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Abstract: With the development of nanomedicine technology, stimuli-responsive nanocarriers play
an increasingly important role in antitumor therapy. Compared with the normal physiological
environment, the tumor microenvironment (TME) possesses several unique properties, including
acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive
reactive oxygen species (ROS), which are closely related to the occurrence and development of
tumors. However, on the other hand, these properties could also be harnessed for smart drug
delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles
(srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to
release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake,
thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the
design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition,
the challenges and prospects for the development of srNPs are discussed, which can possibly inspire
researchers to develop srNPs for clinical applications in the future.

Keywords: cancer therapy; tumor microenvironment; stimuli-responsive; nanoparticles

1. Introduction

Cancer, also known as malignant tumor, is still one of the common causes of human
death worldwide [1]. According to the GLOBOCAN database, the number of new cancer
cases was estimated to be 19.29 million, and that of cancer deaths was approximately
9.96 million, in 2020 [2]. Numerous efforts from different fields have been made to explore
effective and safe strategies to treat this disease. Among various treatments, chemotherapy
is one of the most commonly used methods for cancer therapy at present [3]. For the
past decades, researchers have been working to deliver anti-cancer drugs to tumor sites.
However, the clinical application of conventional chemotherapeutic drugs is restricted,
owing to the lack of selectivity, limited water solubility, poor targeting ability and serious
systemic toxicity.

In recent years, nanomedicine has been extensively used in tumor-targeting drug
delivery due to its unique molecular properties. Despite nano drug delivery systems’
(NDDS) enhancement of the efficiency of conventional chemotherapeutics, it is still an
urgent problem to improve the bioavailability of drugs in tumor tissues, especially to
enhance the cellular uptake and intracellular release of drugs. With a deeper understanding
of the different properties between normal tissues and tumor tissues, srNPs were rationally

Pharmaceutics 2022, 14, 2346. https://doi.org/10.3390/pharmaceutics14112346 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14112346
https://doi.org/10.3390/pharmaceutics14112346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-5706-0811
https://doi.org/10.3390/pharmaceutics14112346
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14112346?type=check_update&version=1


Pharmaceutics 2022, 14, 2346 2 of 25

designed for drug delivery. Thus, to better understand the advances in the srNPs for
anticancer therapy, this review briefly introduced the endogenous stimuli (i.e., low pH,
high GSH concentration, overexpressed enzymes, excessive ROS and hypoxia) of the TME
(Scheme 1), and summarized the application of srNPs in tumor therapy, aiming to provide
inspiration for further research and facilitate the clinical translation of srNPs.
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Scheme 1. Schematic illustration of srNPs for controlled drug release in cancer treatment.

2. Stimuli in the TME

The TME is a cellular environment composed of tumor cells, fibroblasts, lymphocytes,
immune cells, bone marrow-derived inflammatory cells, signal molecules, an extracellular
matrix (ECM) and surrounding blood vessels [4,5]. All the cells embedded in the ECM
consists of collagen and proteoglycan. In general, the tumor vessels are characterized by
irregular shape as well as loose structure, and even lack the endothelial cells or basement
membrane in the malignant lesions. Therefore, the TME provides suitable conditions for
tumor cells to exchange materials and promotes their proliferation and metastasis. The
TME is characterized by several features, such as acidity, high GSH concentration, hypoxia,
overexpressed enzymes and excessive ROS, compared to the physiological environment [6].

2.1. Acidity

The lower pH in the extracellular matrix and interstitial space is a sign of malignant
tumor, which is caused by excessive metabolites, such as carbon dioxide, lactic acid, as well
as activated vacuolar-type (V-type) H(+)-ATPases (a proton pumps) [7,8]. In general, cancer
cells produce large amounts of lactic acid due to their heavy reliance on glycolysis instead
of oxidative phosphorylation, and this phenomenon is called the Warburg effect [9–11].
Typically, the pH value in the TME (pH 6.5) is lower than that in normal cells (pH 7.4), and
the abnormal pH conditions further appeared in organelles, such as nucleosome (pH 5.5)
and lysosome (pH 5.0) [12]. Acidic TME has been proved to facilitate the occurrence and
metastasis of tumors. In addition, the abnormal pH is also one of the causes of tumor
multidrug resistance (MDR), especially for weakly alkaline chemotherapeutic drugs [13].
However, the acidity of the TME and nuclear endosome/lysosome could also be utilized as
endogenous triggers for srNPs.

2.2. High GSH Concentration

GSH is a thiol substance composed of glutamate, glycine and cysteine. It is the
most abundant reductant in living cells, especially in some organelles such as cytosol,
mitochondria and the nucleus. Normal concentration of GSH, with detoxification and
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antioxidant effects, is crucial for the body to maintain immune system functions. The
intracellular concentration of GSH is about 2–10 mM, which is significantly higher than its
concentration in blood and the extracellular matrix (about 2–20 µM). In addition, tumor
tissues showed 10 times higher GSH concentration than normal tissues. It has been reported
that abnormal GSH levels are related to many human diseases, such as liver-related diseases,
neurodegenerative diseases, epilepsy, diabetes and so on [14–16].

2.3. Hypoxia

As a hallmark of solid tumors, hypoxia is closely related to tumor invasion, metastasis
and drug resistance. Due to the irregular shape of blood vessels in solid tumors, it is unable
to deliver enough oxygen and nutrition to all regions, resulting in temporary or long-term
hypoxia of tumor cells. The oxygen partial pressure in normal tissues is about 30 mmHg,
while that in tumor tissues gradually decreases from the surface to the inside and reaches a
low level (5 mmHg) in some regions, and the oxygen partial pressure in some solid tumors
may be close to 0 mmHg. Moreover, Oxygen utilization also decreased with increased
distance between tumor cells and blood vessels. Tumor cells in hypoxic areas divide more
slowly than those in normoxic areas, making them less sensitive to chemotherapeutic drugs
targeting cells that rapidly proliferate [17,18].

Moreover, hypoxia in the TME can also upregulate hypoxia-inducible factors (HIFs),
protein dimerization consisting of HIF-α (oxygen-sensitive subunit) and HIF-β (constitu-
tively expressed subunit), which can facilitate the growth and metastasis of tumors [19]. It
has been reported that a HIF-α isoform stimulated tumor progression in some tumor mod-
els, such as kidney cancer and neuroblastoma. Under acute and severe hypoxia conditions
(1–2% O2), HIF-1α could be activated promptly to combine with HIF-β [20], so the stability
of HIF-1α and transcriptional activity of HIF-1 are significantly enhanced in hypoxic TME,
thus increasing the expression of vascular endothelial cell growth factor (VEGF) that can
promote the growth of tumors with angiogenesis [21]. In addition, increased HIF-1α can
also induce immune escape [22]. Although hypoxia provides favorable conditions for
tumor progression, this characteristic also provides opportunities to develop srNPs.

2.4. Overexpressed Specific Enzyme

Since physiological and metabolic processes in the human body depend on enzymes,
the abnormal expression and activity of enzymes are the pathological basis of many diseases.
Compared with that in normal tissues, some enzymes are overexpressed in tumor tissues,
thus showing excessive secretion in the TME, such as matrix metalloproteinases (MMPs),
hyaluronidases, β-Glucosidase, esterase [23,24]. By modification with specific enzyme
substrates, srNPs can be cleaved by target enzymes and release drugs in the TME.

2.5. Excessive ROS

ROS include hydroxyl radicals (•OH), singlet oxygen (1O2), hydrogen peroxide (H2O2),
peroxynitrite (ONOO−), superoxide anion (•O2

−) and so on [25]. There are several en-
dogenous sources of ROS, while they are mainly produced by the incomplete reduction
of oxygen and nicotinamide adenine dinucleotide phosphate oxidase in the mitochondria
and plasma membrane [26]. As a signal molecule, ROS played an important role in protein
translation, transcription and survival, as well as tumorigenesis and proliferation [27]. In an
appropriate concentration, ROS are the significant signal molecules for multiple metabolic
pathways, while excessive ROS might damage the tissues or organs and even induce seri-
ous diseases such as cancer. As a prominent feature of cancer, hypoxia significantly changes
the ROS level in tumor tissues, so the ROS concentration in tumor cells (10−4 M) is much
higher than that in normal tissues (2 × 10−8 M) [28,29].

3. Stimuli-Responsive Nanoparticles

As mentioned above, the TME possesses a variety of unique properties and plays a
critical role in the occurrence, invasion and metastasis of tumors. However, the charac-
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teristic difference between tumor tissues and normal tissues is also the theoretical basis
for designing intelligent responsive NDDS [30,31]. srNPs can respond to various endoge-
nous stimuli in the TME, and their properties, such as shape, size, surface charge and
hydrophilicity, could be changed after reaching the tumor areas [32]. These changes can
promote the accumulation, penetration, cellular uptake or drug release of nanoparticles,
and ultimately enhance the anti-tumor therapeutic effect.

3.1. pH-Responsive Nanocarriers

Due to the Warburg effect, the acidic microenvironment of solid tumors can be used
to achieve tumor-specific delivery of srNPs [1]. There are three common strategies for the
construction of pH-responsive srNPs (Table 1). The first strategy is to use some specific
molecular structures in the design of nanocarriers. The pKa values of these structures are
close to the pH of the intercellular matrix, so their functional groups can be protonated
in the TME with a lower pH, resulting in the destruction of the hydrophilic–hydrophobic
balance of nanoparticles, thus causing structural changes, including rearrangement, ex-
pansion or disintegration [33]. Typical acid-sensitive groups include histidine, tertiary
amine and sulfonamide structures. The second strategy is based on acid-labile chemical
bonds, which can stably exist under neutral conditions and break under acidic condi-
tions [34], enabling srNPs to disintegrate and release drugs in the TME. The third strategy
is to use pH (low) insertion peptides (pHLIP), which could weakly interact with the cell
membrane under neutral conditions and insert into the cell membrane and form stable
transmembrane complexes in an acidic environment, thus promoting the cellular uptake of
nanoparticles [35].

3.1.1. Hydrophobic-to-Hydrophilic Transition

There were numerous studies on the transition from hydrophobic to hydrophilic
chemical groups in the TME [36–38]. For example, polymers with amino groups possess this
property, as the amino groups in the structure can accept a proton and become hydrophilic
when the pH value of the environment drops below its pKa [39]. The typical drug based
on this concept is the polyhistidine nanomicelle developed by BAE et al. [40–42]. Poly-
L-Histidine (polyHis) is a polypeptide containing imidazole groups, of which the pKa
value is 6.5, thus, it shows a reversible hydrophilic–hydrophobic transition according to
its protonated and deprotonated states. Bae et al. synthesized a pH-triggered micelle
by using poly(histidine-co-phenylalanine)-b-poly(ethylene glycol) and poly(L-lactic acid)-
b-poly(ethylene glycol)-folate [43]. The micelles loaded drugs through the hydrophobic
interaction between the anticancer drug doxorubicin (DOX) and the deprotonated polyHis
fragment, so it can exist stably in physiological environments with pH 7.4. However,
when the nanomicelles reach the acidic TME, the polyHis block in the core gradually
becomes unstable due to protonation, thus dissociating and selectively releasing the drug.
Compared with pH-insensitive micelles, these nanomicelles were able to significantly
enhance the antitumor efficacy of DOX [44]. PolyHis polymers are also used for achieving
pH-responsive cellular uptake (Figure 1A) [45]. These nanomicelles are not affected by
protein binding under blood circulation, and they are able to expose targeting ligands and
bind to overexpressed cell surface receptors after being transported to the TME, thereby
enhancing the uptake of nanodrugs by cancer cells.

More recently, PolyHis-based polymers were also used in gene anti-cancer therapy [46].
Zhao et al. developed a pH-triggered nanoplatform, PHD/PLL/siRNA nanoparticle
(PHD/PLL/siRNA NP), via self-assembly of methoxy poly(ethylene glycol)-polyHis-
poly(sulfadimethoxine) (PHD), poly-L-lysine (PLL) and PLK1 siRNA (siPLK1) [47]. Specifi-
cally, the spontaneous formation of PHD/PLL/siRNA NP is owing to electrostatic interac-
tion between negatively charged PHD and siPLK1 and positively charged dendritic PLL.
PHD/PLL/siRNA showed higher cellular uptake and efficient endo/lysosomal escape,
which can be attributed to the pH-induced protonation and proton sponge effect of the
imidazole ring of polyHis. In addition, the intracellular acidic microenvironment could
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change the poly(sulfadimethoxine) (PSD) block from negatively charged to neutral, thus ac-
celerating the disassembly of NPs and release of siPLK1. The results of the assay indicated
that PHD/PLL/siRNA NP showed an excellent tumor elimination effect for non-small cell
lung cancer therapy.

In addition to polyHis, protonation of tertiary amine groups can also alter srNPs
from hydrophobicity to hydrophilicity in the acidic TME [48], thus changing the structure
of nanoparticles and releasing the encapsulated drugs. For instance, Yang synthesized
aliphatic polyester using enzyme polymerization [49], which could load DOX by self-
assembly in aqueous solutions and release it in the TME. It was proven that the DOX
release rate of micelles under an acid condition (pH 6.8) was significantly faster than that
in a normal physiological environment (pH 7.4). The results of in vitro cellular uptake
and cytotoxicity proved the feasibility of the drug delivery system. The pH-responsive
release of drugs was owing to the transition of tertiary amine groups from hydrophobic
to hydrophilic and the subsequent dissociation of structure. Zhang et al. designed a 4-
diethylaminophenyl isothiocyanate (DAITC)-modified generation-five polyamidoamine
(PAMAM) dendrimer (GDA) for delivering protein [50]. In this study, green fluorescent
protein (EGFP) was encapsulated in GDA via complexation, and the hydrophobically
modified GDA/EGFP can maintain stability at physiological pH (7.4) but disassemble
at endolysosomal pH (6.0) due to the protonation of tertiary amines, thus showing high
tolerability in serum and rapid release in the cytosol.

Moreover, the secondary amine group attached to the sulfone group in the sulfonamide
possesses a near-neutral pKa, which can be utilized to design pH-responsive nanocarri-
ers (Figure 1B) [51]. There exists electrostatic adsorption between negatively charged
sulfonamides and positively charged polymers when pH is above 6.8, while in acidic
microenvironments (pH below 6.8), the nanocarriers dissociate, as the sulfonamide is
no longer charged, and the electrostatic interactions disappear. Kang and Bae designed
a nanocarrier to transport and release nucleic acids using oligomeric sulfonamides (OS-
ASs) [52], which could alter from hydrophilic to hydrophobic in a low pH environment. The
nanocarriers were used to load the nucleic acid solution by formatting an OSA-polyplex.
The results indicated that the OSA-polyplexes significantly enhanced DNA transfection by
inducing endosomal release.

3.1.2. Acid-Labile Bond Cleavage

Several nanocarriers have been conjugated with acid-labile bonds, such as hydra-
zones [53,54], orthoesters [55,56], imines [57,58] and acetals/ketals [59,60], so as to develop
a series of pH-responsive srNPs. The hydrazone bond is one of the most commonly used
acid-sensitive bonds in nano delivery systems. At pH 7.4, the hydrazone is relatively
stable, whereas it rapidly hydrolyzes in endosomes and lysosomes (pH 5–6) as its C=N
double bond breaks under an acidic condition [61]. Etrych is the first researcher to study
hydrazone linkage [62], and prepared pH-sensitive nanomedicine exhibiting advantages
such as high drug loading capacity, simple preparation process, TME-responsive drug
release and enhanced antitumor activity [63]. Zhou et al. connected amphiphilic conjugates
DOX and β-sitosterol to the N-(2-hydroxypropyl) methacrylamide (HPMA) polymer using
hydrazone as linkage [64]. The hydrazone linkage remains quite stable throughout the
blood circulation at pH 7.4, while it breaks down quickly and releases 80% of its drug
at pH 5.0. The pH-responsive cross-linked micelles showed significantly enhanced tu-
mor permeability and anti-tumor efficacy in an H22 mouse xenograft model. The results
proved that HPMA polymer micelles with hydrazone connections are feasible carriers for
controlled-release nanodrugs.

Liao et al. developed the pH-sensitive hyaluronic acid-hydrazone linkage-DOX NPs
(HA-hyd-DOX NPs) for targeted delivery of DOX. In specific, hydrophobic DOX was
conjugated with the hydrophilic HA backbone by the pH-responsive hydrazone linkage,
and the HA-hyd-DOX conjugates could self-assemble into HA-hyd-DOX NPs, which
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can target tumors through a High Affinity of HA for overexpressed CD44 and achieve
intracellular DOX release via cleavage of the hydrazone bond [65].

Not only a hydrazone bond, orthoester is also a kind of commonly used acid sensitive
bond, due to its sensitivity to pH changes and its biocompatible degradation products.
Huang et al. first reported polymers with orthoester as linkage [66,67]. Xu et al. synthesized
a polymer poly(n-((2-(2-(dimethylamino)ethoxy)-1,3-dioxolan-4-yl)methyl)methacrylamide)
(PMAOE) linked by orthoester linkages to deliver DNA [68]. Drug-loaded nanoparticles
were stabilized by electrostatic interactions between cationic amine groups and anionic
DNA, and they were able to promote efficient release of DNA in the TME. Nuclear magnetic
resonance (NMR) assay results showed that about 60% of the side chains underwent
hydrolysis at pH 4.0 and slowly released adsorbed DNA.

The acid-labile imine linkage in an acidic environment has also been used as an acid-
sensitive responsive bond for nano drug-loaded systems [69]. In 2017, Ding et al. fabricated
dextran-doxorubicin (Dex-DOX) nanoparticles based on imine linkage (Figure 2A) [70].
Specifically, the hydroxyl groups on dextran were oxidized to aldehydes before being
linked with DOX via imine linkage. The conjugate could self-assemble into uniform
nanoparticles in an aqueous solution. The results proved that Dex-DOX could significantly
improve cancer cellular uptake and enhance antitumor efficacy for B16-F10-bearing mice
with excellent therapeutic safety. To further increase the stability of imine linkage under
physiological conditions, benzoic-imide bonds were constructed by conjugation of the π–π
bonds. Liao et al. developed the pH-responsive polymer nanogels with benzoic-imide
cross-linkages synthesized by crosslinking of terephthalaldehyde (TPA) molecules with
branched poly(ethylenimine)-g-methoxy poly(ethylene glycol) copolymers for delivering
indocyanine green (ICG) [71]. The nanogel encapsulating efficiently ICG retarded leakage
of drugs at pH 7.8 by improving the stability of the drug in a neutral phosphate buffer,
while it released ICG with the cleavage of benzoic–imide bonds in the nanogel when the
pH was changed from 7.8 to 6.4, thus achieving controlled drug release.

In addition, Gillies and colleagues first reported the use of acetals as the connecting
bonds of pH-responsive srNPs in 2004 [72]. Under acidic conditions, one of the oxygen
atoms of the acetal bond is protonated and induces hydrolytic fracture, resulting in the
transition of nanoparticles from hydrophobic to hydrophilic, thus accelerating drug release.
Recently, Wagner et al. constructed pH-triggered mesoporous silica nanoparticles (MSNs)
with acetal linker for loading and controlled release of resiquimod (R848), a Toll-like
receptor 7 and 8 agonist, and OVA [73]. In this research, the carboxylated surface of
MSNs enables them to connect with pH-induced capping composed of an acetal linker and
biotin-avidin complex. The results of tests indicated that the R848-loaded MSNs showed
rapid uptake by immune cells and efficient immune activation under acidic conditions. In
addition, MSN-R848-OVAp activated an enhanced specific T-cell response by codelivery
of the adjuvant and antigen. To prepare the polymeric material with acid-sensitivity and
biodegradability, acetylated-dextran (Ac-Dex) is obtained by replacing 73% of hydroxyl
groups in dextran with acetals [74]. Attractively, at 37 ◦C and pH 5.0, the half-life of
FITC-dextran was approximately 10 h, whereas at pH 7.4 it was approximately 15 days.
At present, a variety of drugs including DOX [75], plasmid DNA [76], siRNA [77,78] and
antimicrobial agents [79] have been loaded into Ac-Dex-based nanoparticles.
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Table 1. pH-responsive srNPs in cancer therapy.

Responsive Moiety Nanoplatform Cargos Application Tumor Model Refs.

polyHis

poly(L-lactic acid)-b-PEG-b-polyHis micelles DOX pH-dependent drug release MCF-7 [40]

polymeric micelles constitute of two block
copolymers of poly(L-lactic
acid)-b-PEG-b-poly(L-histidine)-TAT and
polyHis-b-PEG

DOX pH-dependent drug release and tumor targeted
chemotherapy

A2780/AD, MCF-7,
and A549 [42]

A mixed-micelle system composed of
polyHis-co-phenylalanine-b-poly(PEG) and
poly(L-lactic acid)-b-PEG-folate

DOX Reversal of multidrug resistance of cancer A2780/DOXR [43]

a mixture of polyHis/PEG-folate and
poly(L-lactic acid)-b-PEG-folate DOX Reversal of resistant MCF-7 tumor MCF-7/DOXR [44]

A micelle composed of polyHis-b- PEG and
poly(L-lactic acid)-b-PEG-b-polyHis-biotin DOX Increase of endocytosis. MCF-7 [45]

tertiary amine
mPEG/HCou-g-MPCL micelles DOX pH-sensitive drug delivery HeLa [49]

GDA/EGFP EGFP pH-responsive cytosolic protein delivery 143B [50]

sulfonamide

DNA/PEI/poly(methacyloyl
sulfadimethoxine)-b-PEG DNA Tumor specific gene delivery A2780 [51]

Oligomeric sulfonamides-incorporated
poly(L-lysine)/DNA DNA enhancement of nucleic acid delivery. HEK293 [52]

hydrazone

HPMA DOX pH-sensitive drug release EL4 [62]

HPMA DOX
β-sitosterol pH-sensitive tumor chemotherapy Hep G2, A549 and

H22 [64]

HA-hyd-DOX DOX pH-dependent drug release and tumor targeted
chemotherapy Hela [65]

orthoester
PEG-b-PtNEA27/56/73 Nile Red. Acid-sensitive and thermoresponsive

drug release NA [66]

PMAOE DNA pH-modulated release of gene NA [68]

imine Dex-DOX DOX pH-sensitive tumor chemotherapy B16F10 [70]

benzoic-imine benzoic-imine-containing PEI-g-mPEG ICG Acid-triggered photoinitiation release NA [71]

acetals
MSN−R848−OVAp R848 and OVA pH-sensitive tumor immunotherapy NA [73]

Ac-DEX pyrene pH-dependent drug release NA [74]

pHLIP HauNS-pHLIP-Ce6 Ce6 Tumor targeted PTT/PDT Hela [80]

MONs DOX Tumor targeted chemotherapy MDA-MB-231, MCF-7 [81]



Pharmaceutics 2022, 14, 2346 8 of 25
Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

 
Figure 1. Design and responsive mechanism of pH-triggered srNPs. (A) Schematic depicting the 

pH-induced change of the micelle based on polyHis. Reproduced with permission [45]. Copyright 

2005, American Chemical Society. (B) Illustration of the pH-responsive shielding/deshielding of pol-

ymeric nanoparticles containing sulfonamide at different pH. Reproduced with permission [51]. 

Copyright 2006, American Chemical Society. (C) Self-assembly and in vivo pH-triggered disassem-

bly of Dex-DOX connected by the imine bond. Reproduced with permission [70]. Copyright 2017, 

Elsevier. 

3.1.3. pH(Low) Insertion Peptides 

There is another typical reported approach to achieve the pH-triggered srNPs. The 

acidic TME can also activate pHLIPs, which are polypeptides with specific sequences that 

can be inserted into the cell membrane under acidic conditions [35,82]. These polypeptides 

are composed of two flanking sequences at the end and a transmembrane sequence in the 

middle (Figure 2A). The flanking sequence endows the protein with water solubility, 

while the transmembrane sequence is mainly composed of aspartic acid (ASP) and glu-

tamic acid (Glu) residues, which can enable the pHLIPs to be more hydrophobic at acidic 

pH, thus enhancing the interaction with the cell membrane [32]. Through the mechanism 

of membrane-associated folding [83], pHLIPs could be triggered by the acidic TME and 

spontaneously form a helix to insert and span the cellular membrane (Figure 2B). Under 

neutral or alkaline pH conditions, pHLIPs generally exist in the form of unstructured 

monomers, so they can be soluble in aqueous solutions and reversibly associate with lipid 

bilayers or the outer surface of cell membranes. However, in the acidic microenvironment, 

the increased proton concentration could induce protonation of the carboxyl groups of 

ASP and Glu in the C-terminal and transmembrane sequences of pHLIPs, thereby enhanc-

ing their hydrophobicity. Thus, the protonation of residues triggers the formation of a 

transmembrane helix, which can insert itself into the hydrophobic layer of the cell mem-

brane. The insertion is mainly directional. Usually, the C-terminal enters the cytoplasm 

across the bilayer membrane, while the N-terminal remains outside the cell [84,85]. It was 

reported that the affinity of pHLIPs for the phospholipid bilayer at low pH is 30–50 times 

higher than that at high pH. In addition, the kinetic process of insertion of pHLIPs into 

the cell membrane is quite rapid, and the movement from the formation of the interface 

helix to the transmembrane can be completed in seconds to minutes [86]. 

Figure 1. Design and responsive mechanism of pH-triggered srNPs. (A) Schematic depicting the pH-
induced change of the micelle based on polyHis. Reproduced with permission [45]. Copyright 2005,
American Chemical Society. (B) Illustration of the pH-responsive shielding/deshielding of polymeric
nanoparticles containing sulfonamide at different pH. Reproduced with permission [51]. Copyright
2006, American Chemical Society. (C) Self-assembly and in vivo pH-triggered disassembly of Dex-
DOX connected by the imine bond. Reproduced with permission [70]. Copyright 2017, Elsevier.

3.1.3. pH(Low) Insertion Peptides

There is another typical reported approach to achieve the pH-triggered srNPs. The
acidic TME can also activate pHLIPs, which are polypeptides with specific sequences that
can be inserted into the cell membrane under acidic conditions [35,82]. These polypeptides
are composed of two flanking sequences at the end and a transmembrane sequence in the
middle (Figure 2A). The flanking sequence endows the protein with water solubility, while
the transmembrane sequence is mainly composed of aspartic acid (ASP) and glutamic
acid (Glu) residues, which can enable the pHLIPs to be more hydrophobic at acidic pH,
thus enhancing the interaction with the cell membrane [32]. Through the mechanism of
membrane-associated folding [83], pHLIPs could be triggered by the acidic TME and spon-
taneously form a helix to insert and span the cellular membrane (Figure 2B). Under neutral
or alkaline pH conditions, pHLIPs generally exist in the form of unstructured monomers,
so they can be soluble in aqueous solutions and reversibly associate with lipid bilayers
or the outer surface of cell membranes. However, in the acidic microenvironment, the
increased proton concentration could induce protonation of the carboxyl groups of ASP
and Glu in the C-terminal and transmembrane sequences of pHLIPs, thereby enhancing
their hydrophobicity. Thus, the protonation of residues triggers the formation of a trans-
membrane helix, which can insert itself into the hydrophobic layer of the cell membrane.
The insertion is mainly directional. Usually, the C-terminal enters the cytoplasm across the
bilayer membrane, while the N-terminal remains outside the cell [84,85]. It was reported
that the affinity of pHLIPs for the phospholipid bilayer at low pH is 30–50 times higher
than that at high pH. In addition, the kinetic process of insertion of pHLIPs into the cell
membrane is quite rapid, and the movement from the formation of the interface helix to
the transmembrane can be completed in seconds to minutes [86].
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By utilizing this mechanism, Yu et al. developed pHLIP-coated hollow gold nanospheres
(HauNS) containing chlorin e6(Ce6) by electrostatic approach, achieving desirable pH-
driven controlled therapy [80]. As an efficient smart responsive delivery system, the
HauNS-pHLIP-Ce6 could not only amplify the accumulation and retention effects in the tu-
mor, but also induce enhanced photothermal therapy (PTT)/photodynamic therapy (PDT)
simultaneously by a single NIR light. The pH-activated nanospheres were believed to be
a promising theranostic platform against tumors. Additionally, Zhang et al. constructed
mesoporous organosilica nanoparticles (MONs) modified with pHLIP (Figure 2C) [81], and
these pHLIP-modified MONs loaded with DOX could achieve higher cellular uptake by
MDA-MB-231 and MCF-7 cells and exert excellent cytotoxic effects against cancer cells
in the low pH circumstances of the TME. The results indicated that the pHLIP-modified
MONs could be employed as desirable nanocarriers for enhancing chemotherapy.

3.2. GSH-Responsive Nanocarriers

Overexpressed GSH in the TME can also serve as a trigger switch for tumor responsive
therapy [87]. Disulfide bonds (-SS-), diselenide bonds (-SeSe-) and manganese dioxide
(MnO2) can break or disintegrate when incubated with GSH, so they could be used to design
intelligent nanoplatforms to achieve tumor-specific drug release. Disulfide bonds have been
widely used as a breakable bonding bond in nanocarriers to make nano preparations GSH
responsive. For example, Chai et al. designed the GSH-responsive micelles, hyaluronic
acid-ibuprofen (HA-ss-BF), prepared by conjugating ibuprofen (BF) to hyaluronic acid
(HA) with a disulfide bond and self-assembling into micelles [88]. HA-ss-BF micelles
could be employed as stimuli-responsive carriers for delivering DOX. Specifically, BF is
used as an anticancer agent inhibiting the overexpressed cyclooxygenase-2 (COX-2) in
cancer cells. Furthermore, HA-ss-BF micelles loaded with DOX could target cancer cells
by recognition of CD44 receptors. Thus, HA-ss-BF micelles achieved GSH-responsive
disassembly, targeted and on-demand release of drugs, as well as improved cellular uptake
and excellent biodistribution (Figure 3A). Liu et al. developed GSH-responsive and DNA-
based branched nanoplatforms for codelivery of gene editing components sgRNA/Cas9
targeting DNA and gene silencing component antisense targeting mRNA [89]. To be
specific, a 3′ terminal extended single guide RNA (sgRNA) was prepared, which is capable
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of complementary base pairing with complementary nucleic acid (antisense), and it was
utilized to achieve coassembly of the sgRNA/Cas9/Antisense complex (RCA@NP) with
antisense modified by two disulfide linkages as linker. The disulfide bonds enable RCA@NP
to release antisense and sgRNA/Cas9 stepwise with the trigger of GSH and ribonuclease H
enzymes (an intracellular RNA nuclease that can digest the RNA of RNA−DNA hybrids)
in the intracellular environment, thus realizing synergistic antitumor efficacy. In addition,
Ma et al. prepared ATRA-SS-HA nanomicelles by connecting hydrophobic all-trans retinoic
acid (ATRA) and hydrophilic HA with disulfide bonds [90], which can self-assemble with
curcumin (Cur) into Cur@ATRA-SS-HA. Such Cur-loaded nanomicelles can achieve GSH-
triggered drug release due to the cleavage of disulfide bonds of nanomicelles in the TME,
thus enhancing target esophageal cancer therapy.

Diselenide bonds also attract increasing attention as a GSH-responsive trigger. He
et al. constructed diselenide-based GSH-responsive nanoparticles for triple-negative breast
cancer-targeting (TNBC-targeting) treatment (Figure 3B) [91]. First, the paclitaxel (PTX)
dimer prodrug PTXD-Se was synthesized with a diselenide bond serving as linkage, and it
was subsequently encapsulated into an amphiphilic copolymer. As a ligand of urokinase-
type plasminogen activator receptor (uPAR) that expresses highly in TNBC ligand, uPA
peptide was modified on the PTXD-Se NPs surface to obtain the uPA-PTXD NPs for further
TNBC-targeting treatment. Since the diselenide bonds could be responsively cleaved by
high GSH concentration and the uPA could bind with uPAR, the uPA-PTXD NPs showed
GSH-controlled drug release and targeted tumor accumulation, exhibited significant anti-
tumor efficacy and reduced systemic toxicity. Although both disulfide and diselenide bonds
are highly sensitive to GSH, there is still debate as to which molecule is more sensitive.
He et al. reported that the GSH-responsiveness of diselenide bonds is more sensitive
than that of disulfide bonds [92], while Zhang et al. [93,94] believed that disulfide bonds
possessed stronger reduction sensitivity than disulfide bonds. In any case, these srNPs
triggered by GSH show enhanced antitumor activity and reduced toxicity, which have
broad development prospects.

Besides disulfide bonds and diselenide bonds, MnO2 is also could be utilized to design
promising GSH-responsive nanocarriers. Mesoporous silica nanoparticles coated with
MnO2 achieved GSH-responsive release as the MnO2 shell could be triggered to disso-
ciate by abundant GSH in the TME, thus to deplete GSH and produce Fenton-like Mn2+

for cancer imaging and self-reinforced chemodynamic therapy (CDT) [95]. Zhang et al.
constructed HMnO2@PEG/BLM nanoparticles, the polyethylene glycol (PEG)-modified
hollow mesoporous MnO2 nanoparticles loading bleomycin (BLM) that needs to be acti-
vated by metal ions to exert cytotoxicity [96]. When the nanoparticles reached the TME,
they were degraded by the excessive GSH and produced Mn2+, releasing BLM simul-
taneously, thereby forming Mn2+-BLM in situ and activating the therapeutic activity of
BLM. In addition, Mn2+ could be utilized for in vivo magnetic resonance imaging (MRI).
The nanoparticles effectively enhanced the antitumor therapeutic effects and avoided the
adverse effects with GSH-responsive release and activation in situ of BLM (Figure 3C).

3.3. Hypoxia-Responsive Nanocarriers

Since hypoxia plays a key role in tumor angiogenesis, invasion, metastasis and im-
munosuppression [97], there has been increasing interest in developing nanocarriers for tar-
geting the hypoxic TME recently. He et al. synthesized hypoxia-sensitive polyethylenimine-
nitroimidazole (PEI-NI) micelles by self-assembly for codelivery of DOX and hyaluronic
acid-Ce6 (HC) [98]. Under the hypoxic TME, the hydrophobic 2-nitroimidazole (NI) in
micelles could be reduced to hydrophilic 2-aminoimidazole (AI) by a series of bio-reducing
agents, enabling the micelles to release drugs by degradation to exert synergistic chemother-
apy and PDT effects against cancer cells (Figure 4B). In addition, for accurate diagnosis
and targeted treatment against tumors, Liu et al. constructed novel hypoxia-activatable
polymeric micelles PEG-b-P(Asp-g-NIDH) consisting of 6-(2-nitroimidazole)hexylamine
(NIDH) moieties grafted to PEG-b-poly (aspartic acid) (PEG-b-PAsp) for codelivery of
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ICG and DOX through self-assembly [99]. Owing to the presence of hypoxia-sensitive
NIDH, PEG-b-P(Asp-g-NIDH) could achieve controlled drug release as well as synergistic
chemotherapy and PTT/ PDT effects, facilitating precision of photoacoustic (PA) imaging
and eradication of malignancy (Figure 4A).
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Another common hypoxia-sensitive structure is azobenzene (AZO). Perche et al. de-
veloped nanocarriers for siRNA delivery by introducing AZO structures between PEG and
polyethyleneimine (PEI) (Figure 4C) [100]. After reaching the oxygen-deficient TME, the
AZO bond broke and led to the disappearance of the shielding effect of the PEG-coating
and the release of the encapsulated siRNA. Yang et al. synthesized a human serum albumin
(HSA)-based hypoxia-responsive nanoparticle HCHOA by crosslinking AZO with oxali-
platin prodrug-conjugated HSA(HO) and Ce6-conjugated HSA(HC) [101]. The AZO group
could be cleaved under hypoxic conditions, causing the rapid hypoxia-induced degradation
of HCHOA in the TME. The hypoxia-triggered disassembly mode of HCHOA ensures its
enhanced intratumoral penetration and PDT performance. Kulkarni et al. constructed the
novel vesicle by self-assembly of di-block copolymer polylactic acid-AZO-polyethylene
glycol for loading anticancer drugs gemcitabine (GEM) and erlotinib (ERL) [102]. The
results indicated that drug-loaded vesicles could release encapsulated drugs in a hypoxic
environment and significantly inhibit the proliferation of pancreatic cancer cells. To in-
crease the penetration of drugs, nucleic acids, or probes into the core of tumors, Xie et al.
designed pH-sensitive and size-shrinkable nanocarrier PAMAM-AZO-PEG (PAP) [103],
which can encapsulate DOX in the core and absorb HIF-1α siRNA (si-HIF) on the surface
with electrostatic bonding. In order to monitor the anti-cancer effect of DOX, the ROS
probe also was combined with PAP+DOX. In the hypoxic TME, the PEG detached from
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positively charged PAMAM owing to the hypoxia-induced cleavage of AZO, enabling
PAMAM to escape from endosomes through the proton pump effect, thus releasing loaded
DOX and si-HIF. The results of the assay demonstrated that PAP+si-HIF+DOX can promote
DOX penetration and silence HIF-1α expression and detect the elevated ROS level induced
by DOX.
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Figure 4. Design and responsive mechanism of hypoxia-triggered srNPs. (A) Preparation and
in vivo selectively hypoxia-activated mechanism of IDMs nanomedicines for eradicating advanced
breast cancer. Reproduced with permission [99]. Copyright 2021, Elsevier. (B) Chemical structure
and hypoxia-responsive mechanism of NI-based nanoparticles. Reproduced with permission [98].
Copyright 2018, Royal Society of Chemistry. (C) Schematic illustration of synthesized polymers and
their mechanism of hypoxia-responsive disintegration in the TME. Reproduced with permission [100].
Copyright 2014, Wiley-VCH GmbH.

3.4. Enzyme-Responsive Nanocarriers

According to the literature, there were several enzymes overexpressed in tumor cells
that could be utilized as endogenous stimuli for cancer imaging and treatment [104,105].
The advantage of enzymes as a reaction trigger are their high specificity for substrates,
arousing increasing interest in developing enzyme-induced nanocarriers. The main en-
dogenous enzymes studied include cathepsin, matrix metalloproteinase, phospholipase,
glycosidase and so on (Table 2).

3.4.1. Cathepsin B

Cathepsin B (Cat-B) belongs to the family of lysosomal cysteine proteases, which are
closely related to the development of cancer, and it is a typical stimulator, as its concen-
tration in a variety of tumors is 3 to 9 times higher than that in normal tissues. Therefore,
Cat-B-triggered srNPs have become new strategies for tumor treatment. Based on this,
several Cat-B-cleavable peptides were designed, such as Glycine–Phenylalanine–Leucine
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–Glycine (GFLG) peptides [106,107] and Phenylalanine–Arginine–Arginine–Glycine (FRRG)
peptides [108,109].

For instance, Cheng et al. created enzyme-responsive MSNs with a rotaxane structure
serving as gatekeeper on the orifices (Figure 5B) [106]. The MSNs subsequently were
modified by a multifunctional peptide containing Cat-B-responsive GFLG, exhibiting
a high encapsulation rate for DOX. Thus, the DOX-loaded MSNs are capable of rapidly
releasing the drug when the GFLG peptide was cleaved by excessive cathepsin B in the TME,
resulting in superior antitumor activity. Song et al. developed Cat-B-degradable peptide
nanoparticles (Arg–His–(Gly–Phe–Lue–Gly)3 (RH–(GFLG)3) for delivery of DOX [110].
Compared to the control group, the DOX-loaded RH–(GFLG)3 exhibited enhanced stability,
cell penetration and anti-cancer effects.
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of construct of FRRG-DOX nanoparticles and its tumor-targeting cytotoxicity due to the Cat-B-specific
enzyme. Reproduced with permission [108]. Copyright 2019, Elsevier. (B) Cat-B-induced procedure
and targeting intracellular application of the MSNs. Reproduced with permission [106]. Copyright
2015, American Chemical Society.

In addition, based on the Cat-B-cleavable peptide FRRG, Shim et al. designed a facile
method for preparing the Cat-B-sensitive prodrug FRRG-DOX, which could release drugs
with Cat-B-specific cleavage of prodrugs at the tumor site (Figure 5A) [108]. The results
of human xenograft tumor models indicated that FRRG-DOX could improve targeting
efficiency and antitumor efficacy against Cat-B-overexpressed cancer cells, and it did not
cause severe toxicity in normal tissues owing to the low expression of Cat-B. Similarly, Cho
et al. developed FRRG-monomethyl auristatin E (FRRG-MMAE) nanoparticles through
self-aggregation [109], increasing the MMAE accumulation in tumors and enhancing the
safety of therapy.

3.4.2. Matrix Metalloproteinases

In recent years, MMPs have become a hot research target in cancer therapy. MMPs are
proteolytic enzymes whose basic role is to promote protein degradation and participate in
regulating a variety of cell behaviors related to cancer biology. They belong to the zinc and
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calcium-dependent endopeptidases family and are essential for tissue remodeling [111,112].
Under normal physiological conditions, the activity of MMPs is inhibited; However, in
the TME, the abnormally high expression of some MMPs, such as MMP2, MMP7, MMP9
and so on, promotes the occurrence and metastasis of tumors [113]. Therefore, MMPs are
widely used to achieve enzyme-triggered site-specific drug release. MMPs-responsive drug
delivery can be achieved through constructing micelles, liposomes, dendrimers, nanogels
and inorganic nanoparticles with MMPs-triggered structures [114]. Zhu et al. linked PTX
with PEG2000 through an MMP2-responsive peptide, constructing a novel targeted nanomi-
celle [115]. Specifically, PTX was loaded into the hydrophobic core of the micelles and
was covered with hydrophilic PEG. After intravenous administration, nanomicelles could
accumulate at the tumor through the retention effect (EPR effect) and enhance permeabil-
ity of solid tumors, and then they could disintegrate to release PTX under the action of
MMP2 in TME. Additionally, Zhou et al. designed a strategy to integrate the OXA-prodrug
hexadecyl-oxaliplatin diethylene amine with 2,3-dimethylmaleic anhydride (HOAD) and
PEGylated photosensitizer in MMP-2-activatable prodrug vesicles (MPV) into a nanoplat-
form (MPV-HOAD) [116]. This nanoplatform remained stable in the blood circulation,
while after reaching tumors, the PEG corona was removed by MMP-2 and its surface
charge was transformed from negative to positive under the acidic TME, subsequently
improving penetration and accumulation of drugs in tumors, thus achieving an excellent
antitumor effect.

Kalafatovic et al. developed an MMP-9-sensitive amphiphilic peptide that can form
micelles through self-assembly for loading DOX [117]. Notably, in the TME, the cleavage
of the MMP-9-triggered linkage in peptides could exert micelle reconfiguring to fibrillar
nanostructures due to catalyzed hydrolysis of MMP-9, thus releasing DOX slowly and
continuously. In addition, Liu et al. constructed an MMP-13-responsive MSNs-PLGLAR-
BSA-LA@DOX [118]. Specifically, PLGLAR, the MMP-13 substrate polypeptide sequence,
was used as a responsive linkage, bovine serum albumin (BSA) was used as end-capping
to seal the MSNs and lactobionic acid (LA) was used as a targeting ligand. The results
demonstrated that DOX in functionalized MSNs could be effectively released under the
trigger of MMP-13 in the TME, thus enabling the nano-drug treatment group to exhibit
stronger efficacy and lower toxicity compared with the free DOX group.

3.4.3. Phospholipase

Phospholipases can hydrolyze phospholipids into fatty acids and other lipophilic
substances. In addition, as part of the host defense mechanism, phospholipase is overex-
pressed in the surrounding invasive region of some tumors [119], which provides a specific
stimulus for responsive drug release. At present, the research on the phospholipase A2
(PLA2) family is most extensive, including intracellular PLA2 and secretory phospholipase
A2 (sPLA2).

Sun et al. designed sPLA2-degradable nanoparticles consisting of a liposome as
the shell and two complementary cytokine-loaded DNA nanoclews (NCs) as cores [120].
Specifically, DNA NC cores were loaded with the tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), a model cytokine, through Ni2+-polyhistidine affinity between
Ni2+-modified DNA NCs and TRAIL, and the sPLA2-triggered liposome shell could protect
the TRAIL-loaded DNA NC cores from degradation in the physiological environment and
could be degraded by overexpressed sPLA2 in the TME. Thus, TRAIL-loaded DNA NCs
could transform into nanofibers extracellularly and deliver TRAIL to death receptors on the
plasma membrane of cancer cells, thereby activating the apoptotic signal (Figure 6B). The
Andresen group developed an enzymatically-triggered prodrug liposome for delivering
antitumor ether lipids (AELs) to tumor sites, and the liposomes also could be utilized to
encapsulate various chemotherapeutics [121]. To be specific, sPLA2-sensitive masked AELs
(proAELs) were synthesized, which could form liposomal membranes spontaneously in
an aqueous solution. In the TME, owing to overexpressed sPLA2, the hydrolysis of ester
bonds in proAELs led to the disintegration of liposomes, releasing activated cytotoxic
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AELs and free fatty acids/encapsulated drugs. In another study, Lee et al. designed a
strategy for the synthesis of sPLA2-sensitive phosphate micelles loaded with up-conversion
nanoparticles (UCNP) [122], which could achieve targeted delivery of UCNPs to prostate
cancer cells for accurate bio-imaging. The biocompatible UCNP-loaded micelles exhibited
precise drug release and reduced adverse effects. Ghavami et al. constructed sPLA2-
responsive DSPC/DSPG/DSPE-PEG2000 liposomes for targeted delivery of peptide nucleic
acid (PNA), an antisense agent [123], to the tumor. Specifically, antisense octaarginine (a cell-
penetrating peptide)-conjugated PNA (octaarginine-PNA) was prepared and encapsulated
into the liposome. The PNA-loaded liposomes showed efficient sPLA2-induced release
and excellent antisense effects against HeLa cells.

3.4.4. Glycosidases

Glycosidases participate in the occurrence of N-linked glycosylation in the Golgi ap-
paratus and endoplasmic reticulum [124], and they also can hydrolyze carbohydrates in
the lysosomes [125]. Thus, glycosidases could be utilized to design glycosidase-triggered
nanocarriers for delivering drugs to the target tissues with high concentrations of glycosi-
dases. In recent years, researchers have developed various glycosylated nanoparticles to
selectively release drugs in the TME where cancer cells overexpress glycosidases. Bernardos
et al. developed silica mesoporous supports (SMPS) modified with lactose or starch deriva-
tives on the surface of nanoparticles to achieve enzyme-induced drug release [126]. The
fluorescent dyes were effectively blocked in the pores of SMPS by the grafted saccharide
molecules. With the triggering of β-D-galactosidase, the coated saccharides of MSNs were
hydrolyzed and the entrapped dye was released. For efficient drug delivery, Clarhaut et al.
synthesized a β-galactosidase-sensitive folate-DOX conjugate (FDC) consisting of a folate
ligand, DOX and a galactoside trigger, which can selectively recognize folate receptor-
positive acute myeloid leukemia (AML) cells and release the DOX due to the carbohydrate
unit of FDC being degraded by the catalysis of intracellular β-galactosidase [127]. Rastegari
et al. constructed Fe3O4 magnetic nanoparticles (β-CD-MNPs) coated with β-cyclodextrin
(β-CD) that were employed as enzyme-sensitive carriers for delivering prodigiosin (PG) to
cancer cells (Figure 6A) [128]. The PG-loaded β-CD-MNPs were responsive to galactosi-
dase, releasing drugs due to α-glucosidase degradation, thereby realizing targeted drug
release and improved drug retention to MCF-7/GFP and HepG2 cells.
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Table 2. Enzyme-responsive srNPs in cancer therapy.

Stimulus Responsive Moiety Nanoplatform Cargos Application Tumor Model Refs.

Cathepsin B

GFLG
DOX@MSN-
GFLGR7RGDS/α-CD DOX Tumor targeted chemotherapy HeLa [106]

RH-(GFLG)3 DOX Tumor targeted chemotherapy HeLa [110]

FRRG
FRRG-DOX DOX Tumor targeted chemotherapy HT-29 [108]

FRRG-MMAE MMAE Tumor targeted chemotherapy 4T1 [109]

MMP-2
GPLGIAGQ PEG2000-peptide-PTX PTX MMP-2-sensitive drug release A549 [115]

GPLGLAG MPV-HOAD OXA
pheophorbide a

MMP-2-sensitive PDT and cancer
immunotherapy CT26 [116]

MMP-9 GFFLG
PhAc-FFAG

MMP-9 responsive peptides
in conjunction with DOX DOX MMP-9-triggered drug release and

chemotherapy
MDA-MB-231-luc-

D3H2LN [117]

MMP-13 PLGLAR MSNs-PLGLAR-BSA-
LA@DOX DOX MMP-13-triggered drug release and

chemotherapy HepG2 [118]

sPLA2

1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine

liposome shells and
TRAIL-loaded DNA NCs
cores

TRAIL Targeted Delivery of Cytokine COLO 205 cells [120]

ester bonds in proAEL proAEL AEL Tumor specific drug release for cancer
therapy KATO III [121]

phosphate UCNP-loaded phosphate
micelles UCNP Bioimaging of prostate cancer cells 22Rv1 [122]

DSPC/DSPG/DSPE DSPC/DSPG/DSPE
liposomes PNA tumor targeted drug release for cancer

therapy Hela [123]

Galactosidase Saccharides SMPS modified with lactose
or starch derivatives [Ru(bipy)3]2+ dye

Glycosidase-responsive intracellular
controlled release of drug HeLa [126]

Galactosidase Carbohydrate unit folate-DOX conjugate DOX Glycosidase-responsive chemotherapy KG-1 and HL-60 [127]

α-glucosidase β-CD β-CD-MNPs prodigiosin Anticancer drug delivery MCF-7/GFPHepG2 [128]
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3.5. ROS-Responsive Nanocarriers

The higher level of ROS in cancer cells could also be used for the design and develop-
ment of srNPs to enhance drug release at specific sites. In the design of ROS-responsive
NDDS, the most commonly used groups are boric acid esters [129], thioketals [130],
thioethers [131,132] and so on. A boric acid ester bond has been proven to be able to
undergo ROS-induced degradation and its application in different fields has increased
recently. For example, Lux et al. developed a novel ROS-responsive polyester containing a
boronic ester that could degrade and release cargos through H2O2-triggered cleavage of
the boronic ester (Figure 7A) [133]. Sun et al. designed a self-amplified ROS-induced D-α-
tocopherol PEG1000 succinate-tamoxifen (TPGS-TAM) with an aryl boronic ester linker [134].
After internalization by cancer cells, such a conjugate can disintegrate to release TAM and
α-tocopherol succinate (α-TOS) that can subsequently increase ROS and further accelerate
the release of TAM, thus achieving a robust anti-cancer effect.

Besides the boronic ester structure, thioketal was also used to design ROS-sensitive
nanocarriers. Wang et al. constructed thioketal-core ROS-sensitive PAMAM dendrimers
for loading siRNA(siRNA/ROS-PAMAM) [135], which can improve the release of siRNA
in the TME. With thioketal employed as linkages, siRNA/ROS-PAMAM is cleavable in
ROS-abundant conditions, reducing cytotoxicity for normal tissues. The experimental
results demonstrated that siRNA/ROS-PAMAM shows high gene transfection efficiency
for A549 cells.

Thioethers have also been utilized to design ROS-triggered srNPs. Du et al. syn-
thesized novel thioether phosphatidylcholines (S-PCs) and S-PC-based liposomes (S-LPs)
loaded with DOX for ROS-induced release of drugs (Figure 7B) [136]. The results of in vitro
and in vivo assays proved that S-LPs exhibited efficient ROS-responsive targeted drug
release due to thioether oxidation, thereby enhancing the potency of antitumor drugs.
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4. Conclusions and Perspectives

Tumor growth shows cellular and molecular heterogeneity [137], and it has been re-
ported that a small quantity of progenitor cells and stem cells embedded in the perivascular
region might be related to the growth and recurrence of tumors [138]. At the cellular
level, malignant tumors are characterized by a complex mixture of benign cells, malignant
cells, fibroblasts, stromal cells, vascular cells and infiltrating inflammatory cells. At the
molecular level, the phenotype and gene expression profile of cancer cells are distinctly
different from those of normal cells. This review comprehensively summarizes a series
of intelligent nanoplatforms responsive to specific stimuli in the TME, including low pH,
high GSH concentration, hypoxia, overexpressed enzymes and excessive ROS. Notably, the
srNPs’ target tumor tissues and can be triggered by endogenous stimulation of the TME,
thus showing enhanced anti-tumor efficacy and reduced toxicity. Additionally, the srNPs



Pharmaceutics 2022, 14, 2346 19 of 25

play a crucial role in drug controlled-release against cancer cells as the active participant
instead of the passive carrier, showing great development potential in improving disease
treatment methods.

Compared with conventional drug delivery systems, TME-responsive nanoformula-
tions control drug uptake and release in cancer cells and the TME through local stimulation,
exerting excellent antitumor therapeutic efficacy. However, there are still some key prob-
lems to be solved before the srNPs are applied in clinical practice. Herein, we highlight
some obstacles that must be eliminated as soon as possible and provide some suggestions
for future applications.

Firstly, conditions of endogenous stimuli in some studies are imprecise, for example,
the pH value used in some studies is lower than the actual pH of the tumor, and the concen-
tration of the reducing agent used in vitro is higher than the actual concentration in vivo.
Therefore, a better understanding of the differences between the normal physiological
environment and the TME is essential to further develop stimuli-responsive nanocarriers.
In addition, variability among patients and differences in the TME among diverse types of
tumors hindered clinical translation of srNPs. To remove the obstacles caused by tumor
heterogeneity, more triggers that are overexpressed in TME should be found and studied,
such as vascular endothelial growth factor (VEGF) [139], and multi-stimuli-responsive
nanocarriers with tunable drug delivery should be developed to adapt to different tumors
and different patients. In addition, exogenous stimuli [140], such as heat, light and ultra-
sound, also play an important role in targeted anti-tumor therapy, so research on these
stimuli should also be promoted and explored in the future.

Secondly, numerous studies on srNPs in subcutaneous tumor-bearing mice models
have been reported, but their therapeutic effect can rarely predict their safety and effective-
ness in clinical trials [141]. Thus, more preclinical animal models that could highly simulate
human TME need to be established, such as patient-derived tumor models [142], tumor
metastasis models, in situ tumor models and tumor drug resistance models to further study
the possible clinical applications of srNPs.

Thirdly, the potential systemic toxicity of srNPs is a severe challenge for their use
in long-term treatments due to some non-biodegradable nanomaterials and relatively
low accumulation efficiency at the target site. To overcome this obstacle, some strategies
could be utilized to verify the biosafety of srNPs in the short term and in the long term.
A promising approach is to develop metabolizable or biodegradable nanomaterials for
the design of functional srNPs based on artificial intelligence and machine learning to
avoid systemic toxicity [143]. In addition, a series of studies need to be comprehensively
performed, such as the distribution of drugs intratumourally, scientific analysis of phar-
macokinetics and pharmacodynamics, analysis of blood biochemistry and hematology,
long-term toxicological evaluation and so forth [144].

Lastly, the sophisticated approaches and complex components for preparing srNPs
severely hampered their clinical application due to the high cost, batch-to-batch variations
and relatively poor stability of srNPs. The simple and feasible fabrication methods for
srNPs should be innovated to ensure controllable cost, batch-to-batch reproducibility and
maintained stability, thus facilitating the standardized large-scale production and quality
control of srNPs for clinical translation.

To summarize, srNPs-responsive nanocarriers represent a promising future for the
treatment of cancer. We firmly believe that in the near future, with the breakthrough of
relevant research, multifunctional nano delivery systems for practical clinical applications
will make great contributions to human health.
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