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Abstract: Because of the unique physicochemical properties of magnetic iron-based nanoparticles,
such as superparamagnetism, high saturation magnetization, and high effective surface area, they
have been applied in biomedical fields such as diagnostic imaging, disease treatment, and biochemical
separation. Iron-based nanoparticles have been used in magnetic resonance imaging (MRI) to
produce clearer and more detailed images, and they have therapeutic applications in magnetic fluid
hyperthermia (MFH). In recent years, researchers have used clay minerals, such as ceramic materials
with iron-based nanoparticles, to construct nanocomposite materials with enhanced saturation,
magnetization, and thermal effects. Owing to their unique structure and large specific surface area,
iron-based nanoparticles can be homogenized by adding different proportions of ceramic minerals
before and after modification to enhance saturation magnetization. In this review, we assess the
potential to improve the magnetic properties of iron-based nanoparticles and in the preparation
of multifunctional composite materials through their combination with ceramic materials. We
demonstrate the potential of ferromagnetic enhancement and multifunctional composite materials
for MRI diagnosis, drug delivery, MFH therapy, and cellular imaging applications.

Keywords: iron-based nanoparticles; ceramic nanocomposites; magnetic resonance imaging; magnetic
fluid hyperthermia; drug delivery

1. Introduction

Magnetic materials are functional materials with great potential that are widely used
in biomedicine [1–3]. Their unique magnetic signals allow them to be used as sensors
in imaging medicine, based on the detection of geomagnetic fields, and in noncontact
magnetic-field-heating therapy [4–6]. Magnetic materials can even integrate all the con-
ditions of nanoparticles when their particle size is limited to within a range of 1–100 nm.
Nanoparticles can be used as contrast agents, target drug carriers, and multifunctional
magnetic biomedical materials for controlled and focused therapy. In recent years, nanopar-
ticles have been compounded with other materials possessing low toxicity and super-
paramagnetic and biocompatible properties. The resulting compounds can be applied
for using in similar applications as for nanoparticles mentioned earlier [7–9]. Once nano-
sized, these nanomaterials exhibit many novel and excellent properties [10]. The field of
nano-biomedical materials involves the integration of nanomaterials/nanotechnology with
biomedical materials or drugs, and these developments have substantially contributed to
the progress of human medicine.

In all mammalian cells, iron is an indispensable element for the processes of cell growth
and differentiation. Because of the unique physicochemical properties of magnetic iron-
based nanoparticles, such as superparamagnetism, high saturation magnetization, and high
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effective surface area, they have been applied in biomedical fields such as diagnostic imaging,
disease treatment, and biochemical separation [11]. Iron-based nanoparticles have been
used in magnetic resonance imaging (MRI) to produce clearer and more detailed images,
and they have therapeutic applications in magnetic fluid hyperthermia (MFH) [12,13]. The
combination of the treatment and diagnosis approach into one system for cancer treatment
indicates their potential for ushering in the “iron age”. In recent years, clay minerals, such as
ceramic materials with iron-based nanoparticles, have been used to construct nanocomposite
materials to enhance their saturation magnetization and thermal effects. Due to their unique
structure and large specific surface area, iron-based nanoparticles can be homogenized by
adding different proportions of ceramic minerals before and after modification to enhance
saturation magnetization. In this review, we assess the potential to improve the magnetic
properties of iron-based nanoparticles and in the preparation of multifunctional composite
materials through their combination with ceramic materials. We demonstrate the potential of
ferromagnetic enhancement and multifunctional composite materials for MRI diagnosis, drug
delivery, MFH therapy, and cellular imaging applications [14].

Multifunctional nanocomposites have been a hot area of research in recent years. In
this review, we hoped to identify iron-based nanocomposite materials that can enhance satu-
ration magnetization (Ms) and be applied to optimize MRI contrast. In addition, a magnetic
nanocomposite material with improved biocompatibility is needed for biomedical applica-
tions. As for the choice of the composite material, examples of low-cost, high-adsorption,
and biocompatible ceramic materials, montmorillonite silicate, kaolinite minerals, or bio-
glass can be used to produce multifunctional nanocomposite materials with both magnetic
properties and high adsorption performance.

2. Magnetic Properties of Nanoparticles

Nanotechnology has become ubiquitous in everyday life through its use in the
aerospace, electronic, cosmetic, and pharmaceutical industries, among others. These
developments have enabled improvement of the existing nanoparticle properties and
the introduction of new optical, electrical, and mechanical functions. In addition, nano-
sized materials experience small size, surface, quantum tunneling, Coulomb blocking, and
quantum-limiting effects distinctly from macroscopic materials.

Hence, the optical, thermal, and electrical effects as well as magnetic, mechanical, and
other properties of nanomaterials differ from those of the corresponding bulk materials
(Figure 1a). Because of the unique properties of magnetic nanoparticles, such as superpara-
magnetism, high saturation magnetization, and high effective surface area, they are mainly
used as contrast agents, to improve image contrast, and as carriers for drug delivery in
disease treatment. In addition, when injected into the body, magnetic nanoparticles can
generate heat energy through the use of an applied magnetic field to kill cancer cells, avoid-
ing the damage to normal cells observed in conventional chemotherapy and inhibiting
cancer cell growth by MFH. Because of their excellent magnetic properties, the application
of nanomaterials is constantly being improved and refined [15–17]. All substances have
a certain degree of magnetization, which is usually dependent on the material’s atomic
structure and surrounding temperature, and the magnetic susceptibility (χ) can be used
to express the difficulty of magnetization. When a material is placed under an applied
magnetic field (H), its magnetization (M) will change, and the relationship between the two
is as follows (Figure 1b):

M = χH (1)
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Figure 1. Magnetic variation in iron-based nanoparticles compounded with ceramic materials.
Schematic diagram of (a) composite material composition; (b) magnetic dipole moment of composite
material; and (c) nonmagnetic/magnetic zone structures.

A magnetic material has a “magnetic domain”, in which the crystalline structure of
the energy state itself is divided into several different regions, and these magnetic domains
are all oriented in the same direction. Nevertheless, the order of each magnetic domain is
not necessarily the same, and there will be mutual offset, as shown in Figure 1c. Assuming
that the net magnetic moment is precisely zero, the material is not magnetic. Conversely,
when the net magnetic moment is not zero, the material is magnetic [18]. Most materials
have the property of being weakly magnetic, even in the absence of an applied magnetic
field. The former has an approximate magnetization rate ranging from 10−6 to 10−1 in
order of magnitude, while the latter only ranges from 10−6 to 10−3 in order of magnitude.
In contrast, some materials can exhibit highly magnetic properties under the action of weak
magnetic fields, or even without the application of magnetic fields, such as in the case of
ferromagnetic, ferrimagnetic, and antiferromagnetic materials (Figure 2a). In such cases,
only a minimal magnetic field is needed to saturate magnetization, and the representative
materials are iron, cobalt, and nickel.

From a microscopic point of view, a large-size ferromagnetic material with multiple
magnetic regions exhibits a minor hysteresis effect, as shown in Figure 2b. When the size of
the material is reduced to a single domain (generally nanoscale; the critical size varies from
material to fabric), the hysteresis effect is the largest (i.e., it has the most substantial coercive
force). However, when the scope continues to shrink, the coercive force decreases to zero
(i.e., no hysteresis occurs). With the change in the external magnetic field, the data points
obtained from the magnetization process of the superparamagnetic nanoparticles can form
a hysteresis curve, as shown in Figure 2d. Therefore, the superparamagnetic nanoparticles
are not magnetic at room temperature without the applied magnetic field, and when
the applied magnetic field is removed, the material’s magnetic properties immediately
disappear. For example, in iron oxide, nanoparticles usually need to reach a size of several
nanometers to become superparamagnetic, as shown in Figure 2c [19].
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Figure 2. Theories and principles of nanometer sizing and superparamagnetism: (a) classification
of magnetic substances; (b) schematic diagrams of structures of multimagnetic/single-magnetic/
superparamagnetic regions; (c) relationship between particle size and coercivity. The multi-magnetic
region is represented by the curve from a to b, where the coercivity of magnetic particles tends
to increase, and the coercivity of the material shows a maximum size at Ds; between b and c is
the single-magnetic region, where the particles in this size range show stability; from c to d is the
superparamagnetic region, where the material shows an unstable state due to high surface activity
at the nanoscale. At DP, the material is demagnetized by external thermal effects, resulting in zero
coercivity (HC = 0); the zone to the left is called superparamagnetic; and (d) hysteresis curves.

2.1. Properties of Iron Oxide Nanoparticles

Iron oxide nanoparticles are widely known examples of nanomaterials. Iron tetroxide
(Fe3O4) is a biocompatible material that has been known of and used in biomedicine for almost
40 years, and it is approved for use in the human body based on its safety profile. Fe3O4
magnetic nanoparticles are water-soluble and can enter delicate tissues; they are commonly
produced by coprecipitation (aqueous phase), thermal decomposition (organic phase), and
synthetic methods (Figure 3a–c) [11]. For use in biomedical applications, nanoparticles must
be: (1) non-biotoxic; (2) water-soluble; and (3) biocompatible. The biomedical applications
in which nanoparticles of iron tetroxide are applied are diverse [20]. The most remarkable
instances are those where their magnetic properties are exploited, for example, in thermo-
therapy and drug magnetic guidance therapy. For example, in the case of a rat with a tumor
on its back, we can inject magnetic nanoparticles through the tail and use carefully positioned
magnets around the rat to achieve guided drug treatment for the cancer [21–23].

Heat therapy aims to increase the temperature to a level that is tolerated by normal
human cells but not cancer cells, at which point the cancer cells begin to die. The current
research indicates that thermotherapy can effectively eliminate tumors that are smaller than
7 mm [24]. Still, in clinical trials, uniform tumor heating is impossible on animals with larger
tumors (15 mm). The cancer is unevenly heated because of the uneven shape of the tumor,
and it is hard to effectively destroy the entire cancer all at one time during treatment, which
results in continued tumor growth [25]. Because of this, we want to develop magnetic
particles that can be used to accelerate and increase the temperature of the cancerous
tissue. One possibility is to dope magnetic particles into ceramic nanostructures to generate
nanocomposite materials. The composite particles enable the faster elimination of cancer
cells, thus achieving more effective treatment, and they are expected to more efficiently
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inhibit the formation of tumors. In addition, we can use the method to encapsulate magnetic
nanoparticles and drugs at the same time. This problem can be resolved through ceramic-
material-compounding technology, which is thermosensitive and biocompatible. Moreover,
microcellular surface carriers with specific surface modifications can deliver magnetic
nanoparticles and drugs to specific tumor cells. The magnetic nanoparticles are heated
to 40 ◦C for a few seconds under an applied magnetic field, upon which the ceramic
material releases the drug and magnetic nanoparticles into tumor cells [21]. Therefore, this
two-pronged approach allows incorporating an additional aspect to drug therapy.
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Figure 3. Synthesis of iron oxide nanoparticles by: (a) coprecipitation; (b) reverse microemulsion;
(c) thermal decomposition under green synthesis process.

2.2. Properties of Iron–Platinum Nanoparticles

Iron–platinum nanoparticles are a magnetic material that is used in recording media
with the chemical formula FePt. There are four phases of ferroplatinum: the (1) unordered
γ-phase; (2) ordered paramagnetic γ1-Fe3Pt phase (L12); (3) ferromagnetic γ2-FePt phase
(L10); and (4) antiferromagnetism γ3-FePt3 phase (L12). The structure of the FePt3 phase
(L12) depends on the FePt atomic ratio. The structure of unordered Fe platinum is chemi-
cally disordered face-centered cubic (FCC), and that of ordered Fe platinum is chemically
ordered face-centered tetragonal (FCT) [26], as shown in Figure 4 [27]. In addition, the
atomic lattice position of the unordered face-centered cubic is determined by the per-
centage of Fe and Pt atoms that form a soft magnetic structure with a small coercivity
field [28]. In contrast, in the ordered face-centered cubic in iron–platinum, the iron atoms
are stacked at positions (0, 1/2, 1/2) and (1/2, 0, 1/2), the platinum atoms are stacked at
positions (0, 0, 0) and (1/2, 1/2, 0), and the atomic radii cause the lattice to expand in the
a-axis and compress in the c-axis [29–32]. The magneto-crystal anisotropy coefficient (Ku)
can reach 107 Jm−3 [33], which is the highest among the existing hard magnetic materials,
due to spin–orbit coupling and hybridization interactions between the 3D orbital domain of
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Fe and 5D orbital domain of Pt [34,35]. This alignment provides FePt with higher chemical
stability than Fe, Co, or other materials (e.g., Fe3O4) with high coercivity fields [36]. The
high Ku of FePt can allow superparamagnetic phenomena to be avoided when the particle
size decreases [37]. In addition to having superior superparamagnetic properties, FePt
nanoparticles also have high absorption coefficients for X-rays (Pt absorption coefficient at
50 keV: 6.95 cm2/g). Chou et al. injected 12 nm FePt nanoparticles into mice with tumors
by tail-intravenous injection, and the contrast between the MRI and computed tomography
(CT) images was substantially improved, which indicates that we can use FePt to track the
location of the material in two diagnostic MRI and CT imaging modalities to detect the
area in which the MFH and drug release are taking place.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 24 
 

 

by tail-intravenous injection, and the contrast between the MRI and computed tomogra-

phy (CT) images was substantially improved, which indicates that we can use FePt to 

track the location of the material in two diagnostic MRI and CT imaging modalities to 

detect the area in which the MFH and drug release are taking place. 

 

Figure 4. Schematic diagram of synthesizing disordered and ordered structures using Fe(acac)3 and 

Pt(acac)2, forming iron–platinum (FePt) nanoparticles from pyrolytic iron and reduced platinum 

precursors and using ferrous chloride instead of iron pentacarbonyl. 

3. Surface Modification of Iron-Based Nanoparticles 

The key to the technology is how to use ligands for surface modification and increase 

the function of magnetic nanoparticles. Generally, two methods are used: (1) Crosslinkers 

or spacer molecules as well as polymer ligands are used to form covalent connections [38]. 

The body is modified on the surface of the magnetic nanoparticles to include iron nano-

particles as the core and ligands as the shell [39]. The affinity between nanoparticles and 

polymer ligands depends on the type and quantity of the ligands on the surfaces of the 

nanoparticles; thus, how to make and select the surface ligands for linking is important 

[40]. Amines, carboxylates, hydroxyl groups, and thiol groups are commonly used as lig-

ands [41]. In some cases, additional spacer molecules or crosslinking agents are required 

to facilitate bonding of the nanocomposites [42]. (2) In layer-by-layer coating [43], with 

magnetic nanoparticles as the core, other materials are coated, layer by layer, around the 

nanoparticles based on the electrostatic attraction between opposing charges [44]. The ad-

vantages include the ability to fabricate a single-layer structure and adjust the thickness 

of the functional shell [45]. According to the above two approaches, we take the carboxy-

lation of chitosan to covalently bond to the surfaces and core–shell structures of the nano-

particles as an example, and we discuss the advantages of ceramic materials for modifica-

tion of iron-based nanoparticles in the next section (Figure 5). 

Chitosans are natural polysaccharides with hydrophilic, biocompatible, biodegrada-

ble, and antibacterial properties. They have a good affinity for many biomolecules, which 

makes them suitable for various biomedical and biotechnology applications. Degradable 

polymers are more commonly used for the controlled release of drugs [46]. Polysaccha-

rides are nontoxic and biodegradable natural polymers that form particles to coat drugs 

in acidic environments, such as in the stomach, where they act as antacids to prevent acid 

damage to drugs. Therefore, they are an ideal material for drug-release-control systems. 

For drug-targeting applications, magnetic nanoparticles modified with chitosans can ad-

sorb the anticancer drug epirubicin, which indicates a strong interaction between chi-

tosans and epirubicin. In epirubicin-adsorption experiments, the equilibration time is only 

Figure 4. Schematic diagram of synthesizing disordered and ordered structures using Fe(acac)3 and
Pt(acac)2, forming iron–platinum (FePt) nanoparticles from pyrolytic iron and reduced platinum
precursors and using ferrous chloride instead of iron pentacarbonyl.

3. Surface Modification of Iron-Based Nanoparticles

The key to the technology is how to use ligands for surface modification and increase
the function of magnetic nanoparticles. Generally, two methods are used: (1) Crosslinkers or
spacer molecules as well as polymer ligands are used to form covalent connections [38]. The
body is modified on the surface of the magnetic nanoparticles to include iron nanoparticles
as the core and ligands as the shell [39]. The affinity between nanoparticles and polymer
ligands depends on the type and quantity of the ligands on the surfaces of the nanoparticles;
thus, how to make and select the surface ligands for linking is important [40]. Amines,
carboxylates, hydroxyl groups, and thiol groups are commonly used as ligands [41]. In some
cases, additional spacer molecules or crosslinking agents are required to facilitate bonding
of the nanocomposites [42]. (2) In layer-by-layer coating [43], with magnetic nanoparticles
as the core, other materials are coated, layer by layer, around the nanoparticles based on the
electrostatic attraction between opposing charges [44]. The advantages include the ability
to fabricate a single-layer structure and adjust the thickness of the functional shell [45].
According to the above two approaches, we take the carboxylation of chitosan to covalently
bond to the surfaces and core–shell structures of the nanoparticles as an example, and we
discuss the advantages of ceramic materials for modification of iron-based nanoparticles in
the next section (Figure 5).
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Figure 5. Schematic representation of the surface modification of iron-based nanoparticles. Iron-based
nanoparticle with different crosslinker or spacer molecules and layer-by-layer coating. From left to
right, the molecules are chitosan, dopamine, polyethylene glycol (PEG), polyvinyl alcohol (PVA),
silicon dioxide (SiO2), and hydrogen tetrachloroaurate (AuCl4).

Chitosans are natural polysaccharides with hydrophilic, biocompatible, biodegradable,
and antibacterial properties. They have a good affinity for many biomolecules, which
makes them suitable for various biomedical and biotechnology applications. Degradable
polymers are more commonly used for the controlled release of drugs [46]. Polysaccharides
are nontoxic and biodegradable natural polymers that form particles to coat drugs in
acidic environments, such as in the stomach, where they act as antacids to prevent acid
damage to drugs. Therefore, they are an ideal material for drug-release-control systems. For
drug-targeting applications, magnetic nanoparticles modified with chitosans can adsorb
the anticancer drug epirubicin, which indicates a strong interaction between chitosans
and epirubicin. In epirubicin-adsorption experiments, the equilibration time is only a few
minutes, which means that there is no intrapore diffusion resistance in the adsorption
process. Through regulation of the acidic environment in cancer cells at a pH of 4, chitosan
is subjected to disintegration. Epirubicin adsorbed on nanomagnetic carriers is expected to
be released in in vivo experiments to achieve therapeutic cancer effects [47].

The surface modification of iron-based nanoparticles with core–shell structures is close
to that of iron-based nanocomposite particles combined with ceramic materials, which is
the focus of this review: i.e., enhancement of the applicability of iron nanoparticles by incor-
porating other materials. Here, we search for an example of self-assembled nanocomposite
materials for iron core–gold shells to link the advantages of ceramic materials combined
with iron nanoparticles [48]. The iron core–gold shell composite nanoparticles are selec-
tively toxic to cancer cells. Still, after being placed in water or air for a suitable period,
they are no longer harmful to cancer cells [49]. Researchers found that freshly produced
iron core–gold shell composite nanoparticles are not toxic to cancer cells when placed in
water. Water molecules will penetrate through the grain interface of the gold shell and
react with iron at the gold–iron interface to produce ferrous ions, which are gradually
released to kill cancer cells. However, the dissolved oxygen in the water will also spread
to the gold–iron interface through the grain interface of the gold shell, oxidizing the iron
into iron oxide, which forms a protective layer to prevent the continued production and
release of ferrous ions and, thus, no longer having a toxic killing function and achieving the
effect of self-liquidation [50]. Likewise, protection is also provided by the ceramic material
compounded with iron-based nanoparticles. In addition, due to its porous nature, the
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ceramic material can also offer drug loading and delivery of iron nanoparticles, similarly to
chitosan mentioned above.

4. Combination of Iron-Based Nanocomposite Particles with Ceramic Materials

Clay minerals are one of the most important industrial minerals in nature. In this
section, we focus on white clay ore-containing water, which is mainly made from alu-
minosilicate minerals, such as feldspar, and is formed by climate or water heat capacity.
Because clay is easily shaped in moist conditions and can be cured after sintering, many
products, such as road bricks and sewage pipes, contain clay minerals as raw material. In
addition, clay minerals are white and resistant to high temperatures; thus, they are used
in the porcelain, paper making, rubber, and refractory industries. As a new type of drug
delivery system, ceramic nanocarriers have high mechanical strength, good body response,
and low or non-existing biodegradability. Ceramic nanocarriers can protect the drug and
the composite nanoparticles from pH and temperature effects. However, despite the high
biocompatibility shown in current studies, there is still a lack of information on their clinical
use [51]. The research journey for future applications of ceramic nanocarriers is still long;
thus, this section will focus on the improvements brought by ceramic materials composites.

4.1. Bioactive Glasses

The development of suitable biomaterials for application in bone regeneration and
disease treatment is a substantial challenge in current regenerative medicine. Synthetic
biomaterials can be prepared using flexible synthetic methods to combine the best possi-
ble properties, such as bioactivity, degradation, and controllable drug delivery [52]. This
allows various imaging, cell-specific-targeting, and controlled-drug-release functions to
be incorporated into a single platform designed for simultaneous tracing and convenient
therapeutic use without losing the individual properties of each component [53,54]. How-
ever, combining these different functions on the same platform is extremely difficult, which
is because competition between the various functional groups could be generated when
on the same material platform. As the application of a synthetic biological scaffold, bioac-
tive glasses (BGs) are the leading group of surface-reactive glass–ceramic biomaterials.
Due to the excellent biocompatibility of these glasses, they have been widely investigated
by researchers for use as implant materials in the human body to fill and repair bone
defects [55]. BGs were discovered in 1971 by the research group of Hench [56]. In the
physiological environment of the human body, BGs can react with simulated body fluid
(SBF) to form dense biologically active hydroxyapatite (HA) layers on their surface and
biologically bond with damaged bone. HA is the main mineral component of bone that
leads to effective physical interactions and fixes bone tissue onto the material surface [57].
Researchers have developed different families of BGs for bone tissue restoration and re-
placement because such materials do not cause biological toxicity, inflammation, or elicit an
immune response [58]. Because of these characteristics, BGs have been extended to many
different applications in the medical field, such as implants in theoretical bone repair, tissue
engineering, drug delivery, and bone cancer treatment [52,53].

In 2004, Yan et al. used advanced science and proficient technology to develop a
novel family of biomaterials called mesoporous bioactive glasses (MBGs). Compared with
conventional BGs, MBGs have higher specific surface areas and pore volumes. MBGs
exhibit improved bioactive behavior with even faster apatite phase formation than con-
ventional BGs [55,56,59–63]. In 2006, Chang et al. produced a well-ordered MBG as a
drug delivery carrier [64]. In numerous recently published studies, researchers have devel-
oped MBGs as a biomaterial extensively applied in drug delivery systems and bone tissue
engineering [53,65–70]. In the latest technique, Zhang et al. fabricated a composite scaffold
containing mesoporous bioactive glass to encapsulate magnetic Fe3O4 nanoparticles by 3D-
printing technology. According to the results, the MBG scaffold structure comprises uniformly
sized 400 µm macropores. The magnetic Fe3O4 nanoparticles can be incorporated into the
scaffold without affecting its hydroxyapatite mineralization ability while endowing it with ex-
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cellent magnetic heating ability. In addition, the pore structure can be loaded with doxorubicin
(DOX), which is an anticancer drug, and it can thus be used for local drug delivery therapy.
The 3D-printed Fe3O4/MBG scaffold shows potential versatility for enhanced osteogenic
activity, local anticancer drug delivery, and magnetothermal therapy [71].

4.2. Biocompatible Nanolayer Ceramics

The basic structural layer of nanolayer ceramics, which is composed of silicate minerals,
consists of a silicon–oxygen tetrahedron and an aluminum–oxygen octahedron, each of
which has three oxygen atoms in the same plane and one oxygen atom at the top. The
aluminum–oxygen octahedron consists of a stack of oxygen atoms and hydroxide ions,
with the cation at the center of the octahedron and each cation bonded to six oxygen atoms
(or hydroxide ions) to form an octahedron, as shown in Figure 6a [52]. According to the
ratio of the tetrahedral and octahedral sheets contained in each layer of the clay minerals,
they can be divided into two types: (1) the 1:1-layer type, in which the interlayer formed by
stacking one tetrahedral sheet and one octahedral sheet is called the TO layer, whereas the
tetrahedral plane on top and adjacent octahedral OH surface below form the coordination
of OHO, which is the simplest crystalline structure of layered silicate clay minerals [72];
(2) the 2:1-layer type, in which each layer is composed of two tetrahedral sheets that are
sandwiched between octahedral sheets, which forms a three-layer structure of TOT, similar
to a sandwich [73].
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For example, montmorillonite is a 2:1-layer silicate, and each molecular formula has
from 0.2 to 0.6 units of charge. The interlayer cations of montmorillonite, such as Na+,
Ca2+, and Mg2+, are exchangeable cations with high hydration. The interlayer distance is
about 9.6 × 10−1 nm when there are no water or polar molecules in the interlayer, whereas
the interlayer distance of montmorillonite containing divalent cations (Ca2+ or Mg2+) in-
creases to 14 × 10−1 nm at an average humidity of 40–60% because the interlayer contains
two water molecules in the water layer. If monovalent cations (Na+) are present in the
interlayer of montmorillonite under the same humidity conditions, then the interlayer
distance is 12.5 × 10−1 nm [74]. Another characteristic of montmorillonite is that it con-
tains many exchangeable cations. Because the negative charges in the montmorillonite
structure are concentrated in the central octahedral layer, the interlayer cations are weakly
bound and can be easily replaced. The typical chemical formula of montmorillonite is
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(1/2Ca,Na)0.7(Al,Mg,Fe)4(Si,Al)8O20(OH)4.nH2O, in which Ca2+ and Na+ are exchangeable
cations. The theoretical chemical composition is 49.0% SiO2, 23% Al2O3, and 0.3% Fe2O3.

For ceramic kaolinite, the basic structural layer is composed of silicate minerals, each
of which has three oxygen atoms in the same plane and one oxygen atom at the top. The
aluminum–oxygen octahedron consists of a stack of oxygen atoms and hydroxide ions, with
the cation at the center of the octahedron and each cation bonded to six oxygen atoms (or hy-
droxide ions) to form an octahedron [29]. We present the structure of kaolinite in Figure 6b,
which consists of a layer of silica–oxygen tetrahedra and a layer of alumina–oxygen octahe-
dra that are connected by a standard oxygen linkage to form a bilayer structure. In contrast,
the layers are covalently bonded by providing oxygen atoms on the silica–oxygen side
and hydroxide ions on the alumina–oxygen side to form hydrogen bonds. As previously
mentioned, kaolinite has a stable chemical structure, uniformly distributed pore structure,
and high adsorption capacity, and it can adsorb different substances in its layered struc-
ture, such as FePt nanoparticles or chemotherapeutic drugs. With the adsorption effect
provided by kaolinite, FePt nanoparticles can be highly concentrated in a specific space.
The nanoparticles can effectively accumulate in a magnetic-field environment according
to the influence of the magnetic force to achieve a magnetically controlled MRI effect. If
magnetic control is used to guide the accumulation of drugs into tumor tissue, then the side
effects caused by chemotherapeutic drugs can be substantially reduced. Currently, a single
treatment is not enough to achieve the substantial inhibition of tumor tissue. Cocktail-style
therapies have become standard in current cancer treatments. FePt nanoparticles have
excellent magnetocaloric effects, and when combined with kaolinite, their heating capacity
can be substantially increased. The temperature can be increased to nearly 50 ◦C; thus,
hepatocellular cancer cells can be killed using MFH. At the same time, if kaolinite is loaded
with chemotherapeutic drugs, such as Dox, then the system can further inhibit cell growth
at the tumor center.

4.3. Biocompatible Nanotube Ceramics

Hardystonite or akermanite nanotubes belong to the kaolinite group of aluminosilicate
clay minerals and were discovered by the Belgian geologist d’Omalius d’Halloy and named
by Pierre Berthier in 1826. Depending on the mining site and geological conditions, they can
be tubular, spherical, or plate-like particles. Among these forms, the most representative is
the tubular form with cavities, which has received substantial attention in various research
fields due to its particular morphology, ease of mixing with multiple polymers, and good
biocompatibility. The basic structure of the silicate mineral composition consists of a silicon–
oxygen tetrahedron and an aluminum–oxygen octahedron, each of which has three oxygen
atoms in the same plane and one oxygen atom at the top.

The cation is located at the center of the octahedron, and each cation forms a bond with
six oxygen atoms (or hydroxide ions) to form the octahedron, as shown in Figure 6c [27].
Hardystonite is similar to kaolinite, but the layers in hardystonite are separated by a single
layer of water molecules and are classified according to their hydrated state. Akermanite
is a hydrate elite (10 × 10−1 nm), and when dried, it irreversibly loses the interlayered
water to form a dehydrated elite (7 × 10−1 nm), which is more stable than the hydrated
akermanite. The structure is caused by the mismatch between the silica–oxygen tetrahedra
and aluminum–oxygen octahedral sheets in the layers. The tetrahedra and octahedra are
connected through sharing of the top oxygen of the tetrahedra. This stress is transferred to
the Si plane and the base oxygen plane through the Si–O bond, but it is also reduced by
the angular elasticity of the Si–O bond. In most of the current tubular materials that are
compounded with iron-based nanoparticles, carbon nanotubes are used as the carrier, and
the hardystonite or akermanite structure is coated with a layer to multiply the nanoparticles.
Alternatively, the iron-based nanoparticles can be doped with alpha-Al2O3 crystal to affect
carbon nanotube growth in polycrystalline ceramics. Celik et al. prepared Fe-doped
Al2O3 ceramics of different textures through templated grain growth and synthesized
them into carbon nanotubes via catalytic chemical vapor deposition [75]. According to the
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experimental results, this novel nanocomposite material has the potential to be used for
future biomedical diagnostic and drug delivery applications.

5. Magnetic Resonance Imaging (MRI) with Ceramic Material Composite
Iron Nanoparticles

Among the many screening and diagnostic methods, magnetic resonance imaging
(MRI) can provide high-resolution images of the liver without the need for ionizing radi-
ation. Consequently, MRI is the best choice for initial tumor diagnosis. For this reason,
iron-based nanomaterials have become candidates for MRI imaging because of their ex-
cellent T2 contrast ability [76]. However, most of the commonly used magnetic vibrating
carriers currently available in the market are iron oxide particles or strontium ion complexes,
which may cause side effects, such as nausea, allergic reactions, and kidney injury [77]. To
address this, the goal of current research is to improve the performance of magnetic carriers
through the development of a multifunctional composite nanocarrier that can be used for
high-resolution MRI with low toxicity and a therapeutic effect [78].

Positively charged atomic nuclei spin in random environments. In this case, the
nuclear spin axes are arranged in a random pattern, and when placed in a static magnetic
field, the nucleus spins in the direction of the applied magnetic field. The spin frequency is
called the Larmor frequency, and it is related to the properties of the nucleus itself and is
proportional to the strength of the applied magnetic field. The effect is that the iron-based
nanoparticles are subjected to single-axial compressive stress, and the mechanical stress
causes the rearrangement of the magnetic dipoles of the iron-based nanoparticles and
places them parallel with the direction of the ceramic layer. Therefore, in human MRI,
the degree of saturation magnetization along the magnetization direction depends on the
hydrogen atoms, which are the main source of nuclei because the human body is mainly
composed of water, and it is the hydrogen atoms in water that help in visualizing the image.
As the magnetization vector of the atomic nucleus gradually increases and then stabilizes
during the spinning process, the nucleus will resonate if disturbed by a fixed-frequency
radio frequency (Figure 7). The resonance effect, which is limited by the ceramic material,
brings higher saturation magnetization to the iron-based nanoparticles, thereby enhancing
their ability for T2-weighted MRI diagnostic imaging.
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6. Magnetic Fluid Hyperthermia (MFH) with Ceramic Material Composite
Iron Nanoparticles

Thermal treatments include laser treatment, focused ultrasound treatment, microwave
treatment, and use of radiofrequency probes. These treatments aim to raise the temperature
of the tumor to 43–46 ◦C to achieve the effect of thermal therapy [79–81].

However, the above-mentioned thermal therapy systems are macroscopic heating
systems, which generally have the disadvantages of low thermal efficiency and being
easily limited by the tumor volume, which result in uneven heat-field distribution [82].
In addition, some new methods have been developed, including pulsed laser, infrared,
and magnetic-field-guided heat therapies [83]. Examples of heat sources include metal
nanoshells, nanorods, and carbon nanotubes. In short, when these energy-absorbing
materials reach the tumor, they can be irradiated from outside the body using strong energy
sources (e.g., near-infrared laser). When the materials absorb this energy, it is converted
into heat energy to increase the temperature of the tumor surface and destroy the tumor
structure, thus achieving the effect of heat therapy [84]. However, this treatment method
can only treat tumors close to the body surface and is inadequate for deeper tumors.

In recent years, several independent research groups have been developing a method
termed magnetic fluid hyperthermia (MFH), which involves use of a magnetic fluid together
with an alternating magnetic field to treat tumors [85]. This method improves upon the draw-
backs mentioned above, killing cancer cells without affecting the adjacent normal tissues [86,87].

6.1. Principles of MFH

Magnetic nanoparticles exposed to alternating current (AC) magnetic fields generate
heat by hysteresis loss [88,89]. However, not all magnetic nanoparticles generate heat in
this way. For magnetic nanoparticles with multiple magnetic domains (e.g., 2- and 3-valent
iron), the heat in an AC-field environment is generated through hysteresis loss, and for
magnetic nanoparticles with single magnetic domains (e.g., single-domain ferric tetroxide
nanoparticles), the heat is generated through Néel relaxation and Brownian relaxation. The
reason heat is not generated by hysteresis loss for magnetic particles is that because of their
superparamagnetic properties, they have a single magnetic domain and fixed magnetic
moment direction [90].

Therefore, the heating principle can be divided into hysteresis loss, Néel relaxation,
and Brownian relaxation [91]:

(A) Hysteresis loss: When a material has multiple magnetic domains, the direction of the
magnetic moment becomes singular and the same as the magnetic field when an AC
magnetic field is applied. When the magnetic-field strength changes, the resulting
hysteresis curves do not overlap, which results in heat release;

(B) Néel relaxation: When a material is a single-domain superparamagnetic material,
the inner nucleus rotates and overcomes the energy barrier E = KV when an AC
magnetic field is applied, where K is the anisotropy constant, and V is the volume of
the particle. The thermal energy is released when it returns to the original magnetic
moment direction;

(C) Brownian relaxation occurs in materials with multiple or single magnetic domains
when an applied magnetic field is applied, which causes the particles to rotate and rub
against the external medium and release thermal energy. Therefore, the characteristics
of Brownian relaxation are related to the solution viscosity, as shown in Figure 8a.
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The following equation is the heat loss (P) for a single-magnetic-domain material, as
shown in Equation (2).

P =
V(MsHωτ)2

2τkbT(1 +ω2τ2)
(2)

where V is the particle volume; MS is the saturation magnetization value; H is the AC-
electromagnetic-field strength;ω is the angular frequency of AC; τ is the relaxation time;
and kb is the Boltzmann constant. Whenωτ = 1, we obtain the maximum heat loss value.
When the saturation magnetization is more substantial, the heat loss is more extensive:

1
τ
=

1
τB

+
1
τN

; τ =
3ηVH

kT
; τN = τ0 exp

(
KV
KbT

)
(3)

where η is the medium viscosity; VH is the particle hydration volume; kb is the Boltzmann
constant; V is the particle volume; K is the anisotropy constant; T is the absolute tempera-
ture; and τ0 is the time constant. We use the specific adsorption rate (SAR) to obtain the
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thermal energy generated by the predicted material. The efficiency of conversion from en-
ergy to thermal energy of the magnetic nanoparticles in an AC-magnetic-field environment
is related to the AC-magnetic-field frequency, particle size and surface modification [91].

6.2. Treatment with MFH

When the local tumor temperature is increased to 41–46 ◦C by the magnetofluid in
an AC-magnetic-field environment, the reason for using heat to treat tumor cells can be
easily understood, as shown in Figure 8b,c below. One of the differences between tumor
cells and normal tissues is that tumor cells receive more nutrients through continuous
neovascularization [92]. However, most of these new blood vessels are disorganized and
functionally abnormal; therefore, when heat is applied, tumor cancer cells, similarly to
normal cells, increase their blood flow by vasodilatation to carry away the heat; however,
this process is inefficient, and heat is retained in the tumor tissue. Therefore, as the
temperature increases, neovascularization in the tumor tissue is continuously disrupted,
which results in reduced blood flow and heat retention. Finally, the tumor cannot obtain
nutrients to achieve the therapeutic effect. As shown in Figure 8e, after heat treatment in
rats, the blood flow in the tumor cells is reduced, while the blood flow in normal cells is
increased by 8–10 times. Therefore, poor heat dissipation ability may cause heat to become
trapped inside the tumor, increasing the temperature, which further affects the pH, pO2,
and nutrient supply and leads to cell death [93].

7. Drug Delivery with Ceramic Material Composite Iron Nanoparticles

To reach the desired treatment site in clinical chemotherapy, high doses of drugs are
usually required, increasing the risk of nonspecific toxic reactions and other physiological
side effects that cause additional pain to patients. Therefore, how to efficiently deliver
low-dose medications to the desired treatment site has long been a research direction
for pharmaceutical companies and laboratories. The magnetic-drug-targeting technique,
which uses magnetic nanoparticles in conjunction with an external magnetic field, has
recently gained attention (Table 1). Magnetic nanoparticles are mainly used as drug carriers
in this application. In general, magnetic nanoparticles containing drugs or antibodies
are intravenously injected into the body, transported through the circulatory system, and
finally concentrated at the site of the applied magnetic field, as shown in Figure 8d. In
this way, more drugs can be directly focused on the lesion and then released through the
drug-release mechanism. Lubbe published a study in 1996 in which they performed the
first human clinical trial using magnetic drug targeting [94]. They used an intravenous
infusion of magnetic particles (100 nm particle size; starch) immobilized with epirubicin (a
tumor treatment drug) in solution and placed a permanent magnet with a magnetic flux
density of 0.8 T close to the treatment site. According to the results, they could successfully
guide the magnetic particles to the target area in more than half of the subjects. FeRx Inc.
has attempted to commercialize this technology for cancer treatment, and it is currently
undergoing clinical trials [95]. Biological applications of ceramic material composite iron
nanoparticles depend on the carrier’s biological toxicity and the composition of the ceramic
structure, both of which necessitate the use of biocompatible materials. The main categories
of application are biosensors, oxidative stress cytoprotection, bacterial disinfection, and
cancer treatment.
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Table 1. MFH bioapplications of ceramic composite iron-based nanomaterials.

Iron-Based
Material Ceramic Cell Type Biological Effect Material Effect Year Ref.

Calcium zinc iron silicon
oxide composite Glass Bone cancer Promotes osteoblast proliferation Supports nascent

cell proliferation 2011 [96]

Fe/mesoporous
bioactive glass Glass Human bone marrow

mesenchymal stem cells

Improves local delivery of drug
therapy and killing of

infected tissue cells

Intensifies
magnetization 2011 [97]

(Fe2+/Fe3+)-doped
hydroxyapatite Hydroxyapatite Osteoblast Lower level of

cytotoxicity achieved
Intensifies

magnetization 2012 [98]

Fe3O4
Magnetic calcium
phosphate cement Breast cancer Reduces tumor volume Controlled timing

of drug release 2016 [99]

Fe3+ Hardystonite Bone cancer Enhances drug delivery and
killing of tumor cells

Intensifies
magnetization 2017 [100]

Ferrimagnetic Glass Fibroblast/bone cancer Does not substantially affect
cell morphology

Supports nascent
cell proliferation 2017 [101]

Fe3O4
Hydroxypropyl
methylcellulose Breast cancer Reduces tumor volume Controlled timing

of drug release 2017 [102]

Fe3O4 Akermanite Osteosarcoma Lower level of
cytotoxicity achieved

Controlled timing
of drug release 2019 [103]

Magnetic nanoparticles Calcium phosphate Mesenchymal stem cell Increases metabolic
activity and proliferation

Intensifies
magnetization 2020 [104]

FePt Kaolinite Hepatocellular
carcinoma

Enhances magnetic signal
and killing of tumor cells

Intensifies
magnetization 2020 [105]

Hematite nanocrystal Glass Fibroblast Lower level of
cytotoxicity achieved

Intensifies
magnetization 2021 [106]

Single-atomic iron catalysts Glass Bone marrow
mesenchymal stem cell Efficacious osteosarcoma ablation Supports nascent

cell proliferation 2021 [107]

FePt Montmorillonite Hepatocellular
carcinoma

Enhances magnetic signal
and killing of tumor cells

Intensifies
magnetization 2021 [108]

Superparamagnetic iron
oxide nanoparticles Glass Mesenchymal stem cells Does not affect cell proliferation Intensifies

magnetization 2022 [109]

7.1. Cancer Therapy
7.1.1. Bone Cancer

Currently, bone cancer is primarily treated by shaving the affected area. This approach
is likely to cause disease recurrence because the cancer cells are not entirely eradicated.
Therefore, the treatment process is usually combined with chemotherapy. However, most
anticancer drugs have low solubility and severe drug side effects. These disadvantages
have motivated the design of a controlled drug delivery system, as shown in Figure 9a [110].
The purpose in the research of Farzin et al. was to enhance the treatment impact. In their
study, the researchers used iron oxide nanoparticles as a mechanism for controlled drug
release, which can be combined with BGs to exploit the magnetic field to control the distri-
bution of the anticancer drug in the bone tissue and prevent its release in other undesired
locations [111]. To elaborate the use of BGs as a drug platform, various modified methods
may be helpful in multiple medical applications, such as implantation in medical bone
restoration, tracking postoperative surgery, and treating bone cancer [112]. To increase
the accumulation of iron-based materials at the tumor site, researchers have developed
modifications of the specific targeting molecules in ceramic materials. In native bone
cancer, the folate receptor is not overexpressing; however, most bone tumors are metastatic.
Therefore, the material with grafted folate molecules can still be used to treat bone cancer
transferred from other cancers [113]. The MG63 (human osteosarcoma) cell line is suppos-
edly a suitable in vitro test model for bone cancer. However, MG63 lacks the folate receptor;
no noticeable difference in the endocytosis process was observed when folate molecules
were grafted onto our material. This distinction between normal and cancer cells has made
FA an attractive ligand for specific targeted bone cancer drug delivery [114].
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Figure 9. Bone marrow mesenchymal stem cell treatment and cell proliferation during bone cancer
treatment: (a) schematic diagram of ceramic material containing iron-based nanoparticles bound
as biological scaffolds (BGs) after bone cancer surgery; (b) BGs immersed in biomimetic body fluid
to produce hydroxyapatite; (c) 3D mesh ceramic fibers with monocrystalline iron attached to the
laminar surface; (d) BGs loaded with iron nanoparticles by 3D printing of muffin-like nanocomposite;
(e) mesenchymal stem cell growth observed under confocal microscope analysis; (f) 3D muffin-like
BGs embedded in bone to assist bone repair after surgical excision for bone cancer. Adapted with
permission from [100,107]. Copyright 2017 Elsevier and 2021 John Wiley and Sons.

7.1.2. Liver Cancer

Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver cells. Ac-
cording to the National Cancer Institute SEER database, the average five-year survival rate
for patients with HCC is 19.6%, and the survival rate for advanced metastases is as low
as 2.5%. Following early diagnosis, treatment can be provided through local-area therapy,
including surgical resection, radiofrequency ablation, transvenous chemoembolization, and
liver transplantation. HCC is usually diagnosed at an advanced stage, when the tumor cannot
be removed, which renders these treatments ineffective. Liver cancer is the fifth most common
cancer and the fourth leading cause of cancer-related deaths worldwide [115]. There are two
major types of primary liver cancer, HCC and intrahepatic cholangiocarcinoma (ICC), and
less common cancers such as angiosarcoma, hemangiosarcoma, and hepatoblastoma. HCC
accounts for more than 80% of primary liver cancer cases worldwide, and secondary liver can-
cer occurs when tumors from other parts of the body metastasize to the liver. Although breast,
esophageal, stomach, pancreatic, lung, kidney, and several other cancers can metastasize to
the liver, most secondary liver cancers originate from colorectal cancer. Approximately 70% of
patients with colorectal cancer will develop secondary liver cancer [116].

HCC is the most common type of chronic liver cancer in adults and the most common
cause of death in patients with cirrhosis. Unlike other organs or tissues in the human body,
the nerves of the liver are distributed on the surface, with few inside the liver. Therefore,
when a small tumor grows in the liver, it is almost painless and does not show any symp-
toms. Without regular checkups, it is easy to overlook the potential threat of the tumor
tissue [117,118]. Among the various screening and diagnostic methods, MRI can provide
high-resolution liver images without ionizing radiation. HCC exhibits a high-intensity
pattern in T2-weighted images. Owing to the selective role of the hepatobiliary system,
the application of iron-based nanoparticles leads to an increased accumulation of iron in
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the liver, thereby increasing the sensitivity of MRI for liver imaging. Chan et al. have
developed a ceramic material compounded with FePt nanoparticles, which is a superpara-
magnetic iron-based nanomaterial contrast agent that is suitable for HCC diagnosis. With
superparamagnetic, low-toxicity, biocompatible, and adaptable characteristics, iron-based
nanocarriers are widely used in biomedical applications, such as imaging, differentiation,
fluorescent labeling, clinical diagnosis, and drug delivery [105]. To enhance and optimize
the application of FePt nanoparticles in MRI, a magnetic kaolinite and montmorillonite
composite material is used to adsorb a large amount of FePt nanoparticles in realizing
optimal MRI conditions (Figure 10a,c). The fine particles of kaolinite and montmorillonite
have stable chemical structures, uniformly distributed pore structures, and high adsorption
capacities. They can adsorb different substances in their layered structures, such as FePt
nanoparticles or chemotherapeutic drugs. The novel ceramic-combined FePt nanocom-
posites exhibit enhanced magnetic flux, as seen in Figure 10b (according to the vibrating
sample magnetometer, the magnetic field of the nanocomposites is approximately 78%
higher than that of the FePt particles). FePt nanoparticles have excellent magnetocaloric
effects. Their heating capacity can be substantially increased when combined with kaolinite
and montmorillonite. The temperature can be increased to nearly 50 ◦C, and thus, HCC
cancer cells can be killed by MFH [108]. In addition to MFH, HCC can also be diagnosed in
mice using high-precision MRI after enhancement of the magnetic flux through composite
materials (Figure 10d).
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7.1.3. Breast Cancer

Medical research has led to the development of powerful treatments against breast
cancer. Thanks to advances in science, we can pinpoint the specific weapons that are
most effective for individual patients, which is a process that is referred to as precision
medicine. Precision medicine is a growing trend in modern medicine, and it involves the
creation of treatment plans that are best suited to each individual’s disease, environment,
and lifestyle. Selecting treatments for individual patients and developing care plans that
are tailored to individual needs is not a new concept. The most dramatic changes have
come from our knowledge of genetics and cancer biology, including that of breast cancer.
Precision medicine is already being used in breast cancer treatment. For example, iron-
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based nanoparticles can detect whether a breast cancer tumor cell is making excessive
amounts of HER2 protein. If it is, then the tumor is classified as HER2-positive, which can
be effective if a drug-targeting HER2 is used.

Another example is genetic testing for women with a strong family history of breast
cancer. Specific genetic mutations, such as BRCA1 or BRCA2, can substantially increase the
risk of developing breast cancer. Women with these genes can reduce the cancer risk by
initiating preventive measures more often and earlier, such as through mammography and
MRI using iron-based contrast for the observation of T2-weighted MRI images. In addition,
we can use these modern genetic tests for breast cancer to determine the breast-cancer-
recurrence rate and whether post-surgical chemotherapy would be beneficial. Increasingly,
such tests are guiding physicians in making treatment decisions. As more biomarkers
are identified and more treatments are developed, the precision of breast cancer care will
become more accurate. When these biomarkers are used to guide iron-based materials
into breast cancer cells, the iron nanoparticles can be used to thermally kill the tumor
tissue by MFH to obtain targeted therapeutic results [119]. Wang et al. developed a heat-
shrinkable, injectable biodegradable material composed of hydroxypropyl methylcellulose
(HPMC), polyvinyl alcohol (PVA), and Fe3O4. The authors chose MB-231 for the in vitro
experiments to show that the ablation of tumors is positively correlated with the weight
of the HPMC/Fe3O4, iron content, and heating time. This novel, safe, and biodegradable
material will facilitate the technological transformation of MFH, and it is also expected
to introduce new concepts to the field of biomaterial research. Moreover, Tseng et al.
used hydroxyapatite (HAP) as a drug carrier for breast cancer treatment via MFH and
chemotherapy. The authors developed bifunctional nanoparticles (Pt–Fe-HAP) made of
HAP containing iron and platinum ions for combination therapy [120].

7.2. Promotion of Osteoblast, Fibroblast, and Bone Marrow Mesenchymal Stem Cell Proliferation

Biocompatible synthetic bone grafting based on BGs is widely used in orthopedics and
dentistry. Clinically, similar results to those shown in Figure 9b,f, can be achieved using
BGs alone or in combination with other bone grafts for filling bone defects in periodontal
surgery with transformation into HA via the body fluid immersion method [121]. A
common ceramic material that contains calcium phosphate, HA is biocompatible and
bone resorptive; hence, it is the bone substitute that is most widely used in bone tissue
engineering, functioning as a platform facilitating bone regeneration [122–124].

The technological development of multifunctional materials has been the focus of
the research in recent years. For example, silica materials embedded in a light-induced
fever agent can be exploited in both photothermal therapy and near-infrared fluorescence
imaging [125]. As another example, Fe3O4 nanoparticles are of use in thermal drug re-
lease and MRI when combined with a temperature-sensitive polymer and when folic acid
(FA) molecules are grafted onto their surface [126]. HA nanoparticles are suitable for
T1-weighted MRI when processed to contain europium (Eu3+) and gadolinium (Gd3+)
ions, and they can also be modified with FA molecules to target cancer cells [127]. More-
over, researchers have also reported the use of multifunctional HA nanorods in actual
practice [128]. The potential for great demand is beyond doubt, given the scarcity of ce-
ramic substrates combined with iron-based nanoparticles. Wang et al. generated BGs using
3D printing after loading iron-based nanoparticles onto the surface, and they observed
bone tissue repair and regeneration through MRI (Figure 9c). Through microscopy, they
maintained the proliferation and growth state of the bone marrow mesenchymal stem
cells by creating muffin-like 3D block structures and loading them with iron nanomaterials
(Figure 9d,e). They confirmed that the ceramic material could be used to repaired the bone
defect by generating HA under biomimetic body fluid.

7.3. Other Biological Applications Related to Drug Release

Owing to the sensitivity and detection limits, we cannot use conventional biochemical
assays to distinguish slight differences. Zuo et al. produced monoatomic iron test strips by the
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dropwise addition of an aqueous hydrogen peroxide solution to detect the catalytic effect of
butyrylcholinesterase in combination with image capture using a cellphone [129]. The combina-
tion of the cell phone-photo function to obtain fluorescent images is expected to promote further
development in the field of portable detectors. Ma et al. synthesized four nitrogen–ligand
monoatomic iron–carbon materials to mimic hydrogen peroxidase and superoxide dismutase to
break down intracellular reactive oxygen species and prevent apoptosis [91]. Xu et al. used an
organometallic framework containing monatomic iron to suppress the inflammatory response
and accelerate tissue growth in a wound-healing experiment [130].

8. Conclusions

Of the substantial applications of magnetic nanoparticles combined with ceramic
materials in the biomedical field that were introduced in this review, most are still in the
phase of clinical testing or at the laboratory stage, except for contrast agents, which are
currently available in commercial form and have been used in clinical diagnosis, indicating
that there are still numerous bottlenecks to be overcome before magnetic nanoparticles
can be practically applied in the biomedical field—examples of these challenges range
from the selection of ceramic materials and the synthesis of magnetic nanoparticles to the
functionalization of nanoparticle surfaces. In addition to the applications that we describe
in this paper, new applications of magnetic nanoparticle composite ceramic materials
include in vivo cell-specific material calibration, sensing and tracking, and tissue engineer-
ing for regulating and accelerating tissue or cell growth. In addition, the integration of
magnetic guidance technology, magnetic thermal therapy technology, and MRI monitoring
technology is bound to be among the future trends in development.
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