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Abstract: Multidrug-resistant (MDR) superbugs can breach the blood–brain barrier (BBB), leading
to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related
pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibi-
otics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline)
and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these
infections. However, new therapeutic platforms with a broad impact that do not exert off-target
deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-
enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints.
Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the
central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas
editing and, thus, represent a novel platform for conferring protection against infections breaching
the BBB. Here, we discuss the latest scientific research related to gut microbiota- and probiotic-
derived bEVs, and their therapeutic modifications, in terms of regulating neurotransmitters and
inhibiting quorum sensing, for the treatment of neurodegenerative diseases, such as Parkinson’s and
Alzheimer’s diseases. We also emphasize the benefits of probiotic-derived bEVs to human health
and propose a novel direction for the development of innovative heterologous expression systems to
combat BBB-crossing pathogens.

Keywords: blood–brain barrier; extracellular vesicles; gut microbiota; membrane vesicles; meningitis;
probiotics; superbugs

1. Introduction

The blood–brain barrier (BBB) plays a central role in the unique and complex mi-
croenvironment of the central nervous system (CNS) [1]. In particular, it restricts the entry
of drugs and other exogenous molecules, including host immune cells [2] and infectious
pathogens [3]. Nevertheless, opportunistic pathogens can occasionally breach the BBB
and cause serious illnesses, including meningitis and brain abscess [4]. Although the
occurrence of CNS infection is relatively rare, chronic malignancies can result in serious
neurological disorders [5]. Drug-resistant pathogens, including Acinetobacter baumannii,
Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Streptococcus spp. can
enter via the respiratory tract and mucosa and breach the BBB [6]. In the BBB, pathogens
tightly regulate intrinsic virulence mechanisms via drug-resistance pumps [7] and biofilm
formation [8]. Acinetobacter spp., Klebsiella, and S. aureus further modulate the expression
of proinflammatory cytokines [9] and movement of immune cells, thereby destabilizing
the endothelial lining and tight junctions of the BBB [10]. However, due to the complexity
of the brain microenvironment and its associated endothelial tight junctions, transport of
effective antimicrobials and therapies is challenging [11]. In fact, the physiological nature
of the CNS environment prevents 90–95% of antimicrobials from progressing toward drug
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development [12]. Various nanoparticles (NPs), especially liposomal NPs [13,14], and their
derivatives (e.g., polysaccharide and polyester NPs) [15,16] are considered effective and
innovative drugs against pathogens that invade the BBB. However, NP-associated toxic-
ity [17] and dose-dependent mortality [18] seriously limit their application. It is, therefore,
necessary to consider alternatives, particularly those that can mimic non-immunogenic
biological entities [19].

Membrane vesicles or extracellular vesicles (EVs) play crucial roles in polymicrobial
interkingdom communication [20]. Microbial evolution involves the continuous transfer
of metabolites via nanosized vesicles that carry important biomolecules, virulence factors,
and membrane receptors of the cells from which they originate [21] to proximal and distant
cells via blood and lymphatic systems. These vesicles range in size from 20 to 400 nm.
The release of EVs is a general phenomenon performed by many cell types, including
those of eukaryotes, Gram-negative/-positive bacteria, and archaea [22], as a means of
communicating with other cells. In particular, bEVs have been characterized as the delivery
vehicles of host–microbe interactions, responsible for the delivery of signaling molecules,
such as autoinducers, virulence factors [23,24], and antibiotic genes [25,26]. In contrast
to pathogen–host interactions, mucosal- or gut microbiota-derived bEVs contribute to
homeostasis, immune system regulation, bowel movements, and the gut–brain axis [27].
Based on their immunomodulatory properties, gut microbiota-derived bEVs are currently
employed in therapies aimed at promoting both humoral and cell-mediated responses [28].
Among them, tuning probiotic-derived bEVs, for interactions between interstitial cells
and the gut–brain axis, represents a novel strategy for promoting immune responses
during infectious disease [29]. Furthermore, this strategy can benefit from the ease of
fermentation culture techniques, potential application of probiotics, and mucoadhesive
encapsulation [30,31]. Moreover, combining functional biomaterials with active bEVs has
the potential to target autoimmune inflammatory dispositions and treat severe chronic
infections [32]. More specifically, beneficial gut microbiota-derived bEVs are a promising
tool to regulate the gut–brain axis by reducing inflammation and restoring immunity [33],
creating a benchmark for the targeted delivery of drugs to the CNS. However, currently,
most EV-based drugs are derived from eukaryotic systems, including those for cancer [34],
gastric disorders, and polymicrobial infections, due to the various challenges related to
bEVs [35]. Nevertheless, genetically modifying bEVs via surface remodeling [36] to target
neurotransmitters and quorum sensing (QS) inhibitors, and through CRISPR/Cas system-
based modifications [37], has the potential to provide novel noninvasive therapies against
BBB infections [38].

In this review, we introduce cutting-edge research on the mechanism of action and
production of gut microbiota- and probiotic-derived bEVs against pathogens crossing
the BBB. Hence, this article will serve as a valuable resource for future research aimed at
enhancing the production of probiotic-derived bEVs in the context of antimicrobial research
and designing novel heterologous expression systems.

2. Blood–Brain Barrier (BBB): A Roadblock to Invading Pathogens

The endothelial layer of the BBB selectively transports immune cells and other metabo-
lites involved in maintaining the functional stability of the nervous system [39]. However,
during the neonatal period, in some cases, the BBB can shield pathogens, resulting in a
breach of the protective layer and subsequent serious disorders and infection [40]. Endoge-
nous markers, such as pathogen-associated molecular patterns and small molecular motifs
conserved within a class of microbes [41], are recognized by endothelial receptors of the
BBB. This recognition results in an immunological burst at the target site [42] that can breach
the endothelial lining. Moreover, the complicated structure of the CNS limits the access
of several antimicrobial agents to the nervous system [43], however, facilitating the trans-
port of lipophilic drugs with a molecular weight <400 Da [44] that form fewer than eight
hydrogen bonds via lipid-mediated free diffusion [45], into the bloodstream via the tran-
scellular route [46]. As efficient drugs, antiepileptics (e.g., diazepam and phenytoin) [47,48],
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PLGA-coated nanoparticles, and laser-assisted therapies (e.g., focused ultrasound and
interstitial thermal therapy) are commercially available [49,50]. However, these therapies
do not guarantee the long-term potency of drugs because the microbial flora is constantly
evolving, either through horizontal gene transfer or cell-to-cell communication, resulting
in reduced susceptibility to certain drugs [51].

3. Multidrug-Resistant (MDR) Superbugs: A Prominent Case Involving the BBB

Infections caused by MDR superbugs have emerged as a major threat to global health
in the post-antibiotic era, especially in the 21st century [52]. The Centre for Disease Control
and World Health Organization have predicted that there will be ~2 million cases of MDR
infections and 27,000 related deaths per year by 2050 in Asia, Africa, and North America [53].
Carbapenem and colistin are the most widely used last-resort antibiotics against bacterial
infections [54]; however, by the late 2000s, drug resistance exhibited an unexpected increase
in mortality associated with hospital-acquired infections by 40–60% [55]. Pan-drug resistant
A. baumannii is routinely reported in patients with meningitis [56–58] and has acquired
resistance to most antibiotic therapies, including colistin and tetracycline [59,60]. Although
combined treatment with gentamicin and meropenem is efficient, the reduction rate of
infection is <17–19% [61] given that the BBB limits the permeability of drugs and the
continuous administration of drugs further increases the probability of resistance [62,63].
Moreover, frequently screened drug-resistant pathogens (A. baumannii [64] and E. coli [65]),
few routinely screened pathogens (N. meningitidis and Streptococcus spp.) [66,67], other
neuroinvasive pathogens (Haemophilus influenzae) [68], and Chlamydophila pneumoniae [69]
not only disrupt the tight junctions of the BBB but also induce leakage between tight
junctions and vascular endothelial cells [70]. For example, Gram-positive L. monocytogenes,
Staphylococcus spp., and Streptococcus pneumoniae elevate the levels of proinflammatory
cytokines and disrupt the endothelial lining in the CNS [71], thus creating a path of invasion
for opportunistic pathogens.

4. Bacteria-Derived EVs (bEVs): Nanoscale Vesicles

bEVs have been studied since the early 1960s when lipid-like structures released
from E. coli were discovered as a means to transport secondary metabolites and intrinsic
biomolecules to the communicating host [72]. After the discovery of bEV production from
Gram-positive bacteria, such as Bacillus subtilis, Mycobacterium tuberculosis, S. aureus, and
Streptococcus spp., bEV release is regarded as a general phenomenon carried out by bacteria
that has an important role in cell-to-cell communication and disease progression during
gastric cancers and tuberculosis [73,74]. Cell-to-cell communication by bEVs involves
internalization via the endothelial layer, micropinocytosis, and endocytosis by utilizing
invasion proteins at the host–pathogen interface [75]. Certain pathways, such as the stress
induced network, cause bEVs to function as anti-phagocytosis bodies, evading phago-
cytosis and weakening the clearing mechanism via the host immune response [76]. M.
tuberculosis is a classic example of pathogen evasion of the innate immune responses; that
is, it infects phagocytic and inhibits phagosome maturation. Moreover, Athman et al. [77]
discovered that Mycobacterium bEVs produce lipoglycans and lipoproteins that play an
important role in regulating the host immune response and facilitating persistent infec-
tion. Further, it was found that S. aureus-derived bEVs contain super-antigens (protein
A and lipase) that aid cells in phagocytosis evasion. Meanwhile, a proteomics study [78]
found that immunoglobulin (IgG)-bound lipase and super-antigen (hydrogenated form
of squalene; SQA) are presented in bEVs, thus highlighting the potential role of S. aureus
in evading anti-phagocytic activity via super-antigens and lipase production. bEVs also
have a basic role in exchange of genetic materials (DNA and RNA) through horizontal
gene transfer, during which bEVs serve as a means of cell-to-cell communication within the
same bacterial species [79]. Additionally, a study conducted on bEV cargo of A. baumannii
reported the presence of a carbapenamse gene (blaOXA-24) that increases the antibiotic sus-
ceptibility pattern against β-lactam antibiotics [80]. Similar studies on bEVs derived from
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N. gonorrhoeae [81] and S. aureus [82] have identified the presence of the outer membrane
(OM) protein PorB and alpha toxins that transfer genetic materials, inducing apoptosis and
host cell death.

bEVs released from the cell envelope of Gram-negative bacteria are so-called outer
membrane vesicles (OMVs). The envelope is made up of three layers: the OM, cytoplasmic
membrane, and the periplasmic space in between, which contains a layer of peptidoglycan
(PG) [83]. An inside leaflet of phospholipids and an outer leaflet of lipopolysaccharide (LPS;
also known as endotoxin) constitute the OM. LPS causes inflammatory responses in host
cells [84], whereas the OM has a porous structure that aids in waste removal and nutrition
uptake, and the peptidoglycan (PG) layer maintains the osmotic pressure of the cell and
regulates the hostile environment (antibiotic stress) [85]. Gram-positive, unlike Gram-
negative, bEVs are produced from cytoplasmic constituents via a blebbing mechanism;
their genetic composition is comparable to that of Gram-negative bEVs, with the exception
of the lipoprotein structure [86]. Apart from the normal mechanism of blebbing, prophage-
encoded endolysins have also facilitated bEV release from Gram-negative and -positive
bacteria. Studies on Bacillus spp. and Staphylococcus spp. have revealed that the prophage-
encoded endolysin generates holes in the peptidoglycan cell wall, thus highlighting the
potential role of these enzymes in bacterial cell wall lysis during mass production of
bEVs [87,88].

5. Nanoscale bEVs as Potential Therapeutic Platforms

Recently, bioinspired NPs such as host (eukaryotic) EVs (hEV) and bEVs have shown
promising effects against chronic infections [89,90]. Compared with their nanomaterial
counterparts (liposomal NPs), bEVs provide increased drug delivery and efficient antigen-
presenting properties [91–93]. Various microbes including Helicobacter spp., Klebsiella
pneumoniae, Lactobacillus spp., P. aeruginosa, S. aureus, and Streptococcus spp. are involved in
the transfer of metabolites between species for intracellular communication and are used in
novel adjuvant-associated therapeutics as well as nano-sized vaccine delivery platforms
for various infections [94,95] (Table 1).

Table 1. bEVs involved in the pathogenic infections and their roles.

Origin of bEV Infecting Pathogens Role of bEV Reference

Gram-positive bacteria

Bifidobacterium longum Food-borne infections Induction of progenitor cells [96]

Burkholderia spp. Activity against A. baumannii and
S. aureus N.D. [97]

L. gasseri Human Immunodeficiency Virus (HIV)
Change in susceptibility pattern of viral
infection by regulation of toll-like
receptor (TLR)-2 signaling

[98]

L. rhamnosus Superficial infections M2 Macrophage [99]
S. aureus Pneumococcal infection TH1-mediated cell immunity [100]
Streptococcus spp. Streptococcal infection Induction of dendritic cells [101]

Tetragenococcus halophilus Opportunistic pathogens Anti-inflammatory factor interferon
beta (IFN-β) [102]

Gram-negative bacteria

Acinetobacter spp. Pan-drug resistant A. baumannii Activation of IgG and IgM [103]
Borrelia burgdorferi B. burgdorferi colonization Stabilizing superoxide [104]
Helicobacter pylori H. pylori infection Induction of TH2 immune cells [105]
K. pneumoniae K. pneumoniae infection Humoral and cellular immunity [106]
N. meningitis Meningococcal disease IgG-mediated response [107]
Pertussis A Bordetella pertussis infection Induction of CD4 cells [108]
P. aeruginosa Lethal dose of P. aeruginosa Mixed cellular response [109]
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hEVs have shown complexity of the yield coefficient, a high production cost, and lim-
ited downstream process, all of which limit their biomedical applications [110,111] (Table 2).
The continuous evaluation of EVs as potential tools against chronic infection has led to
the development of bEVs derived from Clostridium butyricum [112] and L. paracasei [113].
Given that most chronic illnesses involve ‘dysbiosis’ of the gut microbiota, tuning the
absorption capacity and nutrition digestion factors of the microbiome might influence the
host–microbe physiological imbalance.

Table 2. Current limitations of eukaryotic and bacterial EVs in biomedical applications.

Eukaryotic (hEVs) Bacterial (bEVs) Common Limitations

Differentiation between cell surface
markers Lipopolysaccharide (LPS) toxicity Immunomodulators outburst

Inefficient purification of vesicles High inflammatory responses Low viability and inefficient growth
conditions

Lack of heterogeneity High chance of infection
(pathogen-derived bEVs) High cellular toxicity

6. Unresolved Issues with Gut Microbiota-Derived bEVs in Modulating the Gut–Brain
Axis: Old Is Gold

The continuous usage of antibiotics during BBB infections leads to prognosis of early
psychosis and neurotoxicity [114]. Gut microbiota dysbiosis, a state where the physiological
combinations of flora are transformed into pathological combinations [115] via continuous
antibiotic administration, has been linked to neural abnormalities. This link is via the vagal
nerve, which is associated with a lower response of neurotransmitters inducing systemic
inflammation in the CNS [116]. These features highlight the importance of the gut–brain
axis in modulating CNS homeostasis.

6.1. Gut–Brain Axis

The term ‘Gut–Brain axis’ refers to a bidirectional network that includes multiple
connections such as the vagus nerve (nervous control), immune coordination (epithelial and
mucosal barrier), and secondary metabolite generation from microbes [117]. The complex
architecture of the gut–brain axis entails the constant transit of neurotransmitters within
the gastrointestinal (GI) tract, which, in turn, modulates the immune system, including
macrophages and mast cells [118]. These immune cells boost neuron excitability and
regulate the host’s behavioral response. A recent study found that gut dysbiosis caused
by a broad-spectrum antibiotic during traumatic brain injury (TBI) resulted in increased
neuronal loss, suppressed neurogenesis, altered microglia and peripheral immune response,
and modulated fear memory response, suggesting a role of gut microbiota in the recovery
from TBI [119].

6.2. Gut Microbiota-Derived bEVs vs. Eukaryotic-Derived hEVs (Physiological Counterpart)

Generally, the use of hEVs is significantly limited by the yield coefficient and high-
throughput screening. In addition, the current scenario for combating antibiotic resistance
with chronic illness is not favored by the use of pathogen-derived bEVs, because the
sudden release of pro-inflammatory factors by bacteria cannot be controlled [120]. In
contrast, beneficial gut microbiota have shown the effective immune responses and efficient
pathogen inhibition activity [121]. Moreover, bEVs from beneficial gut microbiota take a
role in triggering inflammatory responses through LPS and lipoteichoic acid [122] and can
cross the intestinal barrier, and have effective anti-inflammatory properties against chronic
infections and gut dysbiosis [123]. The physiological features of hEVs differ significantly
from gut microbiota-derived bEVs, as shown in Table 3.
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Table 3. Difference between eukaryotic-derived hEVs and gut-microbiota-derived bEVs.

Category Eukaryotic-Derived hEVs Gut-Microbiota-Derived bEVs

Biogenesis Generally produced from plasma membrane except
exosomes, which originate from endocytic pathway

Gram-negative bacteria: decreased protein linkages
between the OM and peptidoglycan, accumulation
of unfolded proteins and/or peptidoglycan in the
periplasmic space, and explosive cell lysis
Gram-positive bacteria: turgor pressure by
accumulation of bEVs and the action of
cell-wall-degrading enzymes

Composition
(Cargo)

Multivesicular bodies composed of endosomal
proteins; RNA and miRNA are
regularly incorporated

Proteins, peptidoglycans, lipids, LPS, lipoteichoic
acids (LTA), nucleic acids, and metabolites

Major functions Intercellular communications (cell proliferation,
matrix formation, and phagocytosis)

Innate and adaptive immunity, bacterial
communications, interaction with host miRNA for
movement across intestinal barrier

Size 40–100 nm (exosomes) [124]; 500–2000 nm (apoptotic
bodies) and 100–500 nm (microvesicles) [125] 10–300 nm [126]

6.3. Problems Related to Gut Microbiota-Derived bEVs on BBB-Associated Diseases

The ‘dysbiosis’ condition in the gut microbiota environment by antibiotic usage has
also shown certain detrimental impacts such as Alzheimer’s disease, autism, and arthritis,
all of which clearly demonstrate the mechanistic behavior and coordinated axis of mental
health and intestinal mucosa [127]. A study by Lee et al. [128] showed that the release
of bEVs from a gut pathogen Paenalcaligenes hominis, revealed movement of bEVs via the
vagus nerve, producing cognitive impairment in the nervous system. Another study using
Porphyromonas gingivalis, an oral pathogen, demonstrated the importance of LPS-coated
bEVs in the onset of Alzheimer’s disease, emphasizing the role of protease and LPS in
triggering the damage of collagen fibers, fibrinogen connective tissues, and induction of
proinflammatory mediators in the transfer of bEVs that alter brain cognitive function [129].
The main drawback of bEVs derived from the gut microbiota is that they have a negative
impact on memory, cognition, and neuroinflammation. Therefore, direct application of
such bEVs may have both adverse and beneficial neurologic effects on CNS homeostasis.

6.4. Beneficial Roles of Probiotic-Derived bEVs on Gut–Brain-Axis Control

Considering the diverse array of gut microbiota from intestinal niches, probiotics
including Bifidobacterium spp. and Lactobacillus spp. have been identified to create neu-
rotransmitters (acetylcholine, gamma-aminobutyric acid (GABA), and serotonin), which
continually control CNS homeostasis [130,131]. Overall, probiotics not only govern the bidi-
rectional transit of biochemical signals, but also improve the host’s behavioral response such
as anxiety [132], depression, and stroke [133]. Apart from periodontal and gut pathogens,
probiotics such as Lactobacillus spp. have influence on the motor neuron complex (M-N
complex). This M-N complex includes the enteric nervous system (endocrine functions
and secretion from intestinal mucosa) and the vagus nerve. Lactobacillus spp. normally
modulates the neurotransmitter signals via the vagus nerve (intestinal nerve), involving
sensory transmission of neuronal signals via the enteric nervous system to the CNS [131].
Few bEVs derived from Lactobacillus spp. have also demonstrated the direct regulation of
the gut–brain axis in CNS homeostasis (Table 4).
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Table 4. Beneficial roles of probiotic-derived bEVs on gut–brain-axis control.

Origin of bEVs Roles of bEVs References

L. acidophilus Changes in complex microbial communities [134]

L. plantarum
Enhance the action of brain-derived neurotropic factor
(BDNF), lowering the stress level in
hippocampus neuron

[135]

L. reuteri DSM 17938 Modulate intestinal and colon motility and enhance
gut–brain intercommunication for CNS homeostasis [136]

L. rhamnosus Reduce the behavioral changes including anxiety
and depression [137]

7. Filling Gaps with Probiotic-Derived bEVs against BBB-Breaching Pathogens

The fundamental issue with antibiotic therapy is the associated drug resistance, which
causes a widespread distribution of MDR BBB-breaching bacteria, causing secondary neu-
rological disorders that impair CNS homeostasis [138]. Moreover, the risks associated with
the continuous use of antibiotics include seizure, neuromuscular blockade, cranial nerve
toxicity, and intracranial hypertension [139]. Conventional therapeutic options for the
treatment of MDR bacterial infections include β-lactamase inhibitors, aminoglycosides, flu-
oroquinolones, and last-resort polymyxins [140,141]. However, such therapies have limited
efficacy in CNS infections caused by MDR bacteria, such as A. baumannii, K. pneumoniae,
M. tuberculosis, L. monocytogenes, N. meningitidis, and Streptococcus spp. (Table 5). This is
due to the BBB integrity as well as severe side-effects such as neurotoxicity and nonspecific
targeting. The continuous administration of antibiotics, and its associated risk factors,
often creates dysregulation between the gut microbiota and the cerebrospinal fluid of the
CNS. Mucosal bacteria regulate the communication between the enteric nervous system
and peripheral intestinal regulation. Meanwhile, the constant dysregulation caused by
antibiotic overuse has created a gap between efficient metabolism of intestinal regulation
and CNS modulation.

Table 5. BBB-breaching pathogenic infections and associated immunomodulatory activity.

Pathogen Mode of Pathogenesis Immunological Factors Contributing
BBB Infection References

A. baumannii -Meningitis
-Catheter-associated infection

Increased inflammatory cell response, toll-like
receptor (TLR) altered expression, and
proinflammatory cytokine burst within 24 h
of infection

[142,143]

E. coli
-Endothelial cells
-Attenuation of transforming growth factor
(TGF)-β 1 signaling

Increased expression of endothelial-derived
platelet-derived growth factor receptor
(PDFGR) and intercellular adhesion molecule
(ICAM), resulting in inflammation

[144]

H. influenzae
-Large amount of vascular endothelial
growth factor receptor (VEGFR)
-Adenosine receptor dysfunction

Endothelial disruption and tight junction
altered expression: downregulation of tumor
necrosis factor (TNF-α);
endothelial proliferation

[145,146]

K. pneumoniae -Cerebrospinal infection
-Intracranial infection

Increased production of proinflammatory
cytokines and chemokines; induction of
hypoxia inducible factor (HIF)-1α

[147]

L. monocytogenes -Vimentin-mediated infection
Neuroinflammation

In1F virulent factor-associated downregulation
of tight junction and overexpression of PDFGR
and ICAM, resulting in inflammation

[148]

N. meningitidis -Secretion of IgA protease
-Evasion of immune response

Deformation of adherence junction, triggering
IL-6 and IL-8 expression: leukocyte infiltration
and infected phagocyte movement

[149,150]

P. aeruginosa -Cerebrospinal infection
-Meningitis

Increased production of inflammatory cell
response; overproduction of IL-1β and IL-6 [151]
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Table 5. Cont.

Pathogen Mode of Pathogenesis Immunological Factors Contributing
BBB Infection References

S. aureus -Brain abscesses and endocarditis
-Cytokine burst

Stimulate immune invasion, T cell activation:
burst of proinflammatory cytokines; TNF-α,
IL-6, and IL-10 overproduction

[152]

S. pneumoniae -Neonatal meningitis
-Laminin receptor transcytosis

TNF-α, IL-6, and IL-10 overproduction and
increased permeability through anchored tight
junction; cleavage of IgA through pneumococci
IgA protease

[153,154]

Several probiotics such as Bifidobacterium spp., L. lactis, and L. rhamanosus are being
actively investigated for their therapeutic potential and are in the final stage of clini-
cal trials [155]. bEVs originated from such species have gained attention as effective
therapeutic platforms owing to their natural immunogenicity and self-adjuvating prop-
erties [156], which induce a better adaptive immune response and can transport diverse
cargos across various cell types. In addition, such therapeutic platforms against antibiotic-
resistance-related neurological disorders could be improved using genetic modification of
gut microbiota with the CRISPR/Cas9 system [157]. The antimicrobial activity of probiotic-
derived bEVs against pathogens has revealed a broader role of probiotics in enhancing the
anti-inflammatory response during pathogen invasion (Table 6).

Table 6. Probiotic-derived bEVs against BBB-invading pathogens.

Origin of bEV Physiological Roles Invading Pathogen(s) References

Burkholderia thailandensis
with quinolone Synergistic antibiofilm activity Streptococcus spp. [158]

E. coli Nissle 1917
Increased anti-inflammatory properties, such as
IL-10 and T helper (TH) cell-mediated
cytotoxicity

E. coli and S. aureus [159]

L. crispatus and L. jensenii Antibiofilm and anti-inflammatory effect Candida albicans [160]
L. paracasei and L. plantarum Decrease pro-inflammatory cytokine production Enteroinvasive E. coli [161]

A proteomics study of probiotic L. plantarum BGAN8-derived bEVs that regulate
brain function [136] revealed the enrichment in enzymes involved in central metabolic
pathways and in membrane components with transporters [162]. Because such proteins
are associated with transferring beneficial metabolites to pathogens or hosts, proteomics of
probiotic-derived bEVs appears to be a potential tool to reveal underlying mechanisms of
bEVs on escaping pathogen infection and the beneficial effect on brain function.

Vaccine-antigen-presenting probiotic-derived bEVs can also be employed as vehicles
to transport antigens and potent antimicrobial agents to specific targets. Moreover, given
that probiotics regulate various intrinsic signals, such as regulation of active short chain
fatty acids, hormone metabolism, and neurotransmitters signaling and expression, they
can also facilitate a wide range of interactions between the normal flora and host cognitive
behavior [163]. Moreover, their role in regulating the gut–brain axis has highlighted
the potential application of probiotic-derived bEVs for enhancing the neurodevelopment
process [164]. For instance, studies with L. plantarum JB-1-derived bEVs highlighted the
role of bEVs in regulating the neuron signaling system [165], demonstrating the direct role
that probiotic-derived bEVs have in CNS development [166] (Figure 1). Moreover, unlike
host immune cells, bEVs derived from immune cells can pass though the BBB and, thus,
participate in the immunological regulation of the CNS.
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8. Remodeling of Probiotic-Derived bEVs against BBB-Invading Pathogens

NP-derived therapeutics show high efficacy against pathogens [167]. As it is possible
to control the size and release of NP-derived therapeutics, modified NPs are potential
candidates for conferring protection against drug-resistant pathogens [168]. Combination
therapies with commercial antibiotics also exert beneficial effects against antibiotic-resistant
pathogens; however, their selectivity and toxicity remain major concerns [169]. The mod-
ification of NPs with EVs has been driven by the aim to increase yield and reduce toxic-
ity [170,171]. For instance, amalgamated nanocarriers with hEVs have shown promising
results in cancer therapy [172]. However, to induce an efficient immunogenic response with
low toxicity, bEVs from probiotics should be used in native or genetically modified form
to protect against hospital-acquired infections [173]. Such an engineered, or remodeled,
probiotic-derived bEV will have advantages over conventional drug delivery systems in
terms of their bioavailability and targeted drug distribution.

8.1. Surface-Modified Proteins in Probiotic-Derived bEVs

Exosome-associated transmembrane proteins and their fusion to peptide domains
have been investigated for their ability to confer protection against various pathological
conditions in eukaryotes. For example, their role in tumor therapy, and the delivery of
siRNAs and miRNAs targeting immune cells and neuronal junctions of the brain, have been
evaluated [174]. However, targeting the efficiency of surface-modified probiotic-derived
bEVs has not been evaluated in infections involving BBB breach. Among prokaryotes,
a two-component signaling system in Gram-positive bacteria regulates diverse intracel-
lular signals, including genetic transduction and bacteriocin production [175]. Studies
conducted on Bifidobacterium spp., L. gasseri, and L. plantarum have demonstrated the role
of the two-component system in the regulation of bacteriocin production [176]. For in-
stance, surface-associated proteins of Lactobacillus spp., such as histidine protein kinase
(HPK), and S-layer proteins (SlpA, B, and X) [177], have been explored in bEV studies for
evaluating heterologous gene expression and enhancement of host–microbe interactions.
HPK-associated recombinant protein expression is a novel approach for biotherapeutic
delivery. Previous studies on bEVs revealed that the expression of heterologous antigens
such as OmpA was in response to infection severity. The production of fusion proteins

https://app.biorender.com
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and hemolysin ClyA in E. coli bEVs elicited an immune response against green fluorescent
(GFP) protein [178]. The concept may involve the association of a signal peptide with a
reporter system that can trigger the robust secretion of target molecules for cell surface
display. Similarly, the Slp system has been studied extensively in L. acidophilus and L. brevis
against diarrhea and skin infections [179]. A system with strong transcription facilitated
by promoter fusion [180] could increase protein production and provide a useful vaccine
delivery platform. Strategies for protection against infections crossing the BBB may involve
the addition of the Slp short peptide region to the upstream region of the targeted antigen
or therapeutic gene, which can increase the secretion and efficacy of the therapeutic protein
against infectious agents [181].

8.2. Regulation of Neurotransmitters across the BBB

BBB-associated infections are related to Parkinson’s and Alzheimer’s diseases, in
which direct correlations between pathogens such as Staphylococcus spp. have been demon-
strated to regulate the neurotransmitter-serotonin signaling mechanism [182]. To date,
the interaction of probiotics with host miRNAs in regulating host cerebral inflamma-
tory signaling is rare. Instead, the regulation of the bidirectional movement of miRNA
by probiotic-derived bEVs in regulating the neuro-immune endocrine regulation was
reported [183].

Only a few studies examining the relationship between probiotics and the serotonergic
system, as well as the role of the GI tract in managing neuropsychotic disorders, have
been reported. For instance, a previous study [30] reported that Akkermansia muciniphila,
an intestinal symbiont colonizing the mucosal layer, increases the serotonin signaling
pathway via the gut–brain axis in mice. More specifically, they showed that downregulation
of Htr mediators (secreted metabolites in the colon) in the intestinal mucosa activates
the bacterial colonization and, hence, increases the serotonin level and enteric neuronal
activity. One classic study on probiotic supplements, including short-chain and long-chain
oligosaccharides, showed that lower expression of Htr reduces anxiety behavior in mice,
thus demonstrating the possible significance of probiotics in maintaining neurotransmitter
signaling [184].

8.3. Quorum-Quenching Proteins

Studies of microbiome-associated neurological disorders have supported the systemic
movement of quorum-sensing molecules [185] and their associated virulence factors. These
factors penetrate tight junctions using the Trojan horse method and trigger nervous system
connections [186]. Pathogens (e.g., Clostridium and Streptomyces species) can induce nervous
system dysregulation and result in anxiety and stress-associated disorders [187]. The
association between polymicrobial infections and common neurological disorders has
been clarified; however, well-established tools to overcome chronic-infection-associated
neurological disorders, such as bacterial meningitis and polymicrobial-associated multiple
sclerosis, are needed [185]. Most neurological disorders are accompanied by a decreased
abundance of beneficial, as well as commensal, microbes. Accordingly, it may be possible
to express quorum-quenching-related proteins on the surface of probiotic-derived bEVs, as
a targeted approach against microbes to reduce their virulence and chronicity.

8.4. bEVs as a Drug Delivery Platform to Prevent Degradation and Immune Elimination
of Antimicrobials

Regarding CNS infections, most CNS-associated drugs have side-effects and lack the
potential to cross the BBB. Additionally, the inefficient movement of neurotherapeutic
drugs requires them to remain in the neural environment for a sufficient duration to exert
the desired effect. The presence of phosphorylated glycoprotein (P-gp) in the endothelial
lining of the BBB undoubtedly limits the entry of lipophilic drugs, thus increasing the
risk of meningococcal infections [188]. Antibiotics such as vancomycin, meropenem, flu-
oroquinolones, β-lactams (occasionally), and cephalosporins are thought to be effective
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against CNS infection. However, inefficient administration and toxicity levels limit their
usage [189]. In this case, bEVs can act as high specific loading cargos for antibiotics to
provide a shielding effect [190], which will protect the antibiotics against various pathogen-
derived enzymes and multi-antigen determinants on the surface will specifically target
meningococcal infections [191].

8.5. CRISPR/Cas-Modified bEVs as Biotherapeutic Agents against BBB-Breach-Related Infections

The CRISPR/Cas system is a novel gene editing approach that has been success-
fully employed to make opportunistic pathogens (e.g., E. coli and S. aureus) vulnerable to
commercially available antibiotics, or to reverse their drug resistance [192] (Figure 2).
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Figure 2. Application of the CRISPR/Cas system for the development of biotherapeutic tools against
infections crossing the BBB. (A) Lactobacillus expression host, (B) CRISPR/Cas expression vector,
(C) expression of the engineered vector in Lactobacillus, (D) CRISPR/Cas-enriched Lactobacillus bEV,
and (E) targeted therapy against pathogenic bacteria via surface protein receptors. The figure was
created using BioRender.com (https://app.biorender.com; accessed on 2 November 2022).

This approach involves identification of the Cas system from Lactobacillus species (Type
I or Type II system), constructing an engineered vector model and designing an expression
system based on the surface modification of a targeted ligand using a reporter system [191]
comprising an inducible promoter sequence, guide RNA, Cas9, selectable marker, sur-
face protein with a reporter gene, and target DNA sequence. Using this approach, the
entire vector can be transformed into the Lactobacillus via electroporation or microfluidic
injection. bEVs from transformed Lactobacillus contain surface-expressed heterologous
proteins that can be targeted to the specific host cell receptors for vaccine therapy. Studies
on L. reuteri and L. sakei [193,194] have identified the presence of 20–25 CRISPR systems
with varying degrees of polymorphism, conferring an evolutionary advantage against
invasive pathogens. Recent examples of L. acidophilus and L. crispatus delivery mechanisms
using the Slp system (S-layer membrane protein) (see Section 8.1) [180] have highlighted
the utility of genome editing tools in probiotic species. Therefore, the CRISPR/Cas system
can facilitate development of tools targeting drug-resistant pathogens and create avenues
for designing potent and targeted therapeutic strategies against infections crossing the BBB.

The potential role of probiotic-derived bEVs can provide numerous benefits against
hospital-acquired infections. The fine tuning of probiotic-derived bEVs on parameters such

https://app.biorender.com
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as quorum-quenching enzymes and the CRISPR/Cas mechanism can provide a possible
strategy to target secondary risk factors associated with dysbiosis in the gut–brain axis
(Figure 3).
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9. Potential for Application of Probiotic-Derived bEV Platforms against
BBB-Associated CNS Infections

Infections with MDR bacteria, which secrete various virulence factors and toxic pro-
teins that target sensitive regions of the brain, can readily cross the BBB’s endothelial barrier
and cause serious neurological disorders. Furthermore, the robust movement of various
immune cells at the site of injury promotes localized inflammatory responses and results in
cytokine bursts, thus affecting CNS permeability and causing neurological imbalance.

Probiotic-derived bEVs represent safe therapeutic agents against a variety of infections
and outperform conventional antibiotic therapy for BBB-associated CNS infections. How-
ever, the efficacy of bEVs derived from probiotics other than L. paracasei, in the treatment
of CNS infections, is currently under evaluation in ongoing clinical trials [195]. Indeed,
the presence of CNS inflammation can significantly impact bEV efficacy as it reduces the
amount of drug crossing the CNS barrier, which is impeded by BBB-mediated exclusion.
Nevertheless, certain drugs, including citalopram, doxepin, erythropoietin, and fluvox-
amine, have demonstrated significant anti-neural anomaly activity [196]. However, these
drugs are limited by their low membrane permeability, rapid clearance, and rapid degra-
dation. Therefore, additional treatments are now being developed, such as nano-based
drug delivery agents, liposomal NPs, and biomimetic NPs or nanocomposites with the
potential to penetrate the BBB. However, studies using anti-seizure drug-loaded gold NPs
revealed increased oxidative stress [195], necessitating a re-evaluation of the associated
dosing regimen. Similarly, chitosan-based NPs exhibit minimal BBB absorption and are
not currently used in clinical practice [196]. Meanwhile, for extended periods of usage,
liposomal NPs outperformed metallic counterparts in post-stroke inflammatory responses.

https://app.biorender.com
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However, their instability, shorter lifetime, and restricted drug encapsulation capability
limit their use as a drug delivery vehicle for nondegenerative disorders.

In contrast, bEVs outperform lipophilic and hydrophilic/hydrophobic drugs. In fact,
a bEV derived from Chromobacterium violaceum—a facultative anaerobic, oxidase-positive,
glucose-fermenting, non-lactose-fermenting, Gram-negative Bacillus—was successfully
used to encapsulate violacein by enhancing its absorption coefficient [197]. Hence, due to
their direct linkage with the gut–brain axis, as well as their movement via the autonomic
nervous system, bEVs might represent an alternative drug-encapsulating vehicle for treat-
ment of BBB infections; however, it is necessary to first address the issues regarding their
bioavailability and surface modifications. In fact, probiotic-derived bEVs represent a useful
platform for the development of new treatments as they have been shown to improve
immunogenic responses to numerous pathogens that affect the gut–brain-axis function.

Genetic engineering of hEVs has recently been recognized as a paradigm shift in the
treatment of CNS infections. Therefore, modified eukaryotic hEVs are regarded as effective
delivery vehicles for hydrophobic and hydrophilic medicines. However, improving the
ability of hEVs to invade the BBB has proven challenging. In this regard, probiotics with
enhanced invading BBB activity might be viable therapeutic options against BBB-associated
MDR pathogen infections. Most microbiota-related neurological disorders are associated
with an imbalance of intestinal commensal bacteria, and probiotic-derived bEV-based
platforms provide a successful therapy against CNS infections.

10. Future Research and Perspective

Strong efforts are required to improve the design of therapeutic agents that target
MDR superbugs associated with the BBB. Unlike eukaryotic hEV biomarkers, proteins
of probiotic-derived bEVs remain unidentified, thus limiting the utility of bEVs in BBB-
associated therapy. Therefore, multiple omics approaches and in silico analysis are war-
ranted. Additional high-throughput-scale functional analysis is required to identify poten-
tial therapeutic proteins of bEVs and design novel platforms for the selective and efficient
targeting of BBB-associated infections that also elicit memory T cell responses to establish
long-term immunity. Notably, most probiotic-derived bEVs exhibit antibacterial activity
and enrichment of antibacterial metabolites. Thus, probiotic-derived bEVs can be used in
combination with commercial antibiotics or repurposed drugs to increase their therapeutic
efficacy against pathogens. With the aid of cheminformatics [197], formulated antimicrobial
analogs can be designed to target pathogenic microbial factors. Indeed, this approach is
expected to expand the current scope of antimicrobial use by generating probiotic-derived
bEVs to effectively treat BBB-breaching infections.

11. Conclusions

The recent literature has demonstrated the effectiveness of EVs against various infec-
tious pathogens. However, most research has largely focused on developing therapeutics or
drug delivery vehicles by utilizing either NPs or hEVs (exosomes). Although these agents
are clinically significant, their utilization is limited by long-term toxicity and the related
mortality, low immunogenic response, stability issues, cost of scaling up, fermentation
culture conditions, and downstream processing. In contrast to hEVs, there are only a few
FDA-approved therapeutic bEVs, including a bEV vaccine (MeNZB) cleared for use against
N. meningitidis. This is due to either failed trials or a low therapeutic efficiency. The concept
of ‘postbiotics’ has recently been evaluated as a source of nonviable bacterial supplements
capable of regulating the gut–brain axis. That is, the use of probiotics alone may be limited
in scope; however, it can be enhanced by tuning the active components of postbiotics to
initiate the release of probiotics-derived bEVs or -enriched bEVs. Meanwhile, limitations of
combining NPs with antimicrobial compounds have hampered their application for the
treatment of infections; moreover, this strategy does not address safety issues related to
BBB breach. Collectively, the work summarized in this review provides insights into the
efficacy of probiotic-derived bEVs and the novel concept of ‘postbiotics’ as a potential tool
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for the development of therapeutic platforms to overcome drug resistance in pathogens
causing neurological disorders.
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