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Abstract: Previously, we found that exogenous ganglioside GM3 had an antiatherosclerotic efficacy
and that its antiatherosclerotic efficacy could be enhanced by reconstituted high-density lipopro-
tein (rHDL). In this study, we hypothesized that GM3-functionalized rHDL (i.e., GM3-rHDL) as a
nanocarrier can promote the efficacy of traditional antiatherosclerotic drugs (e.g., statins). To test
this hypothesis, lovastatin (LT) was used as a representative of statins, and LT-loaded GM3-rHDL
nanoparticle (LT-GM3-rHDL or LT@GM3-rHDL; a mean size of ~142 nm) and multiple controls
(e.g., GM3-rHDL without LT, LT-loaded rHDL or LT-rHDL, and other nanoparticles) were pre-
pared. By using two different microsphere-based methods, the presences of apolipoprotein A-I
(apoA-I) and/or GM3 in nanoparticles and the apoA-I-mediated macrophage-targeting ability of
apoA-I/rHDL-containing nanoparticles were verified in vitro. Moreover, LT-GM3-rHDL nanopar-
ticle had a slowly sustained LT release in vitro and the strongest inhibitory effect on the foam cell
formation of macrophages (a key event of atherogenesis). After single administration of rHDL-
based nanoparticles, a higher LT concentration was detected shortly in the atherosclerotic plaques of
apoE−/− mice than non-rHDL-based nanoparticles, suggesting the in vivo plaque-targeting ability of
apoA-I/rHDL-containing nanoparticles. Finally, among all nanoparticles LT-GM3-rHDL induced the
largest decreases in the contents of blood lipids and in the areas of atherosclerotic plaques at various
aortic locations in apoE−/− mice fed a high-fat diet for 12 weeks, supporting that LT-GM3-rHDL
has the best in vivo antiatherosclerotic efficacy among the tested nanoparticles. Our data imply that
GM3-functionalized rHDL (i.e., GM3-rHDL) can be utilized as a novel nanocarrier to enhance the
efficacy of traditional antiatherosclerotic drugs (e.g., statins).

Keywords: ganglioside GM3; atherosclerosis; reconstituted high-density lipoprotein (rHDL);
lovastatin (LT); drug delivery system; statins; ApoA-I

1. Background

Gangliosides are a large family of glycosphingolipids (GSL) containing one or more
sialic acid residues. As the simplest member of the ganglioside family, ganglioside GM3
contains only one sialic acid residue and is the precursor of all complex gangliosides [1].
Based on diversity of ceramide structures which are composed of sphingosine and fatty
acids, several dozen GM3 molecular species exist due to different combinations of chain
length, hydroxylation, and unsaturation of fatty acid chains [2]. GM3 has been reported
to play important roles in many cellular activities (e.g., cell recognition, adhesion, and
signal pathways) and to corelate with some diseases including cancers [3,4], impaired
hearing [5,6], wound healing [7,8], diabetes [9,10], arthritis [11,12], as well as atherosclero-
sis [13,14]. Accumulating evidence supports that exogenous GM3 and its mimetics can be
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used to treat these diseases [15,16]. Recently, via both in vitro and in vivo experiments, we
also reported that exogenous GM3 has an inhibitory efficacy against atherosclerosis by influ-
encing multiple atherosclerotic steps (e.g., the size, charge, stability, oxidation susceptibility,
cellular recognition/internalization of low-density lipoproteins (LDL), monocyte-adhering
ability of endothelial cells, and lipid deposition in macrophages), implying its potential of
being recruited as an antiatherosclerotic drug [13].

High-density lipoprotein (HDL) is one of the five major plasma lipoproteins that are
the nanocarriers of lipids in blood circulation. Naturally, HDL functions as a cholesterol
transporter during the reverse cholesterol transport (RCT) from the peripheral tissues
to the liver for cholesterol excretion. Similar to other lipoprotein types, HDL also has a
core–shell structure with an esterified cholesterol-containing hydrophobic core surrounded
by a monolayer shell which is mainly made up of phospholipids, free cholesterol, and
apolipoproteins (e.g., apoA-I and apoA-II). Due to this specific core–shell structure, other
molecules (particularly lipophilic molecules) can also be delivered by HDL. Inspired by
this structural property, reconstituted HDL (rHDL) has been developed as a novel drug
delivery system and applied to transport different drugs for various diseases [17,18].

Another specific property of HDL/rHDL is the existence of apoA-I capable of being
specifically recognized by SR-BI (i.e., scavenger receptor class B type 1, a HDL recep-
tor) [19,20], which is highly expressed on the surfaces of macrophages in atherosclerotic
lesion and tumors [21–23]. Therefore, rHDL nanoparticles have the ability of targeting
atherosclerotic plaques and have been applied as a drug nanocarrier in the treatment of
atherosclerosis [24–27]. Recently, we also tested and found that exogenous GM3 delivered by
rHDL (i.e., GM3-rHDL) has a better antiatherosclerotic efficacy than exogenous GM3 alone
due to the lesion-targetability of rHDL [28]. Therefore, exogenous GM3 can be regarded
as an antiatherosclerotic drug which is delivered by rHDL. On the other hand, GM3 is a
glycosphingolipid which can integrate into the phospholipid monolayer of rHDL. From this
perspective, the GM3-rHDL nanoparticle can be regarded as a novel nanocarrier with en-
hanced antiatherosclerotic efficacy. Then, we hypothesized that the GM3-rHDL nanoparticle
as an upgraded delivery system of rHDL can deliver other traditional antiatherosclerotic
drugs (e.g., statins) for further improvement of the antiatherosclerotic efficacy. In this study,
lovastatin (LT) was utilized as a traditional antiatherosclerotic drug to test the hypothesis.

2. Materials and Methods
2.1. Preparations of Nanoparticles

Nanostructured lipid carriers (NLC), reconstituted high-density lipoprotein (rHDL),
GM3-rHDL, and LT-loaded nanoparticles were prepared by the thin-film dispersion method.
Briefly, 45 mg egg phospholipid (PC, Lipoid E80; Lipoid GmbH, Germany), 10 mg choles-
terol (Solarbio Science & Technology Co., Shanghai, China), 20 mg cholesteryl oleate, 15 mg
glycerol trioleate, and 5 mg octadecylamine (the latter three were from Sigma, Saint Louis,
MO, USA) were dissolved in 15 mL of methanol/chloroform (1:1, v/v) with or without
5 mg lovastatin (LT; Aladdin, Shanghai, China). Then, the lipid mixture was mixed with or
without 0.5 mg ganglioside GM3 (sodium salt; AdipoGen, Fuellinsdorf, Switzerland) in an
egg-plant flask and dried by a rotary evaporator (RE2000A; Shanghai Yarong Biochemistry
Instrument Factory, Shanghai, China) at 60 rpm under vacuum at 45 ◦C for 1 h to remove
the organic solvent. After adding 15 mL of 0.02 M Tris buffer (pH 8.0) containing 10 mg
sodium cholate (Solarbio, Shanghai, China) in the flask and rotating again at 60 rpm at
45 ◦C for 1 h, the thin film was dispersed by vortexing for 15 min and ultrasonicating in
an ice bath. After filtering with a 0.22 µm sterile filter, the NLC, GM3-NLC, LT-NLC, and
LT-GM3-NLC suspensions were obtained, respectively. Next, 50 µg of human recombinant
apoA-I (Cloud-clone, Katy, TX, USA) was added into 2 mL of LT-NLC or GM3-NLC or
LT-GM3-NLC and shook at 100 rpm at 37 ◦C for 2 days. After removing free LT and sodium
cholate by dialyzing in a 10 kDa dialysis bag (Solarbio, Shanghai, China) at 4 ◦C for 2 days,
LT-rHDL (or LT@rHDL), GM3-rHDL, and LT-GM3-rHDL (or LT@GM3-rHDL) suspensions
were obtained, respectively, and used immediately or stored at 4 ◦C.
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2.2. Validation of apoA-I and/or GM3 in Prepared Nanoparticles via a Microsphere-Based Method

A microsphere-based method was used to determine the presences of apoA-I and GM3
in apoA-I-/GM3-containing nanoparticles, as reported in our previous studies, with minor
revision [28]. Briefly, the commercial streptavidin-coated silica microspheres/beads (Bangs
Laboratories, USA) were diluted to 1 × 105 beads/mL in biotin–streptavidin binding buffer,
washed three times with PBS to remove the reagents (e.g., EDTA) in a commercial product,
and resuspended in 1 mL PBS. The streptavidin-coated beads were incubated successively
with biotinylated anti-apoA-I antibody (Cloud-Clone, Katy, TX, USA) at 37 ◦C for 1 h
and with the nanoparticle suspensions at 37 ◦C for 12 h. After washing with PBS, the
beads were resuspended in PBS for the following experiments. For the determination of
apoA-I presence in nanoparticles, the streptavidin-coated beads were then stained with
Nile Red (10 µg/mL; Sigma, Burlington, MA, USA) at 37 ◦C for 20 min in dark. After
washing three times with PBS, the beads were subjected to confocal microscopy (Carl Zeiss,
Oberkochen, Germany) and flow cytometry (Thermo, Waltham, MA, USA), respectively.
For the determination of GM3 presence in nanoparticles, the streptavidin-coated beads
were further incubated successively with anti-GM3 IgM (Amsbio, Abingdon, UK) at 37 ◦C
for 1 h and with AlexaFluor488-conjugated goat anti-mouse IgM antibody (Invitrogen,
Carlsbad, CA, USA) at 37 ◦C for 1 h. After washing with PBS, the beads were subjected to
confocal microscopy and flow cytometry, respectively.

2.3. Characterizations of the Main Nanoparticles

The mean size, polydispersity index (PDI), and zeta potential of LT-NLC, LT-rHDL, GM3-
rHDL, and LT-GM3-rHDL nanoparticles were measured by dynamic light scattering (DLS)
Analyzer (Zetasizer nano zs90, Malvern, UK) as previously reported. The morphologies of LT-
NLC, LT-rHDL, GM3-rHDL, and LT-GM3-rHDL nanoparticles were detected by a transmission
electron microscope (JEOL JEM-2100 TEM, Japan) after staining with 2% (w/v) uranyl acetate.

The concentration of LT-loaded in nanoparticles was measured by the HPLC method.
A COSMOSIL 5C18-MSII column (250 mm × 4.6 mm) was used at 30 ◦C. Approximately
80% methanol (v/v) of chromatographic grade was utilized as the mobile phase (flow rate:
1 mL/min). The detected wavelength was 238 nm. The standard curve was achieved by
using standard LT solutions (1, 2, 4, 8, and 16 µg/mL). The entrapment efficiency (EE) and
drug loading efficiency (DL) of LT-loading nanoparticles were calculated according to the
following equations: EE (%) = W/Wt × 100% and DL (%) = Q/Qt × 100%, where W and Q
are the amount of LT in each drug carrier whereas Wt and Qt are the total amount of the
feeding LT and the feeding materials.

2.4. In Vitro Determination of the Macrophage-Targeting Ability of apoA-I-Bearing Nanoparticles
via Another Microsphere-Based Method

Mouse RAW264.7 macrophages were purchased from Xiangya Central Experiment
Laboratory (Xiangya, China) and routinely cultured in RPMI 1640 medium (Gibco, New
York, NY, USA) supplemented with 10% FBS and 1% antibiotic mixture (100 Unit/mL peni-
cillin and 100 µg/mL streptomycin). The cells were used at passage ~5 in the experiments.

Another microsphere-based method was utilized to determine the macrophage-targeting
ability of apoA-bearing nanoparticles as reported in our previous studies with minor
revision [28]. Briefly, the commercial streptavidin-coated silica beads were diluted to
1 × 105 beads/mL in biotin-streptavidin binding buffer, washed three times with PBS, and
resuspended in 1 mL PBS. The streptavidin-coated beads were incubated in a 5% CO2
incubator successively with biotinylated anti-apoA-I antibody (or with the buffer as a
control) at 37 ◦C for 1 h and with the nanoparticle suspensions at 37 ◦C for 12 h. After
washing with PBS and resuspending in PBS, the beads were incubated with RAW264.7
macrophages in a petri dish at 37 ◦C for 1 h. After rinsing three times with PBS to remove
free beads, the cells were fixed with 2.5% glutaraldehyde for 20 min and subjected to an
inverted microscope (Nikon LH-M100CB, Japan). The number of beads on each cell and
the percentage of bead-bearing cells in total cells were calculated for quantitative analysis.
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2.5. In Vitro Determination of the Inhibitory Effect of Nanoparticles on ox-LDL-Induced Lipid
Deposition in Macrophages

Oxidized low-density lipoprotein (oxLDL) was used to develop an atherosclerotic cell
model by stimulating lipid deposition in macrophages (or foam cell formation). In this ex-
periment, the cells with no oxLDL stimulation and no nanoparticle treatment and the cells
with oxLDL (100 µg/mL) stimulation but no nanoparticle treatment were recruited as a blank
control group and a model group, respectively, whereas in the other groups the cells were
stimulated/treated by both oxLDL (100 µg/mL) and nanoparticles. After incubating in a 5%
CO2 incubator at 37 ◦C for 24 h, the cells were washed three times with PBS, fixed with 2.5%
glutaraldehyde for 20 min, washed three times again with PBS, and stained with Oil Red O by
treating cells successively with 60% isopropanol for 3 min, Oil Red O (Solarbio, Beijing, China)
for 20 min, and 60% isopropanol three times each for 1 min. After washing with PBS, the cells
were observed by the inverted microscope, and the lipid deposition in cells (i.e., the ratio of the
red area in cells to the total area of cells in an image) was analyzed by ImageJ software.

2.6. Animals, Diet, and Treatments

Eight-week-old male apoE−/− C57BL/6 mice (~21–23 g) were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). To establish
atherosclerotic mouse model, the mice were fed a high-fat diet (Hunan SJA Lab Animal Ltd.,
Changsha, China) which contains 21% fat, 0.15% cholesterol, and basic forage. Ethics ap-
proval for this study was obtained from the Ethics Committee of Jiangxi University of
Chinese Medicine (Approval number: JZLLSC2017-205; 28 December 2017). All animal
experiments were performed in full compliance with the National Institute of Health Guide
for the Care and Use of Laboratory Animals.

For the in vivo experiments of drug efficacy, the apoE−/− mice were randomly divided
into the following 6 groups (n = 6 in each group): a control group (mice fed a chow diet
for 12 weeks), a model group (mice fed a high-fat diet for 12 weeks), and the groups fed
a high-fat diet for 12 weeks and meanwhile intravenously treated once every three days
with ~200 µL of each of the nanoparticle solutions (for the control and model groups,
~200 µL of saline was administrated; the concentration of GM3 was 0.3 mg/kg for GM3
or GM3-containing groups) via tail vein injection. For the in vivo experiments of drug
pharmacokinetics and tissue distribution, apoE−/− mice were also fed a high-fat diet. After
12 weeks, the mice were fasted for 12 h and subjected to the following experiments.

2.7. Lipid Profiling of Blood Samples

At the end of the 12-week treatments of nanoparticles, the mice were fasted for 8 h,
and the blood of each mouse was collected for serum preparation. The concentrations of
four major lipids in sera including total cholesterol (TC), triglyceride (TG), low-density
lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C) were
measured with an automatic biochemical analyzer (Beckman Coulter AU480, Brea, CA,
USA) by using corresponding Kits (Anhui Iprocom Biotechnology Co., Ltd.; Hefei, China).

2.8. Detection of Atherosclerotic Lesions in Full-Length Aorta, Aortic Arches, and Aortic Roots

Atherosclerotic lesions in different parts of aorta of each mouse were processed,
imaged, and quantified as reported previously [28]. For the atherosclerotic lesions in aortic
arch, the heart and aortic arch on a blue background were photographed immediately after
perfusion. Then, the heart coupling with entire aorta including the aortic arch, thoracic
aorta, and abdominal aorta was taken from each mouse, and cut into two pieces, i.e., the
aortic part for imaging the atherosclerotic lesions in full-length aorta and the heart part
for imaging the atherosclerotic lesions in aortic root. The aortic part was fixed with 4%
paraformaldehyde, opened longitudinally, stained with Oil Red O, and imaged. The heart
part was dehydrated in 30% sucrose solution at 4 ◦C for >12 h, frozen rapidly, embedded
in tissue OCT-freeze medium, sliced (a thickness of ~8–10 µm), fixed with 95% ethanol,
stained with hematoxylin-Oil Red, and imaged.
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2.9. Measurements of In Vitro Drug Release and of In Vivo Drug Pharmacokinetics and Drug
Distribution in Different Tissues

The in vitro drug release profile of LT from LT-loaded nanoparticles (LT-NLC, LT-
rHDL, and LT-GM3-rHDL, respectively) was detected by using the dialysis method and
using a dialysis bag with a molecular weight cut-off of ~10 kDa, as previously reported [28].
The dialysis of each sample (5 mL in a dialysis bag) was performed in 200 mL of release
buffer (0.05% SDS in PBS, pH 7.4) at 25 ◦C for 72 h which was stirred at 50 rpm. At each
indicated time point, 0.5 mL of release buffer was taken out (replaced by 0.5 mL of fresh
buffer) and detected via HPLC to determine the released LT concentration.

For the evaluation of in vivo drug pharmacokinetics, the concentrations of LT in blood
were measured at different time points (5 min, 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 6 h, 8 h,
12 h, 24 h, 36 h, and 48 h, respectively) after a single drug administration of the LT-loading
nanoparticles (i.e., LT-NLC, LT-rHDL, and LT-GM3-rHDL, respectively; 2 mg/kg of LT), as
previously reported [28]. Briefly, an aliquot of 200 µL plasma samples were mixed with 1 mL
methanol of chromatographical grade and 3 µg simvastatin (internal standard), centrifugated
at 12,000 rpm for 5 min, filtered with 0.22 µm filter, and subjected to HPLC for LT concentration
measurements. A standard curve was achieved by using standard LT solutions (1, 2, 4, 8, and
16 µg/mL) in each of which 2 µg simvastatin was added as an internal standard.

For evaluation of the in vivo distribution of LT in different tissues (the blood, heart,
liver, lung, spleen, kidney, and atherosclerotic lesions, respectively), the concentrations of
LT in these tissues were measured at 0.5 h after a single drug administration (i.e., LT-NLC,
LT-rHDL, and LT-GM3-rHDL, respectively; 2 mg/kg of LT), as previously reported [28].
Briefly, after being taken, weighted, and cut into small pieces, approximately 0.2 g tissues
were mixed with 2 µg simvastatin (internal standard) and homogenized thoroughly in
1 mL of methanol. After centrifugation at 12,000 rpm for 10 min and filtration via a filter of
0.22 µm, the samples were subjected to HPLC. The LT standard curve was also achieved by
using standard LT solutions with simvastatin as the internal standard.

2.10. Statistical Analysis

All data from at least three independent experiments are expressed as the mean ± SD.
Student’s t-test between two groups or one-way ANOVA among multiple groups was used for
statistical analyses. When p < 0.05, a statistically significant difference was considered. For post
hoc analysis during one-way ANOVA, Bonferroni’s multiple comparisons test was performed.

3. Results and Discussion

To test our hypothesis, the traditional antiatherosclerotic (also cholesterol-lowering)
drug lovastatin was encapsulated in GM3-rHDL nanoparticles producing LT-GM3-rHDL
(or LT@GM3-rHDL) nanoparticles. For purpose of comparison, LT-loaded nanostructured
lipid carrier (i.e., LT-NLC or LT@NLC), LT-loaded rHDL (i.e., LT-rHDL or LT@rHDL), and
GM3-rHDL nanoparticles were also prepared.

Prior to the characterization of these nanoparticles, the presences of apoA-I and/or
GM3 in the nanoparticles were verified by using a microsphere-based method. For the
validation of apoA-I in apoA-I-containing nanoparticles (e.g., LT-rHDL, GM3-rHDL, and LT-
GM3-rHDL nanoparticles), nanoparticles were conjugated with streptavidin-coated silica
beads (~5 µm in diameter) by using biotinylated anti-apoA-I antibody as a linker and fluo-
rescently stained with Nile Red O in red for the lipids in the nanoparticles (left in Figure 1A);
for the validation of GM3 in GM3-containing rHDL nanoparticles (e.g., GM3-rHDL and
LT-GM3-rHDL nanoparticles), nanoparticles were conjugated with streptavidin-coated
silica beads by using biotinylated anti-apoA-I antibody as a linker and fluorescently stained
by incubating first with anti-GM3 antibody and then with AlexaFluor488-conjugated sec-
ondary antibody in green (right in Figure 1A); the successful detection of fluorescence on
beads could reflect the existence of apoA-I or GM3 in nanoparticles (Figure 1A). The exper-
imental data show that red fluorescence was detected on the beads in each of the rHDL,
GM3-rHDL, and LT-GM3-rHDL groups (Figure 1B,C) and green fluorescence was observed
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on the beads in each of the GM3-rHDL and LT-GM3-rHDL groups (Figure 1D,E) by confocal
microscopy and flow cytometry, respectively. The results confirmed that rHDL, GM3-rHDL,
and LT-GM3-rHDL nanoparticles contained apoA-I molecules and that GM3-rHDL and
LT-GM3-rHDL nanoparticles contained GM3 molecules.
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LT-rHDL or LT@rHDL, GM3-rHDL, LT-GM3-rHDL or LT@GM3-rHDL, respectively), and finally 
stained with Nile Red O (red). (D,E) Validation of GM3 via confocal microscopy (D) and flow cy-
tometry (E), respectively. Streptavidin-coated silica beads were first coated with biotinylated anti-
apoA-I antibody, then incubated with different samples, subsequently labeled with anti-GM3 anti-
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representative flow cytometric data; right: quantification of mean fluorescence intensity of beads 
(**** p < 0.0001 compared with the control). 

Figure 1. Validation of ApoA-I and/or GM3 in LT-rHDL (or LT@rHDL), GM3-rHDL, and LT-GM3-
rHDL (or LT@GM3-rHDL) nanoparticles via a microsphere-based method. (A) Schematic diagram
showing the principle of the method. (B,C) Validation of apoA-I via confocal microscopy (B) and
flow cytometry (C), respectively. Streptavidin-coated silica beads were first coated with biotinylated
anti-apoA-I antibody, then incubated with different samples (PBS or control, LT-NLC or LT@NLC, LT-
rHDL or LT@rHDL, GM3-rHDL, LT-GM3-rHDL or LT@GM3-rHDL, respectively), and finally stained
with Nile Red O (red). (D,E) Validation of GM3 via confocal microscopy (D) and flow cytometry (E),
respectively. Streptavidin-coated silica beads were first coated with biotinylated anti-apoA-I antibody,
then incubated with different samples, subsequently labeled with anti-GM3 antibody, and finally
stained with AlexaFluor488-conjugated secondary antibody (green). (C,E) Left: representative flow
cytometric data; right: quantification of mean fluorescence intensity of beads (**** p < 0.0001 compared
with the control).
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Then, the morphology and size of these nanoparticles were characterized by trans-
mission electron microscopy (TEM) and dynamic light scattering (DLS) analyzer. All
the nanoparticles displayed a spherical shape and a size of less than 200 nm in diameter
(Figure 2A–D), and the DLS analyzer quantified a slightly larger mean size (~142 nm)
of the LT-GM3-rHDL nanoparticle than that (~128 nm and ~115 nm, respectively) of the
LT-rHDL or GM3-rHDL nanoparticle (Table 1). The entrapment efficiency (EE) and drug
loading efficiency (DL) of lovastatin in the LT-GM3-rHDL nanoparticle were ~74.7% and
~4.75%, respectively (other LT-loaded nanoparticles had similar EE and DL values; Table 1).
The in vitro drug release profiling revealed that both the LT-rHDL and LT-GM3-rHDL
nanoparticles have a much more slowly sustained release of lovastatin than the LT-NLC
nanoparticle (Figure 2E).
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respectively.

Table 1. Mean size, PDI, Zeta potential, EE, and DL (mean ± SD, n = 3).

LT-NLC LT-rHDL GM3-rHDL LT-GM3-rHDL

Mean size (nm) 86.3 ± 3.1 128.2 ± 1.5 114.8 ± 2.5 142.3 ± 3.6
Polydispersity index (PDI) 0.48 ± 0.03 0.35 ± 0.18 0.49 ± 0.03 0.46 ± 0.03

Zeta potential (mV) −32.2 ± 2.4 −24.6 ± 0.6 −30.2 ± 3.2 −34.7 ± 3.4

To further confirm the existence of apoA-I in apoA-I-containing nanoparticles (i.e.,
LT-rHDL, GM3-rHDL, and LT-GM3-rHDL) and to verify the apoA-I-mediated macrophage-
targeting ability of these nanoparticles, an in vitro experiment via another microsphere-
based method was performed (Figure 3). Only apoA-I-containing nanoparticles were able
to link onto the surface of a streptavidin-coated microbead via the streptavidin-biotin
and antibody (i.e., anti-apoA-I)-antigen (i.e., apoA-I) interactions and could be recog-
nized by the receptors for apoA-I (e.g., SR-B1) expressed on the surface of cells (e.g.,
macrophages); therefore, the binding of microbeads onto cell surfaces could indirectly
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verify the existence of apoA-I and the apoA-I-mediated macrophage-targeting ability of the
nanoparticles (Figure 3A). Our data showed that microbeads were observed on cells only in
the apoA-I-containing groups (i.e., the LT-rHDL, GM3-rHDL, and LT-GM3-rHDL groups;
Figure 3D,F,H, respectively) instead of the apoA-I-absent groups (i.e., the control, LT-NLC,
GM3-NLC, and LT-GM3-NLC groups; Figure 3B,C,E,G, respectively) and that ~80% cells
had microbeads (Figure 3I) with an average number of 3–4 beads per cell (Figure 3J) in the
apoA-I-containing groups. Therefore, our data further confirmed the presence of apoA-I in
apoA-I-containing nanoparticles and verified the apoA-I-mediated macrophage-targeting
ability of the apoA-I-containing nanoparticles.
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Figure 3. In vitro validation of cell-targeting ability of apoA-I-bearing (i.e., rHDL) nanoparticles
via another microsphere-based method. (A) Schematic diagram showing the basic principle of the
method. Streptavidin-coated silica beads were first coated with biotinylated anti-apoA-I antibody,
then incubated with different samples (PBS or control, LT-NLC, LT-rHDL, GM3-NLC, GM3-rHDL,
LT-GM3-NLC, LT-GM3-rHDL, respectively), and finally incubated with RAW264.7 macrophages
expressing scavenger receptors (SR-B1) which can specifically recognize apoA-I. (B–H) Representative
image in each group (magnification: 200×). (I) Quantification of the percentage of bead-bearing cells
in total cells. (J) Quantification of the average bead number per cell in each group. ** p < 0.01 and
**** p < 0.0001 compared with the control.
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In the intima of vessel wall, macrophage is the major cell type responsible for athero-
genesis via the deposition of lipids (particularly cholesterol) derived from native or oxi-
dized low-density lipoprotein (nLDL or oxLDL) under which condition macrophages are
transformed into foam cells. To compare the effects of different nanoparticles on the lipid
deposition in macrophages, as an in vitro atherosclerotic cell model cultivated macrophages
were stimulated with 100 µg/mL oxLDL for 24 h to induce intracellular lipid deposition
which were fluorescently stained in red with Oil Red O. Our data showed that a strong
red fluorescence was observed in the model (oxLDL only) group, implying the successful
induction of lipid deposition by oxLDL, and that other treatments (i.e., LT-NLC, LT-rHDL,
GM3-rHDL, and LT-GM3-rHDL, respectively) caused decreases in fluorescence intensity
to different extents (Figure 4A–F). The quantitative analysis also confirmed the observa-
tion and revealed that among these nanoparticles the LT-GM3-rHDL nanoparticle had the
strongest in vitro inhibitory effect on oxLDL-induced lipid deposition (Figure 4G), implying
the potentially higher antiatherosclerotic efficacy of the LT-GM3-rHDL nanoparticle than
both the LT-rHDL and GM3-rHDL nanoparticles.

Pharmaceutics 2022, 14, 2534 10 of 15 
 

 

successful induction of lipid deposition by oxLDL, and that other treatments (i.e., LT-
NLC, LT-rHDL, GM3-rHDL, and LT-GM3-rHDL, respectively) caused decreases in fluo-
rescence intensity to different extents (Figure 4A–F). The quantitative analysis also con-
firmed the observation and revealed that among these nanoparticles the LT-GM3-rHDL 
nanoparticle had the strongest in vitro inhibitory effect on oxLDL-induced lipid deposi-
tion (Figure 4G), implying the potentially higher antiatherosclerotic efficacy of the LT-
GM3-rHDL nanoparticle than both the LT-rHDL and GM3-rHDL nanoparticles. 

 
Figure 4. Comparison of LT-GM3-rHDL (or LT@GM3-rHDL) nanoparticles with other nanoparticles 
about the in vitro inhibitory effect on oxLDL-induced lipid deposition in macrophages. The 
RAW264.7 macrophages were incubated with the following samples for 24 h: medium only (i.e., 
control), oxLDL (100 μg/mL) only which was used to induce lipid deposition in cells (or foam cell 
formation), oxLDL + LT-NLC, oxLDL + LT-rHDL, oxLDL + GM3-rHDL, and oxLDL + LT-GM3-
rHDL, respectively. After fixing with 2.5% glutaraldehyde, the cells were stained with Oil Red O. 
(A–F) Representative image in each group (magnification: 200×). (G) Quantification of lipid deposi-
tion (foam cell formation) in macrophages (*** p < 0.001 and **** p < 0.0001 compared with the indi-
cated group). 

Next, the in vivo drug (LT) release profiles in the blood of atherosclerotic mice during 
48 hours after single administration of each of the nanoparticles (LT-NLC, LT-rHDL, and 
LT-GM3-rHDL nanoparticles, respectively) were determined. The data showed that the 
LT-rHDL and LT-GM3-rHDL nanoparticles have a more slowly sustained release of 
lovastatin than the LT-NLC nanoparticle (Figure 5A), coinciding with the in vitro drug 
release data (Figure 2E). Subsequently, the distributions of LT in different tissues (blood, 
heart, liver, spleen, lung, kidney, and plaques, respectively) at 0.5 h after single admin-
istration of each of these nanoparticles were detected (Figure 5B). Besides in blood, LT 
distributed predominantly in the heart, kidney, and lung for LT-NLC, whereas LT distrib-
uted mainly in the lung for LT-rHDL or in the liver for LT-GM3-rHDL. The atherosclerotic 
plaque in both LT-rHDL and LT-GM3-rHDL groups had a higher concentration of LT than 

Figure 4. Comparison of LT-GM3-rHDL (or LT@GM3-rHDL) nanoparticles with other nanoparti-
cles about the in vitro inhibitory effect on oxLDL-induced lipid deposition in macrophages. The
RAW264.7 macrophages were incubated with the following samples for 24 h: medium only (i.e.,
control), oxLDL (100 µg/mL) only which was used to induce lipid deposition in cells (or foam
cell formation), oxLDL + LT-NLC, oxLDL + LT-rHDL, oxLDL + GM3-rHDL, and oxLDL + LT-GM3-
rHDL, respectively. After fixing with 2.5% glutaraldehyde, the cells were stained with Oil Red O.
(A–F) Representative image in each group (magnification: 200×). (G) Quantification of lipid depo-
sition (foam cell formation) in macrophages (*** p < 0.001 and **** p < 0.0001 compared with the
indicated group).
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Next, the in vivo drug (LT) release profiles in the blood of atherosclerotic mice during
48 hours after single administration of each of the nanoparticles (LT-NLC, LT-rHDL, and
LT-GM3-rHDL nanoparticles, respectively) were determined. The data showed that the LT-
rHDL and LT-GM3-rHDL nanoparticles have a more slowly sustained release of lovastatin
than the LT-NLC nanoparticle (Figure 5A), coinciding with the in vitro drug release data
(Figure 2E). Subsequently, the distributions of LT in different tissues (blood, heart, liver,
spleen, lung, kidney, and plaques, respectively) at 0.5 h after single administration of
each of these nanoparticles were detected (Figure 5B). Besides in blood, LT distributed
predominantly in the heart, kidney, and lung for LT-NLC, whereas LT distributed mainly
in the lung for LT-rHDL or in the liver for LT-GM3-rHDL. The atherosclerotic plaque in
both LT-rHDL and LT-GM3-rHDL groups had a higher concentration of LT than that in
the LT-NLC group, implying the plaque-targeting effect of apoA-I (or rHDL)-containing
nanoparticles.
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Figure 5. In vivo release and distribution of LT after a single i.v. drug administration of the indicated
nanoparticles (i.e., LT-NLC in blue, LT-rHDL in red, and LT-GM3-rHDL in green, respectively).
(A) Dynamic changes of LT concentration in the blood of atherosclerotic mice during 48 h after single
administration. (B) The concentrations of LT in different tissues (blood, heart, liver, spleen, lung,
kidney, and plaques, respectively) at 0.5 h after single administration (& and # represent p < 0.05 and
p < 0.0001, respectively compared with LT-NLC).

Finally, to test the in vivo antiatherosclerotic effects of various nanoparticles, apoE-
deficient (apoE−/−) mice fed a high-fat diet for 12 weeks were utilized to establish an
atherosclerotic animal model. After treating with various nanoparticles during the period
of 12 weeks, the lipid profiles (Figure 6) and the atherosclerotic plaques at different loca-
tions (Figure 7) were measured for evaluating the antiatherosclerotic effects of different
nanoparticles. Compared with the control group (apoE−/− mice fed a chow diet; the
first panel of each graph in Figures 6 and 7), the contents of blood lipids (including TG,
TC, LDL-C, and HDL-C) and the areas of atherosclerotic plaques at various locations (i.e.,
aortic full length, aortic arch, and aortic root) dramatically increased in the model group
(apoE−/− mice fed a high-fat diet but without a drug treatment; the second panel of each
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graph in Figures 6 and 7), confirming the successful establishment of the atherosclerotic
mouse model. The experimental data also showed that compared with the model group all
tested nanoparticles (i.e., LT-NLC, LT-rHDL, GM3-rHDL, and LT-GM3-rHDL nanoparticles,
respectively) significantly decreased the contents of blood lipids and the areas of atheroscle-
rotic plaques at various locations, confirming the lipid-lowering and antiatherosclerotic
effects of LT and GM3 or GM3-rHDL, and that the LT-GM3-rHDL nanoparticle induced
the most significant change (the last panel of each graph in Figures 6 and 7), implying
that the LT-GM3-rHDL nanoparticle indeed has the best in vivo antiatherosclerotic effi-
cacy among the tested nanoparticles. However, the difference between GM3-rHDL and
LT-GM3-rHDL was significant only for Figure 6B, probably due to the small study sample
(i.e., type II error).
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Figure 6. Comparison of LT-GM3-rHDL (or LT@GM3-rHDL) nanoparticles with other nanoparticles
about the inhibitory effect on the concentrations of main blood lipids in apoE−/− mice fed a high-fat
diet for 12 weeks. The mice were categorized into 6 groups as follows: saline (control), model (high-fat
diet), LT-NLC, LT-rHDL, GM3-rHDL, and LT-GM3-rHDL groups (in the last three groups the mice fed
a high-fat diet were treated with the nanoparticles). (A) Total cholesterol (TG); (B) Triglyceride (TG);
(C) LDL-cholesterol (LDL-C); (D) HDL-cholesterol (HDL-C). * p < 0.05, ** p < 0.01 and **** p < 0.0001
compared with the indicated group (n = 6).

The better (although not significantly for some considered parameters in the vivo
study) antiatherosclerotic efficacy of LT-GM3-rHDL than each of LT-rHDL, GM3-rHDL,
and LT alone implies the possibility of GM3-containing rHDL (i.e., GM3-rHDL) as a novel
nanocarrier (or an upgraded version of rHDL) of other traditional anti-atherosclerotic
drugs (e.g., statins including lovastatin or LT), confirming our hypothesis mentioned in
the Introduction section. As a drug nanocarrier, the efficacy-enhancing role of GM3-rHDL
may benefit from the two players, rHDL and GM3, both of which have been previously
reported to exert antiatherosclerotic efficacy (although a short-term beneficial effect for
rHDL) by increasing the plaque targetability and/or cholesterol efflux for rHDL [26,29–31]
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and via multiple steps during atherogenesis for GM3 [13]. One possibility of the beneficial
role of GM3 is that the addition of GM3 into rHDL nanoparticles may improve cellular
uptake of the nanoparticles via the interaction between GM3 and CD169 (sialoadhesin
or siglec-1) expressed on cells (e.g., T cells, dendritic cells, macrophages, etc.), based on
which GM3-functionalized gold or polymer nanoparticles have been reported previously
for viral research [32–35]. Another possibility is the lipid-lowering effect of GM3 [13]. The
in vitro experimental data showed that GM3 could reduce the secretion of apolipoprotein
B-100 (the major apolipoprotein in VLDL and LDL) in liver cells [36]. More in-depth
studies will be needed to elucidate the underlying mechanisms. Out data imply that GM3-
rHDL nanoparticle has the potential of being developed as a better delivery system for
traditional antiatherosclerotic drugs (e.g., statins) than rHDL nanoparticle due to enhanced
antiatherosclerotic efficacy by GM3.
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Figure 7. Comparison of LT-GM3-rHDL (or LT@GM3-rHDL) nanoparticles with other nanoparticles
about the inhibitory effect on the formation of atherosclerotic lesions in apoE−/− mice fed a high-fat
diet for 12 weeks. (A) Representative images of full length aorta stained with Oil Red O staining.
(B) Quantification of atherosclerotic plaques in full length aorta. (C) Representative images of aortic
arches showing atherosclerotic plaques. (D) Representative images of aortic root slices stained with
Oil Red O. (E) Quantification of atherosclerotic plaques in aortic root slices. * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001 compared with the indicated group (n = 6).
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