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Table S1. The overview of specific HDAC roles in breast cancer cell migration, invasiveness and 

angiogenesis. 
 

HDAC isoform Anti-migratory activity Anti-invasive activity Anti-angiogenic activity 

HDAC1 
• MDA-MB-231 and SkBr3 cells 

(Tang et al., 2017, p. 8) 

• MCF7 (Palma et al., 2016) 

• MDA-MB-231 and MCF-7 

cells (Park et al., 2011) 

• MDA-MB-468 cells 

(Entinostat) (Srivastava et al., 

2010) 

HDAC2 
• MDA-MB-231 cells (VPA) 

(Zhang et al., 2012) 

• MDA-MB-231 (Roy et al., 

2014) 
not found 

HDAC3 

• MDA-MB-231 cells (increased 

migration by HDAC3 

depletion) (Kim et al., 2010) – 

HDAC3 specifically 

antagonizes the migration of 

MDA-MB-231 cells through 

the downregulation of CREB3-

mediated CXCR4 expression 

• MDA-MB-231 cells 

(increased invasivness by 

HDAC3 depletion) (Kim et 

al., 2010) – overexpression of 

HDAC3 decreased 

invasiveness of MDA-MB-

231 

• MDA-MB-468 cells 

(Entinostat) (Srivastava et al., 

2010) 

• increases vascular 

permeability by suppressing 

Robo4 expression in 

endothelial cells (Kashio et al., 

2021) 

HDAC4 
• MDA-MB-231 cells (Hsieh et 

al., 2014) 

• MDA-MB-231 cells (Hsieh et 

al., 2014) 

• indirectly, inhibition of the 

proliferation and migration of 

vascular smooth muscle cells 

(Zheng et al., 2019, p. 1)  

HDAC5 
• MDA-MB-231 and Hs-578T 

cells (Hsieh et al., 2015; Li et 

al., 2016) 

• MDA-MB-231 and Hs-578T 

cells (Hsieh et al., 2015; Li et 

al., 2016) 

• negative regulator of 

angiogenesis in vitro and in 

vivo (Urbich et al., 2009) 

HDAC6 
• Endothelial cell migration 

(Kaluza et al., 2011) 

• MDA-MB-231 and MCF-7 

cells (Park et al., 2011; Rey et 

al., 2011) 

• Zebrafish model (Kaluza et al., 

2011) 

HDAC7 not found not found 
• Endothelial cells migration 

(Mottet et al., 2007) 

HDAC8 
• MDA-MB-231 cells (An et al., 

2019, 2020)  

• MDA-MB-231 and MCF-7 

cells (Park et al., 2011) 
not found 

HDAC9 
• MCF-7 and BT474 (Huang et 

al., 2018) 

• MDA-MB-231 cells (Salgado 

et al., 2018) 

• MDA-MB-231 cells (Salgado et 

al., 2018) 

HDAC10 not found not found 
• Endothelial cells (Duan et al., 

2017) 

HDAC11 
• Negative control of migration 

(Leslie et al., 2019)  

• Negative control of invasion 

(Yi et al., 2019) 
not found 
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1H and 13C NMR spectra of the final compounds 2b to 9b. 
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LC-ESI (+) HRMS (ToF) mass spectra for compounds 6b – 9b in a range (m/z 100–1000) 

 

Compound 6b 

 
 

Compound 7b 

 
Compound 8b 

 
Compound 9b 
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Note S1. Molecular dynamics simulations 
 

Molecular dynamics simulations were performed using Groningen Machine for Chemical Simulation 

(GROMACS) package (version 2020.4)(Abraham et al., 2015). Initial coordinates of HDAC6:inhibitor 

complexes were obtained through molecular docking. Crystal waters and potassium ions were retained 

from PDB: 5EDU. Protein and ligand force field parameters were assigned using the Amber ff99SB-ILDN 

force field (Lindorff-Larsen et al., 2010) and General Amber force field (GAFF2) (Vassetti et al., 2019), 

respectively. The partial atomic charges of ligand were assigned using Restrained Electrostatic Potential 

(RESP) method at HF-6-31G* level of theory. Topologies and parameters for ligands were assigned and 

converted in GROMACS format using the AnteChamber Python Parser interfacE (ACPYPE) (Sousa da 

Silva & Vranken, 2012). The protein-ligand complexes were solvated with TIP3P water model, and 

neutralized with Na+ counterions in octahedral periodic box. Systems were minimized with steepest 

descent algorithm with maximum force set to set to 10 kJ/mol nm-1 and 5000 steps. Subsequent 

equilibration of the-systems was performed firstly in NVT ensamble for 500 ps at 310 K using V-rescale 

thermostat. Secondly, equilibration in NPT ensemble was performed maintaining the pressure at 1.0 bar 

with Parrinello-Rahman barostat. All atom position restrains were applied on protein atoms. Position 

restraints were gradually removed using force constants of 1000, 100 and 10 kJ/mol nm-2. Each NPT 

equilibration step was performed for 500 ps of simulation. Production runs of 100 ns were performed for 

each system, with 2 fs time-step at constant temperature (310 K) and pressure (1 bar) using Particle Mesh 

Ewald (PME) approach for calculation of long-range electrostatic with cut-off values of 10 Å  for non-

bonded interactions. LINCS algorithm was used to constrain all bonds with H-atoms. RMSD and distance 

analysis of trajectories were performed using analysis tools from VMD 1.9.4 (Humphrey et al., 1996). 

Representative structures of HDAC6:inhibitor complexes had been obtained after Gromos clustering of 

trajectories using built-in Gromacs tool gmx cluster (Daura et al., 1999). Molecular graphics were 

generated using PyMOL 2.5 (Schrodinger, LLC. 2010. The PyMOL Molecular Graphics System, Version 

2.5. https://github.com/schrodinger/pymol-open-source).  
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Figure S1. HDAC inhibition profiles of 6b (A), 7b (B), 8b (C) and 9b (D). 
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Figure S2. Root-Mean-Square-Deviation (RMSD) analysis of obtained trajectories. 

(A) RMSD plot of HDAC6 backbone atoms fluctuations observed during 100 ns of MD simulations.  

(B) RMSD plot of ligand atom fluctuations observed during 100 ns of MD simulations. 
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Figure S3. Predicted binding mode of 6b and interaction of CAP group with L2 pocket of HDAC6.  

(A) Representation of the most populated binding mode of 6b (magenta sticks) in complex with HDAC6 

(gray cartoon) obtained after clustering of MD trajectory. Thin green sticks represent residues of the 

HDAC6 L1 and L2 binding pockets. TSA ligand (black lines) from PDB: 5EDU was used for pairwise 

comparison of binding modes. Residues are labeled with black, while pockets L1 and L2 are labeled with 

red letters. (B) Distances between centers of masses of CAP group and L2 pocket (upper plot) or L1 pocket 

(lower plot) observed during 100 ns of MD simulations. 
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Figure S4. Predicted binding mode of 9b and interaction of CAP group with L2 pocket of HDAC6.  

(A) Representation of the most populated binding mode of 9b (green sticks) in complex with HDAC6 

(gray cartoon) obtained after clustering of MD trajectory. Thin green sticks represent residues of the 

HDAC6 L1 and L2 binding pockets. TSA ligand (black lines) from PDB: 5EDU was used for pairwise 

comparison of binding modes. Residues are labeled with black, while pockets L1 and L2 are labeled with 

red letters. (B) Distances between centers of masses of CAP group and L2 pocket (upper plot) or L1 pocket 

(lower plot) observed during 100 ns of MD simulations. 
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Figure S5. Predicted binding mode of 7b and interaction of CAP group with L1 pocket of HDAC6.  

(A) Representation of the most populated binding mode of 7b (cyan sticks) in complex with HDAC6 (gray 

cartoon) obtained after clustering of MD trajectory. Thin green sticks represent residues of the HDAC6 L1 

and L2 binding pockets. TSA ligand (black lines) from PDB: 5EDU was used for pairwise comparison of 

binding modes. Residues are labeled with black, while pockets L1 and L2 are labeled with red letters. (B) 

Distances between centers of masses of CAP group and L2 pocket (upper plot) or L1 pocket (lower plot) 

observed during 100 ns of MD simulations. 
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Figure S6. Predicted binding mode of 8b and interaction of CAP group with L1 and L2 pockets of HDAC6.  

(A) Representation of the two the most populated binding modes of 8b (yellow and salmon sticks) in 

complex with HDAC6 (gray cartoon) obtained after clustering of MD trajectory. Thin green sticks 

represent residues of the HDAC6 L1 and L2 binding pockets observed for one of the centroids (residues 

from other centroid are omitted for clarity). TSA ligand (black lines) from PDB: 5EDU was used for 

pairwise comparison of binding modes. Residues are labeled with black, while pockets L1 and L2 are 

labeled with red letters. (B) Distances between centers of masses of CAP group and L2 pocket (upper plot) 

or L1 pocket (lower plot) observed during 100 ns of MD simulations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting information 
 

 
Figure S7. Pairwise comparison of predicted binding modes of 6b (green sticks) and 9b (magenta sticks) in 

interaction with HDAC6 (gray cartoon).  

Residues from L1 pocket are presented in thin green sticks. Residues are labeled with black, while L1 and 

L2 pockets are labeled with red letters. 
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Figure S8. Cell viability data generated after treating MDA-MB-231 cells (A) and MCF-7 cells (B) for 48 h 

with synthesized inhibitors. 
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Figure S9. Flow cytometry Annexin V-FITC/7-AAD staining of early and late apoptotic cell population at 5 

μM 8b treatment of MDA-MB-231 cells. Population of early (4.13%) and late (0.45%) apoptotic cells after 5 

μM 8b treatment was not significantly higher than observed in control (1.27% early apoptotic population 

(A); 1.13% late apoptotic population (B)). 
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Figure S10. The HDAC6 inhibitor 9b reduces MCF-7 cell migration.  

Confluent MCF-7 monolayers were subjected to wound healing assay to determine HDAC6 inhibition on 

cell migration. After a scratch, cells were treated with 10 μM of 9b for 24 h, fixed, and stained. 9b 

significantly inhibits the closure of the wound compared with control cells. T0, cells were fixed just after 

made the monolayer scratch. Magnification 40×, bar = 50 μm. Representative results from three 

independent experiments are shown. Significant difference between treatments by t-test: ∗∗ p <0.01. 
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Table S2. Lethal and teratogenic effects observed in zebrafish (Danio rerio) embryos at different hours post 

fertilization (hpf). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

a No clear organs structure is recognized. 
b Malformation of eyes was recorded for the retardation in eye development and abnormality in shape and size. 
c Presence of none, one or more than two otoliths per sacculus, as well as reduction and enlargement of otoliths 

and/or sacculi (otic vesicles). 
d Tail malformation was recorded when the tail was bent, twisted or shorter than to control embryos as assessed by 

optical comparation. 
e Growth retardation was recorded by comparing with the control embryos in a body length (after hatching, at and 

onwards 72 hpf) using by optical comparison using an inverted microscope (CKX41; Olympus, Tokyo, Japan). 
f  Skin depigmentation of hyperpigmentation was assessed by optical comparation. 
g Change in stellate morphology of the skin melanocytes was visually recorded 

 

 

 

 

 

 

 

 

 

 

 

  

Category  Toxicological parameters  Exposure time (hpf) 

    24 48 72 96 120 

Lethal effect  Coagulated eggsa  ● ● ● ● ● 

  Lack of the heart beating  ● ● ● ● ● 

  Non-detachment of the tail  ● ● ● ● ● 

  Lack of somite formation  ● ● ● ● ● 

Teratogenic effect Malformation of head  ● ● ● ● ● 

  Malformation of eyesb  ● ● ● ● ● 

  Malformation of sacculi/otolithsc  ● ● ● ● ● 

  Malformation of chorda  ● ● ● ● ● 

  Malformation of taild  ● ● ● ● ● 

  Scoliosis  ● ● ● ● ● 

  Yolk edema  ● ● ● ● ● 

  Yolk deformation  ● ● ● ● ● 

  Growth retardatione   ● ● ● ● 

  Hatching    ● ● ● 

  Swimmbladder development      ● 

Hepatotoxicity  Yolk absorption    ● ● ● 

  Liver darkening    ● ● ● 

Cardiotoxicity  Pericardial edema   ● ● ● ● 

  Heart morphology    ● ● ● 

  Heart beating rate (beat/min)     ● ● 

Melanocytotoxicity  
Skin pigmentation 

(melanization)f 
  ● ● ● ● 

  Melanocytes morphologyg   ● ● ● ● 
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