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Abstract: Metal–organic frameworks (MOFs) are crystalline porous materials with periodic network
structures formed by self–assembly of metal ions and organic ligands. Attributed to their tunable com-
position and pore size, ultrahigh surface area (1000–7000 m2/g) and pore volume (1.04–4.40 cm3/g),
easy surface modification, appropriate physiological stability, etc., MOFs have been widely used
in biomedical applications in the last two decades, especially for the delivery of bioactive agents.
In the initial stage, MOFs were widely used to load small molecule drugs with ultra–high doses.
Whereafter, more recent work has focused on the load of biomacromolecules, such as nucleic acids
and proteins. Over the past years, we have devoted extensive effort to investigate the function of
MOF materials for bioactive agent delivery. MOFs can be used not only as an intelligent nanocarrier
to deliver or protect bioactive agents but also as an activator for their release or activation in response
to the different microenvironments. Altogether, this review details the current progress of MOF
materials for bioactive agent delivery and looks into their future development.

Keywords: metal–organic frameworks (MOFs); nanoMOFs; drug delivery; nanomedicine;
cancer therapy

1. Introduction

Drug nanocarriers are a new drug delivery technology with the development of
pharmacology, biomaterial science and clinical medicine. Using nanomaterials as drug
carriers can improve the absorption and utilization rate of drugs, realize efficient delivery
of targeted substances, prolong the half–life of drug consumption, and reduce harmful
side effects on normal tissues [1–4]. Traditional carriers such as liposomes, emulsions or
micelles can carry certain drugs into tumor tissues, but their extremely low drug loading
capacity (<5 wt%) limits their further clinical applications [5].

Metal–organic frameworks (MOFs), also known as porous coordination polymers
(PCPs), are composed of organic ligands and metal ions or metal clusters through coordi-
nation and have an infinite network frame structure (Scheme 1). In the last two decades,
MOF materials have attracted considerable attention from scientists due to their versatile
properties [6–11]. With their rapid development, MOFs are widely used in the fields of gas
storage and separation [12–17], catalysis [18–27], chemical sensing [28–34], energy applica-
tions [35–39], biomedicine [40–47], and many other fields [48–52]. This inorganic–organic
hybrid material not only has the characteristics of diversified structure, large specific surface
area, trimmable surface, high porosity and adjustable pore size, but also can wrap target
molecules such as drugs in pores as objects and release them under specific conditions,
which can meet the application requirements of biomedical fields.

Compared with the traditional nanocarrier system, MOFs hold huge promise in
biomedical fields due to their unique properties [53–60]. Their porous structure makes
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MOFs outstanding candidates for loading of various drugs; flexibility in the selection of
organic ligands and metal ions enables the preparation of MOFs with inherent antitumor
activity and the further design of MOF–drug synergistic systems. When the size of the
MOF is reduced to the nanometer scale, i.e., nanoMOFs, they not only keep the regularity of
traditional frameworks, but also have special properties of nanoparticles, such as enhanced
permeability and retention (EPR) effect [61–63]. The past two decades have witnessed
tremendous development of nanoMOF–based drug delivery systems, especially in the field
of tumor therapy. Although there have been some impressive reviews on the treatment of
tumors by nanoMOFs previously, a review focusing on the latest progress of anti–tumor
drugs based on MOF nanocarriers is needed considering the rapid development of this
field recently. This review summarizes the synthesis and latest anti–tumor application
of nanoMOFs as drug carriers. It is hoped that readers will find new directions for the
application and clinical translation of nanomedicine based on MOF carriers.
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2. Synthesis of NanoMOFs

Usually, when materials reach the nanoscale, they are more suitable for biological
applications, especially those that require intravenous drug treatment. Recently, there
has been a lot of interest in studying the production and use of nanoMOFs, the sizes of
which have at least one nanoscale dimension. As of yet, nanoMOFs have distinguished
themselves from their bulk counterparts by offering distinct benefits, such as sizes that are
appropriate for biomedical applications [64].

The solvothermal method is the most effective and common method for the prepara-
tion of nanoMOFs. In the initial stage, factors such as stoichiometric proportion, reaction
time, pH value, temperature and the addition of surfactants are mainly considered to adjust
the size of MOF crystals [65–67]. Currently, based on the classical theory of crystallization
and LaMer’s model [68–71], and with a deeper knowledge of the nanoMOFs’ synthetic
mechanism, certain techniques have been developed to control the size of nanoMOFs in
accordance with the exact separation of the nucleation and growth processes. Recently, the
Zhang group created a very efficient and all–encompassing method for accurately synthe-
sizing a number of nanoMOFs by separating the nucleation and growth processes [72]. An
injection pump was used to introduce the ligands and metal ions to the stirring reaction
system at a predetermined dropping speed (Figure 1a). The goal of this procedure is to
control the reactions’ level of supersaturation. There is a dynamic equilibrium between the
consumption of the reactants and the production of the products as the reaction moves
forward. According to the LaMer diagram, when reagents are continually added to the
reaction system, the supersaturation degree soon rises. The termination of nucleation
results from the fast fall in supersaturation degree caused by the speedy consumption of
reactants that occurs during the development of nuclei. Following that, the development
of MOF nanocrystals can be ensured by the ongoing addition of reactants. Consider the
creation of HKUST–1 as an example. A quicker dropping speed will result in a greater
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quantity of nuclei being created, resulting in smaller product sizes than at a slower feed
rate. When there are enough reactants, the product can develop continuously without
agglomerating since the nucleation and growth processes are separated by varying the
reactant concentration (Figure 1b). The ability to create more nanoMOF types, such as
MIL–101(Fe), MOF–801(Zr), MIL–100(Fe), ZIF–67(Co), ZIF–8(Zn), and UiO–66(Zr), makes
this synthetic approach more versatile and useful.
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The microemulsion method is also an effective strategy to synthesize nanoMOFs.
Microemulsions are monodisperse systems formed by thermodynamically stable, trans-
parent water droplets in oil (W/O) or oil droplets in water (O/W) and usually consist
of surfactants, cosurfactants, solvents and water. In this system, two kinds of insoluble
continuous media are divided into tiny spaces by the surfactant parent molecules to form
a micro–reactor, whose size can be controlled in the nanometer scale, and the reactants
react in the system to form solid phase particles. In the course of mixing, monodispersed
nano–droplets can develop, and the size of the droplets can be controlled by varying
the quantity of surfactants. Thus, the microemulsion method can precisely control the
particle size and stability of nanomaterials, the nucleation, growth, coalescence and ag-
glomeration of nanoparticles are limited [73]. Mann and colleagues reported using this
technique to create extremely monodispersed Prussian Blue nanoparticles [74], which is
believed to be the earliest synthesis of nanoMOFs. This method has since been the subject
of preparing nanoMOFs by the Lin group. In a micro–emulsion system made up of hex-
adecyl trimethyl ammonium bromide (CTAB)/water/isooctane/1–hexanol, they prepared
nanosized Gd2(BDC)1.5(H2O)2 rods by mixing GdCl3 and bis(methylammonium)benzene–
1,4–dicarboxylate [75]. Their findings show that the aspect ratios of MOF rise with the
water to surfactant ratio. Additionally, the average particle size reduces when the reactant
concentration rises, which may be due to an increase in the micelles that contain the re-
actant, which leads to an increase in nucleation sites and a decrease in particle size. This
microemulsion process can also be expanded to synthesize more diverse nanoMOFs, i.e.,
(Gd(BTC)(H2O)3)·H2O and Mn3(BTC)2(H2O)6 [76].

Recently, Cai et al. prepared a very uniform copper–based nanoMOF, i.e., HKUST–1
by constructing a microemulsion system [77]. First, the microemulsion is prepared by
mixing ethanol, oleic acid, hexane and sodium hydroxide aqueous solution in specific
proportions. After adding copper nitrate into the microemulsion, Cu(II) oleate is generated
immediately by strong coordination between oleate ligands and bivalent copper ions. In
this case, because copper ions also have dissolution properties in water, they tend to stay at
the oil/water (O/W) interface. When trimesic acid ligands are added, and the temperature
is elevated to a pre–set temperature, HKUST–1 nanocrystals generate gradually at the
emulsion phase interface and are “protected” by oleic acid molecules with the alkyl chains
on the outside, thus, the nanoparticles transfer from the O/W interface into the inner
oil core, which gives the nanocrystals hydrophobic surfaces (Figure 2a). The diameter
of the HKUST–1 nanoparticles increases from 30 to 140 nm when the amount of oleic
acid is increased from 0.20 to 0.40 mL while maintaining the other parameters constant.
Particularly, when 0.30 mL of oleic acid is added, remarkably uniform spherical HKUST–1
nanoparticles with a mean size of roughly 70 nm are created (Figure 2b–e). Additionally,
this technique is used to prepare an iron(III)–based nanoMOF [78,79].
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3. NanoMOFs as Drug Carriers

Traditional medications have weak targeting abilities and can lead to serious side
effects if they build up in normal tissues [80]. Attributed to the EPR effect of nanocarriers,
viable carriers are particularly important for extending the clinical use of medications. For
example, two nanodrugs, doxil [81] and abraxane [82], which use liposomes and albumin
as carriers, respectively, have been put on the market for their better therapeutic effects
and safety. When scaled down to the nanoscale, MOFs can be exploited as promising
drug carriers and have the following advantages. Firstly, by interacting with the linkers or
metal clusters, drug molecules smaller than the pore width of MOFs can penetrate into the
pores and be efficiently stored [80]. Secondly, through a variety of interactions, including
electrostatic adsorption, coordination, and π–π stacking, cargo can be quickly loaded onto
the surface of MOFs [83]. Thirdly, to prevent early drug leakage, molecules with particular
groups can further build more stable covalent/dynamic interactions with functional link-
ers [41]. Fourthly, with increased stability and better tailorability, larger payloads including
nucleic acids, peptides and proteins can be included in the framework [84]. Common MOF
carriers that have been reported in the literature and patents are listed in Table 1 [85–89].
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Table 1. Typical examples of MOF–based nanocarriers for cancer therapy.

MOFs Metal
Ions/Clusters Organic Linkers Loaded Agents Therapeutic

Modalities Refs

Fe–MIL–100 Fe 1,3,5–benzene tricarboxylic acid DOX Drug release in vitro [5]

Fe–MIL–100 Fe 1,3,5–benzene tricarboxylic acid Paclitaxel and
gemcitabine Chemotherapy [86]

Fe–NDC Fe 2,6–naphthalenedicarboxylic acid Calcein Chemotherapy [87]

PCN–224 Zr H2TCPP N.A. Photodynamic
therapy [88]

Fe–cit MOF Fe Citric acid N.A. Cancer therapy [89]
ZIF–90 Zn Imidazole–2–carboxaldehyde Ce6 Cancer therapy [90]
Cr–MIL–100 Cr 1,3,5–benzene tricarboxylic acid Ibuprofen Drug release in vitro [91]
Cr–MIL–101 Cr 1,4–benzenedicarboxylic acid Ibuprofen Drug release in vitro [91]
ZIF–8 Zn 2–methylimidazole 5–Fu Drug release in vitro [92]
ZIF–8 Zn 2–methylimidazole DOX Chemotherapy [93]
Cu–doped ZIF–8 Zn, Cu 2–methylimidazole O2 PDT and CDT [94]

PCN–224 Zr H2TCPP N.A. Photodynamic
therapy [95]

ZIF–8 Zn 2–methylimidazole PolyIC Immunotherapy [96]
ZIF–90 Zn Imidazole–2–carboxaldehyde Protein Gene therapy [97]

ZIF–82 Zn 2–nitroimidazole and 1H–
imidazole–4–nitrile Catalase DNAzymes CDT [98]

Fe–MIL–100 Fe 1,3,5–benzene tricarboxylic acid Plasma amine
oxidase CDT [99]

Fe–MIL–88B Fe 1,4–benzenedicarboxylic acid Photoacid molecules Anti–metastasis and
CDT [100]

3.1. Surface Functionalization of MOFs

Nanomaterial surface engineering has long been crucial for biological applications [101].
The total effectiveness of nanoMOFs is determined by the carefully regulated modification
of their exterior surfaces to meet specific needs and execute the intended function. One of
the biggest functions is to increase the stability and biocompatibility of MOFs. The most
prevalent and conventional technique for greatly extending the cycle duration and colloidal
stability of nanoparticles is PEGylation [102–104].

At present, there are two commonly used post–synthesis modification (PSM) methods
to modify the surface of MOFs (Figure 3). As MOFs are created via coordination bonding
between organic linkers and metal ions, the first way is to modify the target molecule on
the organic linker of the MOF (Figure 3a). For example, Xie et al. reported the attachment
of NH2–poly(ethylene glycol) modified folic acid (PEGFA) with amino group in ZIF–90 via
aldimine condensation. The modified nanoparticles showed enhanced biocompatibility
and targeting to cancer cells [90].

The second method is to coordinate directly on the MOF surface by chelation between
metal ions and target molecules (Figure 3b). Up to now, it has been reported that different
functional terminal ligands coordinate with metals in MOFs, including carboxylic acid,
phosphonic acid, histidine and phenyl [105,106]. The Farha team confirmed that both
carboxylic acid–terminated and phosphonic acid–terminated ligands can bind to the surface
of NU–1000, a Zr–based MOF [107]. Similarly, Fe, Cu–based MOFs can be easily modified
by the interaction between metal and functional groups [106].
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3.2. In Vivo Stability, Toxicity and Fate of MOFs

The stability of MOF nanoparticles under bio–related conditions strongly affects their
toxicity and fate. The premise of MOF materials used in biological applications is that they
should have proper physiological stability to ensure that they reach the target tissue before
degradation. As MOFs are composed of inorganic and organic building blocks connected
by coordination bonds, it is important to consider the possibility that the rapid degradation
of MOFs in the cell chamber and the slow diffusion of degraded species may lead to a
significant increase in the local concentration of metal or organic linking agents, which may
lead to toxicity [108].

3.2.1. In Vivo Stability

The intrinsic properties of MOFs, such as the charge density of metal ions, connection
numbers of metal ions/clusters, basicity and configuration, as well as hydrophobicity of
ligands, etc., have a significant impact on the chemical stability of MOFs [109]. According
to the Pearson’s hard soft acid base principle, high–valent metals with a high charge density
(hard acids), such as Zr4+, Cr3+, Bi3+, Al3+, and Fe3+, tend to combine with O donor ligands
(hard bases) to produce MOFs with strong coordination bonds, which are often chemically
stable. For instance, the early Cr–MIL–101 has strong acid and alkali resistance and can be
stably stored for two months in aqueous solution with pH = 0–12 [110]. The highly chelating
phenolates are responsible for the impressive chemical stability for the bismuth ellagate
MOF, i.e., pH = 2–14, hydrothermal conditions, hot organic solvents, biological media, SO2,
and H2S [108]. Even more surprisingly, the robust MIL–163, which was built from Zr ions
and 1,2,3–trioxobenzene complexing group, was able to survive in PBS solution for a long
time, and the thermal stability temperature reached an unprecedented 210 ◦C [111].

It is often said that the lack of stability hinders the potential application of MOF
materials. This statement may be related to the relatively poor hydrolysis stability of some
early MOFs (such as MOF–5) [112]. However, MOF materials with a certain degree of
instability have a precise advantage in biological applications. For example, the studies on
the stability of MOF materials such as MIL–100 under simulated physiological conditions
showed that these MOFs did not dissolve quickly but could last for a long time under
physiological conditions [113]. In addition, some in vivo experiments showed that MOFs
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of ferric carboxylate are biodegradable; irons can be recycled, and the linkers are relatively
easy to remove.

3.2.2. The Toxicity of MOFs

There are many factors affecting the toxicity of MOF materials, mainly depending on
their physicochemical properties, including MOF stability, chemical composition, surface
functionalization, size, etc. A classic piece of work was performed by Horcajada’s research
group, which prepared 14 different MOF materials and tested their cytotoxicity [91]. Two
cell lines (J774 and HeLa) were used to evaluate the cytotoxicity of these nanoMOFs using
the MTT method, which showed that their low toxicity values were similar to those of
other currently commercialized nanosystems. It is observed that the cytotoxicity depends
largely on the components of MOF, for instance: (i) the properties of metals, the toxicity of
iron–based MOFs is less than that of Zr– or Zn–MOF nanoparticles, and (ii) the constitutive
organic linker, and the hydrophobic–hydrophilic balance is an important parameter.

3.2.3. The Fate of MOFs

Cai et al. studied in detail the metabolism of Cu–Tz–1 MOF in vivo [114]. In the first
12 h after intravenous tail injection, the MOF nanoparticles were mainly accumulated in
liver and spleen (Figure 4a). After 24 h, the amounts of nanoparticles began to decrease
in the tested organs. Under the action of bile, nanoMOFs accumulated in the liver were
metabolized out of the body. After seven days, the degraded nanoparticles could be
excreted through kidney to form urine. At 14th day, the nanoparticles reached a maximum
with the excretion of urine. Thereafter, the discharge amount was gradually reduced, and
after 30 days, the nanoparticles were discharged at a high total rate of ≈90% through
feces and urine (Figure 4b). This work demonstrates that certain MOF materials are
biodegradable and can be excreted out of the body.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 30 
 

 

PBS solution for a long time, and the thermal stability temperature reached an unprece-
dented 210 °C [111]. 

It is often said that the lack of stability hinders the potential application of MOF ma-
terials. This statement may be related to the relatively poor hydrolysis stability of some 
early MOFs (such as MOF–5) [112]. However, MOF materials with a certain degree of 
instability have a precise advantage in biological applications. For example, the studies 
on the stability of MOF materials such as MIL–100 under simulated physiological condi-
tions showed that these MOFs did not dissolve quickly but could last for a long time under 
physiological conditions [113]. In addition, some in vivo experiments showed that MOFs 
of ferric carboxylate are biodegradable; irons can be recycled, and the linkers are relatively 
easy to remove. 

3.2.2. The Toxicity of MOFs 
There are many factors affecting the toxicity of MOF materials, mainly depending on 

their physicochemical properties, including MOF stability, chemical composition, surface 
functionalization, size, etc. A classic piece of work was performed by Horcajada’s research 
group, which prepared 14 different MOF materials and tested their cytotoxicity [91]. Two 
cell lines (J774 and HeLa) were used to evaluate the cytotoxicity of these nanoMOFs using 
the MTT method, which showed that their low toxicity values were similar to those of 
other currently commercialized nanosystems. It is observed that the cytotoxicity depends 
largely on the components of MOF, for instance: (i) the properties of metals, the toxicity 
of iron–based MOFs is less than that of Zr– or Zn–MOF nanoparticles, and (ii) the consti-
tutive organic linker, and the hydrophobic–hydrophilic balance is an important parame-
ter. 

3.2.3. The Fate of MOFs 
Cai et al. studied in detail the metabolism of Cu–Tz–1 MOF in vivo [114]. In the first 

12 h after intravenous tail injection, the MOF nanoparticles were mainly accumulated in 
liver and spleen (Figure 4a). After 24 h, the amounts of nanoparticles began to decrease in 
the tested organs. Under the action of bile, nanoMOFs accumulated in the liver were me-
tabolized out of the body. After seven days, the degraded nanoparticles could be excreted 
through kidney to form urine. At 14th day, the nanoparticles reached a maximum with 
the excretion of urine. Thereafter, the discharge amount was gradually reduced, and after 
30 days, the nanoparticles were discharged at a high total rate of ≈90% through feces and 
urine (Figure 4b). This work demonstrates that certain MOF materials are biodegradable 
and can be excreted out of the body. 

 
Figure 4. (a) Biodistribution of the nanoMOFs in vivo at different times after tail vein injection. (b) 
The percentage of excretion of nanoMOFs at different times after tail vein injection. Reproduced 
from Ref. [114] with permission from Wiley–VCH, copyright 2019.  

Figure 4. (a) Biodistribution of the nanoMOFs in vivo at different times after tail vein injection.
(b) The percentage of excretion of nanoMOFs at different times after tail vein injection. Reproduced
from Ref. [114] with permission from Wiley–VCH, copyright 2019.

3.3. NanoMOFs for Small Molecule Delivery

As a carrier of small molecule drugs, one of the advantages of MOF materials is
the high loading capacity [92]. In 2006, Horcajada et al. constructed two kinds of cubic
zeolite MOFs, i.e., MIL–100 and MIL–101 [93]. These materials showed a drug loading
capacity of up to 60% for ibuprofen, which was obviously superior to the loading capacity
of traditional carriers [115]. It proved the high potential of porous MOFs in drug loading
for the first time.

Because of the high biological toxicity of chromium ions, the same team then synthe-
sized a series of low–toxicity porous ferric carboxylate MOFs, and these materials can be
loaded with up to nine common anticancer drugs (Figure 5) [5]. Among these MOFs, the
loading of the chemotherapy drug busulfan in the mesoporous Fe–MIL–100 was as high as
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25 wt%, which was five times and 60 times higher than that of polymer nanoparticle system
and liposome, respectively. The loading of azidothymidine triphosphate and cidofovir on
MIL–101–NH2 reached an unprecedented 42 wt%. More satisfactorily, after modification
with polyethylene glycol (PEG), the physiological stability of MOF materials is enhanced, so
the MOF nanocarriers can realize controlled release without “burst effect”. The continuous
release time of DOX in Fe–MIL–100 can reach 13 days, and the release rate can reach 100%
(Figure 5b), which far exceeds that of other drug carriers in the past. Since then, the research
on MOFs as drug carriers has developed rapidly.
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The controlled release of loaded drugs has always been the focus of researchers and
MOF materials show unparalleled talent in this field. Sun et al. discovered the pH–
responsive drug release performance of zeolite imidazole framework–8 (ZIF–8) for the
first time [116]. The pH–responsive drug release experiment with ZIF–8 loaded with 5–Fu
showed that 5–Fu was not released or slightly released in PBS (pH = 7.4), and the release
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rate in acetate buffer (pH = 5.0) was significantly increased, and more than 45% of 5–Fu was
released within about 1 h. Afterwards, Zheng et al. reported a method that encapsulated
anticancer drug doxorubicin (DOX) during the synthesis of ZIF–8 nanocrystals by a one–pot
process (Figure 6a) [117]. Due to the strong interaction between drug molecules and zinc
ions, the loading amount of the DOX molecules can be adjusted, and they are uniformly
dispersed within the ZIF–8 nanoparticles. Confocal microscope was employed to test the
uptake of free DOX and DOX@ZIF–8 in MDA–MB–468 cells (Figure 6b). The data indicated
that free DOX access the nucleus within two hours and accumulated in the nucleus, as a
contrast, DOX@ZIF–8 nanoparticles arrived in cytoplasm first. After 24 h, most cells died
under the treatment of DOX@ZIF–8, and only cell fragments were observed. Compared to
DOX alone, DOX@ ZIF–8 showed pH–responsive drug release, and its therapeutic effect
was enhanced.
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3.4. MOFs for Gas Molecule Delivery

Some endogenous therapeutic gases having diverse biological effects, such as carbon
monoxide (CO), nitric oxide (NO) and oxygen (O2), hold considerable promise for treating
a variety of medical issues. Because they can be removed before reaching the intended
target location, these therapeutic gases’ short half–life in human tissues severely limits their
therapeutic usefulness [118]. They must perform the necessary activities in a controlled
manner since their biological functions are also significantly reliant on concentration and
location. Loading these gas drugs into MOFs is an effective way to solve these problems.

3.4.1. MOFs for CO Delivery

The concentration of CO has a significant impact on its biological function. In order
to obtain the intended therapeutic effect, CO must be supplied in a safe and manageable
manner [119]. Yao et al. loaded CO donor (MnBr(CO)5) and anti–cancer drug DOX on a
multifunctional nano–platform composed of a magnetic carbon (MC) core and Fe–MOF
shell [120]. Fe–MOF acts as a drug carrier. MC has photothermal effect, which can convert
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near infrared (NIR) light into heat and induce the release of loaded drugs (Figure 7a).
Finally, compared with the control group and other treatment groups, the combined release
of CO and DOX stimulated by NIR light showed the best anti–tumor effect (Figure 7b).
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3.4.2. MOFs for NO Delivery

Morris and his collaborators performed some pioneering work in storing and deliver-
ing NO with MOFs. They showed that (M2(C8H2O6)(H2O)2)·8H2O is an ideal carrier for
NO storage and transportation because of its high NO adsorption capacity (about 7 mmol
of NO/g of MOF) and good storage stability [121]. More excitingly, the weight adsorption
measurements of HKUST–1 on NO at 196 K (1 bar) revealed that it had an adsorption
capacity of up to roughly 9 mmol of NO/g of MOF, which is much greater than that of
other porous solids [94].

For biological applications of NO, loading its precursors into MOFs is an effective
strategy. Zhang et al. used Mn–porphyrin MOF as a carrier to load S–Nitrosothiol (SNO)
for heat–sensitive NO generation [122]. The nanocomposites were first gathered at the site
of mouse tumors after intravenous injection. Then, the NIR laser produced simultaneous
controlled NO release and PTT for effective one–step synergistic treatment. It is worth
pointing out that the MOF–SNO composites showed substantial tumor suppression ef-
fectiveness when compared to treatment with DOX for a simple drug–resistance model,
demonstrating the great advantage of MOF as a drug carrier.

3.4.3. MOFs for O2 Delivery

Tumor hypoxia is widespread [123] and it is necessary to deliver O2 to the tumor
site to relieve hypoxia. Some MOF materials can adsorb O2 and transport O2 into tumor
tissues to overcome hypoxia, thereby enhancing the therapeutic effect on tumors [114].
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For example, Xie et al. reported an O2–loaded multifunctional nanoplatform, namely
O2–Cu/ZIF–8@Ce6/ZIF–8@F127 (OCZCF), which can overcome hypoxic tumor microenvi-
ronment and increase the generation of ROS under irradiation for enhanced tumor therapy
(Figure 8a) [124]. Specifically, Cu–doped ZIF–8 greatly enhanced the oxygen adsorption
performance. Compared with the pristine ZIF–8, the oxygen adsorption capacity of Cu–
doped ZIF–8 is doubled and the oxygen can be released quickly in acidic environments
(Figure 8b,c). In addition, the strong chemisorption of photosensitizer Ce6 with MOF
matrix ensures its successful coating and sufficiently high loading rate. The large amount of
released oxygen alleviated hypoxia, which greatly promoted the ability of photosensitizer
to produce singlet oxygen. Taken together, this nanoplatform showed a good tumor–killing
effect both in vitro and in vivo (Figure 8d,e).
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3.5. NanoMOFs for Photosensitizer Delivery

Photodynamic therapy (PDT) is a kind of therapeutic method that uses the photochem-
ical reaction of photosensitizer in organisms after receiving specific laser irradiation, which
can achieve the effect of killing tumor or removing infected microorganism [125–128]. Dur-
ing this process, photosensitizer plays a crucial role. However, photosensitizer has poor wa-
ter solubility and low utilization rate in organisms, which limits its development. Similar to
the situation of the small molecule drugs, MOF materials are excellent carriers of photosensi-
tizers for tumor treatment [95,129–131]. Theoretically, the metal centers and ligands used to
construct MOF materials are infinite, among which includes the use of porphyrin molecules
or their derivatives as ligands [46]. In 2014, Lin group first used hafnium–porphyrin
nanoMOF as a photosensitizer for photodynamic therapy. DPB-UiO was formed by HfCl4
and a new kind of porphyrin derivative, 5,15-di(p–benzoato)porphyrin (H2DBP) [132]. Af-
ter injecting the nanoMOFs into the tumor, a large amount of singlet oxygen was produced
in the tumor under the irradiation of 660 nm light. After treatment, the tumor volume was
reduced by nearly 98% compared with the original volume, while the single injection of
H2 DBP photosensitizer had no effect. Compared with the traditional organic nanoparticle
carrier, nanoMOF with porphyrin as an organic ligand can reduce the self–quenching effect
caused by light and facilitate the diffusion of reactive oxygen species, so it can multiply the
efficiency of photodynamic therapy.

Since the size of nanoparticles affects their circulation, tissue distribution and cellular
uptake [133], the construction of size–controlled synthesis methods has attracted much
attention. In view of this, Zhou group successfully synthesized different sizes of zirconium–
porphyrin nanoMOF, i.e., PCN–224, with multi–particle size distribution of 30–190 nm,
and proposed that if the formation process of nanoMOF is regarded as the replacement
reaction of metal cluster ligand, the concentration of PCN–224 monomer can be controlled
by adjusting the concentration of each component in the system (Figure 9a,b) [96]. The
particle size of the prepared nanoMOF is smaller when the monomer concentration is
higher in the nucleation process. The experimental results showed that compared with the
particles of 30, 60, 140 and 190 nm, the particles of 90 nm were easier to be taken up by the
cells, and the porphyrin derivative TCPP could be efficiently retained in the cytoplasm.
Using in vitro assays, the killing rate of HeLa cells was up to 80% after 30 min irradiation
with a 420 or 630 nm laser (Figure 9c). In addition, by further modifying the folate targeting
group on the surface of PCN–224, the photodynamic therapy efficiency of PCN–224 could
exceed 90% (Figure 9d), which is similar to the effect of the porphyrin series photosensitizer
used in clinical practice.

3.6. NanoMOFs for Nucleic Acid Delivery

After 20 years of intensive research, gene therapy is now one of the most promising
ways to treat cancer. However, naked RNA/DNA molecules are too large to pass through
cell membranes and are often rapidly degraded by serum nucleases in the blood [134], the
lack of an ideal drug delivery system limits the potential of gene therapy. In recent years,
small interfering RNA (siRNA) has been used to alter gene expression in cancer cells for
efficient cancer therapy [135]. NanoMOFs have been used as an effective nanocarrier to
load siRNA, and they can protect siRNA from being cleared or degraded before it acts
in target cells. Lin’s research team reported that MOF nanocarrier co–delivered cisplatin
and pooled siRNA to enhance the chemotherapy effect of drug–resistant ovarian cancer
cells [136]. siRNA and cisplatin prodrugs were loaded on the surface and internal pore
channels of a UiO–type Zr–MOF nanosheets, respectively. The data showed that nanoMOF
protected siRNA from degradation and increased cellular uptake of siRNA to silence
multidrug resistant genes, thus, greatly promoting the chemotherapy effect of cisplatin.
Similarly, the Morris group [137] created a nucleic acid–MOF nanoparticle conjugate, based
on azide–functionalized UiO–66–N3, which provides a prospect for gene therapy. The
siRNA was applied to the surface of the hexagonal plate by coordination with metal sites,
which protected the siRNA from nuclease degradation, increased its cellular uptake, and
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promoted the escape of siRNA from endosomes, silencing multidrug resistance genes. In
addition, biomimetic mineralization and co–precipitation methods are used to encapsulate
plasmid DNA macromolecules into ZIF–8 and ZIF–8 polymer vectors. Both systems have
good plasmid DNA loading, release and protection ability, and show good performance in
intracellular gene delivery and expression [138].
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Very recently, our group constructed a novel PolyIC@ZIF–8 nanoplatform [139], which
combines the structural and functional characteristics and advantages of oncolytic viruses,
endowing the nanoparticles with oncolytic virus–like functions (Figure 10). It is worth
mentioning that ZIF–8 promotes the recruitment and activation of T cells in a tumor antigen–
independent manner in response to the release of Zn2+ from the tumor microenvironment,
thus achieving highly effective tumor immunotherapy. This study demonstrated that ZIF–8,
with virus–like coat structure, can protect double–stranded RNA (PolyIC) efficiently into
tumor cells, up–regulate MDA–5 to induce tumor cell apoptosis, and then induce DC
maturation, promote tumor antigen presentation to T cells, and promote T cell recruitment
and activation in a classical antigen–dependent manner. More importantly, Zn2+ released



Pharmaceutics 2022, 14, 2641 15 of 27

by ZIF–8 can not only directly promote the expression of CXCL9/10/11 in DC cells, but
can also enhance the enrichment of T cells into tumor areas. It can also directly induce the
phosphorylation of ZAP–70 to activate T cells and promote T cells to produce more IFN–γ to
kill tumors. In this innovative strategy, the process of Zn2+–mediated T cell recruitment and
activation is independent of tumor antigen and combines with PolyIC antigen–dependent
pathways to jointly promote tumor cell killing and achieve efficient tumor therapy. The
new strategy of ion–enhanced oncolytic virus–mediated tumor immunotherapy proposed
in this research provides a new perspective for the application of metal ions in tumor
therapy, further expands the application scope of “ion interference therapy” [97,140], and
is expected to provide a new idea for ion regulation of tumor microenvironment, so as to
realize high–efficiency tumor treatment.
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Figure 10. Schematic illustration of the oncolytic virus–like PolyIC@ZIF–8 nanoparticles that promote
T cell recruitment and activation for tumor immunotherapy. Reproduced from Ref. [139] with
permission from Wiley–VCH, copyright 2022.

3.7. NanoMOFs for Enzyme/Protein Delivery

Protein is composed of amino acids in the way of “dehydration condensation” of
polypeptide chain after folding to form a certain spatial structure of the material. They
perform a wide range of tasks, including DNA replication, metabolic process catalysis, and
molecular transport. Proteins have a tough time naturally crossing membranes without
losing structural integrity due to their huge size, charged surfaces, and environmental
sensitivity. MOF nanoparticles for intracellular protein delivery have gained more attention
recently as a means of using proteins therapeutically [98,141].

Recently, Mao group reported an ATP–responsive zeolite imidazole framework–90
(ZIF–90) as a nanocarrier for cytoplasmic protein delivery and CRISPR/Cas9 genome
editing (Figure 11) [142]. Imidazole–2–carboxyaldehyde and Zn2+ self–assembled with
protein to form ZIF–90/protein nanoparticles, which effectively coated protein. The results
showed that in the presence of ATP, ZIF–90/protein nanoparticles degraded and released
protein because of the competitive synergy between ATP and Zn2+ of ZIF–90. Further
studies showed that ZIF–90/protein nanoparticles can deliver all kinds of protein into
cytoplasm regardless of the size and molecular weight of protein. The delivery of toxic
RNase A can effectively inhibit the growth of tumor cells, while the delivery of genome
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editing protein Cas9 can effectively inhibit the expression of green fluorescent protein (GFP)
in HeLa cells, with an efficiency of 35%. In view of the fact that ATP is up–regulated in
diseased cells, it is expected that the delivery of ATP–responsive proteins can discover
new opportunities for protein delivery and targeted disease treatment of CRISPR/Cas9
genome editing.
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Catalase DNAzymes (CAT Dz) are known to be effective therapeutic agents for gene
therapy, but they are not currently used in biologically useful ways due to their ineffective
intracellular delivery and insufficient cofactor supply. Recently, our group synthesized
ZIF–82–based nanoparticles loaded with CAT Dz on FeCysPW surface (Figure 12) [143].
Among them, the shell ZIFs can not only effectively protect and deliver DNAzymes to
tumor cells, but also provide them with “cofactors” for effective gene silencing. After
the nanoplatform is ingested by tumor cells, ZIF–82@CAT Dz can release Zn2+, imidazole
ligands with electron affinity (i.e., 2–nitroimidazole and 1H– imidazole–4–nitrile), and
CAT Dz in response to acid tumor microenvironment. The released Zn2+ can help CAT Dz
silence catalase and promote the accumulation of H2O2 in tumor cells. At the same time,
the dissociated electrophilic ligand can rapidly consume glutathione in hypoxic tumor
cells, resulting in the imbalance of redox homeostasis and the accumulation of H2O2 in
hypoxic tumor cells. The inner core FeCysPW efficiently converts endogenous H2O2 into
hydroxyl radicals with stronger toxicity by Fenton reaction, thus significantly enhancing
the chemodynamic therapy (CDT) efficacy of hypoxic tumor and realizing the efficient
treatment of hypoxic tumor (Figure 12b,c).
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3.8. NanoMOFs for Combined Synergistic Treatment

In recent years, there are more and more research reports on combination cancer
therapy based on nanoMOF carriers. This kind of research has become a new trend in
clinical oncology because of its synergistic and efficient therapeutic effects and reduction of
side effects caused by different therapeutic methods [99,144–146]. In addition to using MOF
materials as drug carriers, using the tunability and structural regularity of MOF synthesis,
designing various functional ligands, nanoparticles and biomolecules for post–synthesis
modification can regulate the heterogeneous structure of MOFs and integrate different
biomolecules into a single frame in layers, thus realizing multifunction [147]. Our group has
also performed some related work. For example, we recently reported the load of plasma
amine oxidase (PAO) into Fe–MIL–100 nanoparticles with high Fenton reaction activity,
and then modified the nanoparticles with polyvinylpyrrolidone (PVP) to construct a new
polyamine–activated Fe–MIL–100@PAO@PVP nanoplatform (Figure 13) [148]. After the
nanoparticles reach the tumor site, the excess polyamine molecules are rapidly decomposed
by enzyme–catalyzed reaction, and a large amount of H2O2 and highly toxic acrolein are
generated. H2O2, as the substrate of CDT [100,149–152], significantly increased the yield
of strong oxidative ·OH in cells, and caused the oxidative damage of tumor cells. At the
same time, acrolein can activate carbonyl stress reaction in tumor cells and inhibit the
expression of GPX4 and DNA repair protein, leading to severe lipid peroxidation and
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DNA damage, and finally cause the death of tumor cells. Employing a nanoMOF as the
carrier, the excess polyamine in tumor was used for the first time in this study, and a
new strategy of polyamine–activated carbonyl stress was put forward, which realized the
efficient treatment of tumor oxidative damage. Polyamine–activated carbonyl stress, a new
tumor treatment strategy, not only effectively overcomes the defect of low efficiency of
oxidative damage caused by oxidative resistance of tumor cells, but also provides a new
reference method and research ideas for the design of other new anti–tumor agents.
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In addition, we recently constructed a MOF nanoplatform to limit cancer cell metasta-
sis. Briefly, a new type of hydrogen ion nano–donor, UCNP@MIL–88B@PA (UMP for short)
was prepared [153], in which upconversion luminescent nanoparticles (UCNPs) are the
functional core, Fe–MIL–88B is the outer shell, and photoacid molecules (PA) are loaded
in the pores of Fe–MIL–88B (Figure 14a,b). Under the irradiation of a 980 nm laser, the
loaded PA molecules are excited by up–converted photoexcitation to release hydrogen ions
and instantly increase the hydrogen ion concentration in tumor cells. More importantly,
hydrogen ions can bind to actin cleavage protein in tumor cells, which significantly inhibits
the activity of F–actin, thus regulating the formation and motor function of pseudopo-
dia in tumor cells, reducing the number of axopodia, leading to the disintegration and
collapse of actin cytoskeleton, and finally significantly reducing the movement, invasion
and migration ability of U87–MG tumor cells (Figure 14c–e). It is worth mentioning that
with the increase of hydrogen ion concentration in tumor cells, the iron–based Fenton
reaction ability of Fe–MIL–88B can be significantly improved, the production of hydroxyl
radicals can be increased, and acid–enhanced CDT can be realized. Finally, UMP with near
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infrared light showed a good anti–tumor therapeutic effect (Figure 14f,g). From the unique
point of view of interfering with the biological function of tumor cells’ pseudopodia, this
research work developed a new strategy of anti–tumor metastasis therapy based on the
regulation of tumor cells’ motility acid, which not only opened up a new perspective of
hydrogen ion regulation for high–efficiency tumor therapy, but also opened up a new idea
for nano–functional materials to be used in the interdisciplinary field of life medicine.
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ticles. (b) Schematic illustration of tumor metastasis inhibition. (c) Schematic illustration of cell
morphological changes. (d) Immunofluorescence of F–actin and changes in lamellipodia under differ-
ent conditions. (e) Statistical results of the number of lamellipodia of U87MG cells, the number and
size changes of lamellipodia. (f,g) Wound–healing and transwell invasion experiments of U87MG
cells. Statistical analysis was based on Student’s t test: ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Reproduced from Ref. [153] with permission from Wiley–VCH, copyright 2021.
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4. Conclusions and Perspectives

NanoMOFs are emerging porous inorganic–organic hybrid crystal materials and have
important scientific research value in the field of drug delivery. Compared with traditional
nano–drug carriers, the unique framework structure and composition are beneficial to their
applications. This review briefly describes the synthesis and development of nanoMOF
materials as drug carriers to load chemotherapy drugs, gaseous molecules, photosensitizers,
nucleic acids and proteins. NanoMOFs can bind drugs in various ways, and the abundant
particle structure and drug loading mode provide the possibility of combination of various
treatment methods. Although the development of nanoMOFs in the field of biomedicine is
still in the initial stage, it can be foreseen that nanoMOFs integrating cell targeting, drug
delivery, molecular imaging and tumor therapy can emerge.

For the perspectives of the field, the biocompatibility of nanoMOFs is one of the
important factors restricting their development. In fact, the biological applications of MOF
materials are still in preclinical research, but more and more studies are proving their clinical
potential. NanoMOFs with suitable physiologic stability can minimize the cytotoxicity and
improve their bioavailability. Because the toxicity of MOF materials depends largely on
their composition, in order to achieve this goal, the first choice is to use non–toxic metal ions
and ligands. Bio–MOFs may be a good candidate for potential clinical applications [154,155].
For example, the MOF SU–101, which is composed of bismuth ions and ellagic acid ligands,
demonstrated excellent biosecurity [108]. In addition, biological endogenous ligands are
suggested. For example, amino acid–MOFs [156,157] with proper stability have great
clinical potential in drug delivery. Finally, the kinetics of drug loading and release, in vivo
toxicity, the mechanism of drug degradation, and the pharmacokinetics of nanoMOFs all
require more studies, as well as logically creating MOF–drug conjugates that have better
biostability, biocompatibility, and therapeutic effectiveness. In conclusion, MOFs have
special qualities and hold considerable potential for the intracellular delivery of drugs. To
fully exploit the promise of MOFs as drug delivery systems in clinical applications, efforts
should be concentrated on resolving the aforementioned difficulties in the future.
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Abbreviations

AZT–TP azidothymidine triphosphate
BDC 1,4–benzenedicarboxylic acid
BTC 1,3,5–benzene tricarboxylic acid
CAT Dz Catalase DNAzymes
CDV cidofovir
CDT chemodynamic therapy
CO carbon monoxide
DOX doxorubicin
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EPR enhanced permeability and retention
FA folic acid
GFP green fluorescent protein
H2DBP 5,15–di(p–benzoato)porphyrin
MIL Materials of Institut Lavoisier
MOFs metal–organic frameworks
NO nitric oxide
NIR near infrared
NDC 2,6–naphthalenedicarboxylic acid
O2 oxygen
OCZCF O2–Cu/ZIF–8@Ce6/ZIF–8@F127
PCPs porous coordination polymers
PSM post–synthesis modification
PEG polyethylene glycol
PVP polyvinylpyrrolidone
PAO plasma amine oxidase
PDT photodynamic therapy
PA photoacid molecules
SNO S–Nitrosothiol
siRNA small interfering RNA
UCNPs upconversion luminescent nanoparticles
ZIF–90 zeolite imidazole framework–90
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