

Shows enchanced cytotoxicity
to cancer cells as compared to
free drug, antitumor activity,

and high cell
uptake efficiency

[181,196]

Liposomes MITO-Porter Coenzyme Q10,
Doxorubicin

Mouse liver
ischemia/reperfusion

injury (I/R injury)
model, OS-RC-2 cells

Decreases the level of alanine
amino-transferase,
antitumor activity

[197,198]
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Table 1. Cont.

Vector Mitochondriotropic
Moiety Drug/Cargo Model Effect Ref.

Liposomes DQA Resveratrol

Human lung
adenocarcinoma

A549 cells and resistant
A549/cDDP cells

Induced apoptosis in both cell
lines via mitochondria [199]

Liposomes DQA Topotecan
Breast cancer

MCF-7 and resistant
MCF-7/adr cells

Shows enhanced
accumulation in

mitochondria and
anti-cancer effect

[200]

Liposomes Rh123 Paclitaxel Hela and
B16-F10 cancer cell line

Induced apoptosis and high
toxicity to cancer cells [201]

Liposomes STPP+ Ceramide
4T1 mammalian

carcinoma cells and
animal model

Enhanced specific drug
delivery, show

anti-tumor effect
[180]

Cerasomes TPP+ Doxorubicin Hela cells
Sustainable drug release, high

biocompatibility, show
antitumor effect

[182]

AuNP
(Polydopamine) - Paclitaxel Cancer cell line

Downregulates anti-apoptotic
gene, enhanced

anti-cancer efficacy
[202]

AuNP
(Hyaluronic acid) - Camptothecin Cancer cell line

Upregulates proapoptotic
genes, sensitizes

drug-resistant cancer cells,
enhanced anti-cancer efficacy

[203]

PLGA-PEG NPs TPP+

Curcumin,
2,4-dinitrophenol,

lonidamine,
α-tocopheryl

succinate

HeLa cells
Enhanced specific drug

delivery, enhanced
cytotoxicity to cancer cells

[191,204]

Mesoporous silica
NPs TPP+ α-tocopheryl

succinate

HeLa and
HepG2 cancerous

cell line

Enhanced cytotoxicity,
disrupt mitochondrial
membrane potential

[205]

AgNPs
(Polydopamine)

RGDARF peptide
(Tumor targeting

peptide)
Paclitaxel Cancer cell line

Strong apoptotic-inducing
potency, activation of

pro-apoptotic factor P53
and caspase 3

[193,206]
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5. Conclusions

Mitochondria are among the most important cellular organelles, which, in addition
to energy production, are involved in calcium signaling, cell growth and differentiation,
cell cycle regulation, and apoptosis. Mitochondrial dysfunction is a potential target for
diagnostic and therapeutic interventions for many diseases owing to its role concerning
higher cell death, decreased ATP synthesis, and increased mtROS production in the patho-
genesis of many diseases. The mitochondrial membranes and plasma membranes restrict
therapeutic molecules’ ability to reach mitochondria. Although there is a bioactive ad-
ditive with MitoQ and eye drops with SkQ1, there is still a scarcity of pharmacological
formulations in the market that efficiently target mitochondria. The reason for which is
the lack of an effective delivery system that can direct therapeutic molecules for selective
accumulation inside mitochondria. The ability of NPs to localize within mitochondria
and target particular cells facilitates treatments associated with mitochondrial dysfunction
disorders. Nano-formulation approaches, such as those incorporating liposomes, inorganic
NPs, and polymeric NPs conjugated with mitochondriotropic ligands, have been shown to
carry a variety of payloads to mitochondria in in vitro models, although several clinical
and pre-clinical studies still need to be conducted to understand the safety of these drug-
delivery systems. The field of mitochondria-targeted nanomedicine is gaining considerable
interest and efforts are also being made for the preparation of potent nano-formulations;
however, a better understanding of the subject is still needed in order to use them as
potential therapeutics for a wide range of diseases.

Author Contributions: Conceptualization, R.W. and A.I.; writing—original draft preparation, T.K.,
R.W., Z.Z., A.A., P.B. and J.A.; writing—review and editing, R.W., T.K. and A.I.; Supervision, M.I.H.
and A.I.; project administration, R.W. and A.I. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the grants from the Indian Council of Medical Research
ISRM/12/(127)/2020 and Science and Engineering Research Board (SERB) CRG/2018/004641.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not APPLICABLE.

Data Availability Statement: The information that supports the findings of this study is available in
this article.

Acknowledgments: The authors are grateful to the FIST Program (SR/FST/LSI-541/2012) and Jamia
Millia Islamia (a Central University) for providing the infrastructural support used to carry out this
work. RW acknowledges the DST-INSPIRE for INSPIRE Fellowship (IF-180728). TK acknowledges
the University Grant Commission for Junior Research Fellowship (191620050310). ZZ acknowledges
the CSIR for Junior Research Fellowship (09/466(0239)/2020-EMR-I). AA acknowledges the PMRF
for the fellowship (PMRF ID-3302520).

Conflicts of Interest: All authors declare that they have no conflict of interest.

Abbreviations

IMM Inner mitochondrial membrane
OMM Outer mitochondrial membrane
IMS Intermembrane space
TPP Triphenylphosphonium
Dmt Dimethyltyrosine
DQA Dequalinium
MitoE TPP-vitamin E
Mito-Q TPP-ubiquinone
STPP Stearyl conjugated TPP liposomes
PEG Polyethylene glycol
PTX Paclitaxel
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PLGA Poly (lactic-co-glycolic acid)
BCL-2 B-cell lymphoma
ALS Amyotrophic lateral sclerosis
PD Parkinson’s disease
AD Alzheimer’s disease
MS Multiple sclerosis
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