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Abstract: The robustness of 3D-printed mini-tablets as a platform to administer milligram dosages,
intended for age-specific therapy, without the need of tablet splitting while maintaining similar release
profiles, was investigated. Griseofulvin, as a model poorly water-soluble drug, and hydroxypropyl
cellulose along with Kollicoat Protect as polymers were used to prepare filaments at 1–20% drug
concentrations via hot-melt extrusion (HME). Higher drug concentrations served for testing the
feasibility of a reduced number of mini-tablets to be administered. A reliable dose titration in the
range 0.19–3.91 mg at a high accuracy (R2 of 0.999) was achieved through composite unit (multi-unit)
mini-tablets. All mini-tablets produced had excellent content uniformity and their label claim values
were within the acceptable range, proving that HME processing followed by 3D printing promotes
content uniformity even for mini-tablets containing low drug doses (0.19 mg). Remarkably, the
proposed approach allowed achieving similar drug release profiles via composite unit mini-tablets as
well as single mini-tablets at high drug concentrations. In contrast, split tablets demonstrated different
release behaviors, attributed to their size and shape differences. Overall, the distinct advantages of
mini-tablets to provide dose flexibility while maintaining similar release profiles was demonstrated.

Keywords: FDM 3D-printing; mini-tablets; low-dose titration; personalized medicine; split tablets;
high and low drug concentrations

1. Introduction

Many pediatric formulations require dose manipulation [1–6] to either administer
prescribed doses per age/body weight or to minimize swallowing issues. Splitting a large
tablet into smaller pieces [7–11] is the most prevalent and simplest practice for manipulating
solid dosage forms. However, the respective fragments formed may not meet the intended
dose owing to the possible variation in weight, content uniformity [7,9,12–14], and the effect
on drug dissolution, as well as subsequent metabolism [12,15]. Resulting inconsistencies
in the delivered drug amount could prove detrimental for patients who are at risk when
the drug has a narrow therapeutic index [12,16]. As an alternative, liquid dosage forms
have been used for pediatric patients, but accurate dosing remains challenging due to
issues related to failure of following dosing instructions, dosage form stability, and possible
contamination during administration [17–21]. Nevertheless, such issues drive the need to
develop better solutions for patient-tailored, age-specific formulations [3,4].

Oral multi-particulate drug delivery systems, such as nano/microparticles, granules,
pellets, and mini-tablets, could be an alternative solution for age-specific formulations
by tailoring their total counts as a function of patient age [22,23]. Amongst the multi-
particulate systems, mini-tablets offer attractive advantages, i.e., mechanical properties,
constant specific surface area, smooth outer surface, and reliable size and shape [22,24,25].
Therefore, mini-tablets have emerged as one such solution and have enormous potential

Pharmaceutics 2022, 14, 2305. https://doi.org/10.3390/pharmaceutics14112305 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14112305
https://doi.org/10.3390/pharmaceutics14112305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-4386-0193
https://orcid.org/0000-0002-2983-7504
https://orcid.org/0000-0002-3475-1051
https://doi.org/10.3390/pharmaceutics14112305
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14112305?type=check_update&version=1


Pharmaceutics 2022, 14, 2305 2 of 18

as an age-specific drug therapy [2,21,26–29]. Typically, mini-tablets are defined by their
smaller size with about 3–5 mm in diameter [30–34]. Their relatively small size could
be beneficial to mitigate swallowing issues and offer a high level of patient compliance
through a single or composite (multi-unit) tablet administration [21,26,34–36]. Particularly,
multi-unit mini-tablets loaded with low drug concentrations enable higher flexibility for
low-dose drug delivery [21]. Furthermore, they are less sensitive to external factors, unlike
liquid forms, and have a greater dose accuracy to potentially prevent failure in attaining
therapeutic concentration, which can occur with fragmented tablets or subdivided adult
tablets [12,17,26]. Consequently, the focus of this work is the examination of these distinct
advantages of mini-tablets to provide dose flexibility for age-specific patients.

Traditionally, mini-tablets are formed via compression and their manufacturing steps
are similar to standard size tablets by mixing and compressing via conventional tablet
presses equipped with multiple punches [22,37]. The uniformity and consistency in such
small-sized products naturally requires additional efforts in the formulation development
and processing because of the requirements such as: an upper limit on the particle size to
avoid clogging of the die opening [38], excellent flow properties to meet the consistency
in die filling [22,37,39], and strict control of the tablet tool alignment against the high
die-wall friction [34,37]. The aforementioned challenges with traditional manufacturing of
mini-tablets form a motivation for exploring alternate approaches. The emerging field of
3D printing technology offers new and exciting opportunities for overcoming some of the
aforementioned limitations. It can provide the manufacturing flexibility through printing
complex product shapes [40] and including uniform particles at a small scale [41–47]. Fused
deposition modeling (FDM) based 3D printing [47–53] is appealing due to its rapid manu-
facturing speed unlike SPHRINT (g h−1) and quick post-printing processes in contrast to
post-curing after stereolithography (SLA) and powder removal after selective laser sintering
(SLS) [41,44–46]. In addition, FDM 3D printing appears to eliminate challenges associated
with compressed powder tableting since the starting material is a thermoplastic solid fila-
ment [54–57]. The manufacturing of filaments is performed via hot-melt extrusion (HME)
which avoids all powder-related problems and offers the additional benefit of potentially
enhancing content uniformity through intense mixing actions [58–60]. Hence, the HME
process coupled with 3D printing would promote dosing reliability; see for example, the
reported results of improved content uniformity [61–64]. In FDM 3D printing, the intended
dose is precisely deposited through successive layers of thermoplastic filaments [62,65]
with high precision through digital control.

Due to its potential for flexible dosing, the FDM 3D printing platform has been actively
researched for dose titration [66–68], preparing appealing designs for children [61], and
for low-dose formulations, i.e., <5.0 mg [68,69]. Although these examples suggest obvious
applications of FDM 3D printing for addressing the needs of pediatric patients, interestingly,
its use in printing mini-sized tablets has not been well explored [70]. Further, the reported
examples of FDM 3D-printed mini-tablets did not investigate their application to dose
titration [71], hence, did not take full advantage of the possibilities offered by mini-tablets.
The present study intends to investigate the capability of 3D-printed mini-tablets to deliver
varying doses to pediatric patients without compromising the intended therapeutic effect
by adversely impacting the drug dissolution or drug content uniformity.

Towards that objective, 3D-printed miniature-sized tablets with a set diameter of
3 mm containing a low drug concentration of griseofulvin, a model biopharmaceutical
classification system (BCS) class II drug, as single or multi-units are examined for their
ability to administer the prescribed dose, including low-dose drug titration. The focus
is not only achieving reliable and flexible dosing, but also obtaining similar drug release
profiles via using multi-unit mini-tablets, even as tablet count varies. Hydroxypropyl
cellulose (HPC) is used as polymer since it offers the mechanical resilience required for
the printability of the filaments [57,62,72–74], and its recently demonstrated capability in
achieving similar release profiles for varying concentrations of poorly water-soluble drugs
through a constant tablet surface area to volume ratio (SA/V) [75]. In addition to low drug
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concentrations, higher drug concentration filaments are also examined for the purpose
of reducing the number of tablets to be administered, albeit limiting the dose titration
capability. Finally, printed multi-unit and split tablets are compared to gain insight into the
robustness of the 3D-printed mini dosage forms. Toward these goals, the following design
options are examined:

A. Single and multi-unit mini-tablets, i.e., 1, 5, 10, 15, 20 count(s), to test content unifor-
mity at a low dose, i.e., 1 wt%, and to evaluate corresponding dissolution profiles to
assess their similarity.

B. Split tablets, i.e., full, half, and quarter sizes, to compare with multi-unit mini-tablets
along with testing content uniformity and dissolution.

C. Single unit mini-tablets formed using filaments of 10 and 20 wt% drug concentrations
for testing feasibility of reducing the number of tablets to be administered.

2. Materials and Methods
2.1. Materials

As received griseofulvin (GF) (Letco Medical, Decatur, AL, USA) with a primary
particle size of ~11 µm was selected as a model biopharmaceutics classification system (BCS)
class II drug. Hydroxypropyl cellulose (HPC, SL grade) was donated by Nisso America
Inc. (New York, NY, USA). Kollicoat® Protect (KP) was donated by BASF (Tarrytown, NY,
USA). KP is composed of polyvinyl alcohol-polyethylene glycol graft copolymer, polyvinyl
alcohol, and fumed silica. It is a readily soluble polymer in water and known to improve
protection against moisture [76]. Additionally, the hydroxyl groups of HPC and KP can
potentially form hydrogen bonds with the carbonyl groups of GF [77,78], which could
improve the homogeneity of the matrix [79], leading to filaments with desirable mechanical
properties that are suitable for printing. Sodium dodecyl sulfate (SDS) (Sigma-Aldrich,
Saint Louis, MO, USA) was used as a solvent.

2.2. Manufacturing of Filaments

Table 1 presents the composition of the powder blends used for the manufacturing
of filaments. To mix the powder blends, a high-intensity vibrational mixer (LabRAM,
Resodyn Acoustic Mixers, Inc., Butte, MT, USA) was used at a frequency of 61 Hz with an
acceleration of 75 G for 5 min. The powder blend was extruded through an 11 mm diameter
co-rotating twin-screw extruder (Thermo Fisher Scientific Inc., Waltham, MA, USA) with
the processing temperatures and screw speed presented in Table 1. A round-shaped die
with a 2 mm opening was used to extrude the molten blend. The extrusion temperature and
screw speed were optimized for the formulations at 1.0 and 10.0 wt% drug concentrations;
see Table 1. Briefly, the torque and pressure values were considered to ensure proper
instrument safety and to provide proper mixing [32,79,80]. Additionally, the thermal
stability and softening of materials were considered to achieve filaments with mechanical
resilience for printing. Thus, extrusion at 150 ◦C resulted in an acceptable processing torque
(3.4–3.7 Nm) within safe HME processing and provided uniform, consistent filaments.
Higher drug concentrations in the formulation require higher energy input to soften the
material when a drug has greater softening needs than that of a polymer [75]. Therefore,
the extrusion temperature for the formulation containing 20.0 wt% drug concentration was
increased to 155 ◦C.

Table 1. Compositions of the filament formulations.

Run Formulation HME Processing
Temperature (◦C) HME Screw Speed (rpm)

F1 1 wt% GF + 84 wt% HPC + 15 wt% KP 150 40
F10 10 wt% GF + 75 wt% HPC + 15 wt% KP 150 40
F20 20 wt% GF + 65 wt% HPC + 15 wt% KP 155 40
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2.3. FDM 3D Printing and Tablet Morphology

The intended doses were printed as mini-tablets containing varying drug concentra-
tion, split tablets, and multi-unit mini-tablets. The tablets printed with filaments containing
1.0 wt% drug concentrations enabled titrating the dose with small increments, i.e., <1.0 mg.
The tablets containing higher drug concentrations aimed to reduce the number of tablets
necessary to be administered. The printed subdivided tablets were examined to compare
multi-unit tablets containing similar drug amounts, see Figure 1 for digital images of the
printed tablets. The details of tablet properties, dimensions, and count(s) are shown in
Table 2. All tablet designs were created using Autodesk® Fusion 360 Ultimate (Autodesk
3D design software, Version 2.0. 14336; Boston, MA, USA) and recorded as an STL file. The
designs were sliced using FlashPrint software (Flashforge®, Version 3.18.0; Jinhua, China)
and printed using FDM 3D printer (Flashforge®, Creator Pro 3D, 2016, China). The printer
nozzle used a 4 mm opening. In all of the print designs, the printing temperature of 180 ◦C,
the print speed of 35 mm/s, the travelling speed of 80 mm/s, 100% infill, and layer height
of 0.2 mm were applied. The printing temperature was set to meet the general guidelines
that FDM processing requires which is a higher processing temperature than that of HME
owing to lacking of high shear [62]. The images of the 3D-printed mini-tablets at 1.0 and
20.0 wt% drug concentrations were acquired to demonstrate the layered structure of the
tablets via scanning electron microscopy (JSM-7900F, JEOL Ltd., Peabody, MA, USA).
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Table 2. Tablet size and number of unit(s) of the printed mini-tablets.

Run Theoretical Drug
Concentration (wt%)

Radius *
(mm)

Height *
(mm)

Number
of Unit(s)

M1

1% (F1)

1.5 2 1
M2 1.5 2 5
M3 1.5 2 10
M4 1.5 2 15

M5 1.5 2 20

M6 10% (F10) 1.5 2 1
M7 20% (F20) 1.5 2 1

F
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2.4. Thermo-Gravimetric Analysis (TGA)

Any thermal degradation events stemming from thermal processing in FDM 3D
printing of HPC, KP and as received GF powders, physical mixtures (PM), and the printed
tablets were tested by thermo-gravimetric analysis (TGA) (TGA/DSC1/SF STARe system,
Mettler Toledo Inc., Columbus, OH, USA). In a standard ceramic crucible, the samples
were heated from 25 to 240 ◦C at a rate of 10 ◦C/min and cooled back to 25 ◦C under a
nitrogen flow.

2.5. Solid-State Characterization

X-ray diffraction was performed to analyze the solid state of GF after the processing of
FDM 3D printing. The tablets were reprinted following the method in Buyukgoz et al. [75]
in order to fit onto the XRD sample holder. Diffraction patterns were acquired for the
samples using PANalytical (Westborough, MA, USA), scanning for the 2-theta angle within
the range of 5–30◦ (0.01◦ step). Further, the physical mixtures, filaments, and the printed
tablets were examined for physical transformations of the drug using a differential scanning
calorimeter (DSC 6000, Perkin Elmer, Inc., Waltham, MA, USA). The samples, 5–8 mg each,
were heated in a standard aluminum pan from 25 to 300 ◦C at a rate of 10 ◦C/min. Nitrogen
was used as a purge gas at a flow rate of 20 mL/min.

2.6. Content Uniformity

The variations in tablet size, tablet weight, and drug mass were measured from
randomly collected printed mini-tablets. The sample size for the single unit mini-tablets
containing low drug concentrations, 1.0 wt%, was n = 30 [21,81]. However, the sample size
was kept as n = 3 for the tablets with the higher drug concentrations, 10.0 and 20.0 wt%,
and for the multi-unit (composite) tablets comprised of five, ten, fifteen and twenty count
per sample. Content uniformity in multi-unit mini-tablets was assessed to determine the
critical number of mini-tablets with acceptable dose variability. The tablet weights and
dimensions were recorded. Each sample was dissolved in 7.2 g/L SDS solution while
stirred via magnetic bars overnight. The dissolved samples were filtered with a 0.45 µm
nylon membrane-type syringe filter (Celltreat scientific products, Pepperell, MA, USA),
and analyzed for GF content and uniformity at 297 nm UV absorbance wavelength using a
Thermo Scientific Evolution 300 UV–Vis spectrophotometer (Thermo Fisher Scientific Inc.,
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Waltham, MA, USA). The acceptance criteria given in USP<905> [81] were also applied for
the assessment of content uniformity testing.

2.7. Dissolution

The release behaviors of printed tablets in Table 2 were examined by comparing:
(a) 1–20 unit(s) of mini-tablets, (b) composite units vs. split tablets, and (c) mini tablets at
varying drug concentrations. Accordingly, the proposed approach of achieving a similar
drug release profile from multi-unit tablets, where the total drug amount varies as per tablet
count(s), was examined with 1–20 unit(s) of mini-tablets. The resulting release profiles
were compared with split tablets and single unit mini-tablets that contained higher drug
concentrations. The samples compared were designed to contain similar drug amounts to
prevent any bias on the dissolution performance of the tablets arising from the differences
in their drug content. For example, the total drug amount in ten mini-tablets containing
1.0 wt% drug was attempted to be kept similar to the drug amount of a single mini-tablet
with 10 wt% drug or a half-split large tablet containing 1.0 wt%. The dissolution paddle
apparatus (USP II, Sotax, Aesch, Switzerland) was used for testing the release profiles of
the individual and multi-unit mini-tablets. The sinkers were used for the multi-units to
prevent the tablets from floating around. Deionized water (DI) was used as a dissolution
medium [82,83]. Testing the drug release profiles in a large volume of dissolution media
can give rise to analytical detection problems particularly when the amount of drug is
limited, e.g., in mini-tablets [84]. The samples were added to 500 mL of dissolution medium
at 37 ◦C, where the sink conditions were maintained. The paddle speed at 100 rpm was
used to minimize the coning effect and to provide reliable dissolution results, particularly
for poorly soluble drugs [84,85]. Aliquots were withdrawn at certain time intervals over
24 h and filtered through a 0.45 µm nylon membrane-type syringe filter (Celltreat scientific
products, Pepperell, MA, USA). The filtrate was analyzed for the average percentage of the
dissolved GF at 297 nm UV absorbance wavelength using a Thermo Scientific Evolution
300 UV–Vis spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The
average percentage of the dissolved drug was plotted as a function of time. Each test was
replicated a minimum of three times.

3. Results
3.1. Mini-Tablet Printing and Tablet Morphology

The mini-sized tablets with cylindrical shapes were successfully printed via FDM 3D
printing. The inherently small size of the mini-tablet allowed for printing multiple tablets
at a time, potentially improving the consistency between printed units by minimizing the
inconsistencies arising from material changeover and tablet collection. The SEM images
exhibit a similar layered structure of mini-tablets at 1.0 and 20.0 wt% drug concentrations
(see Figure S1, Supplementary Material).

3.2. Thermo-Gravimetric Analysis (TGA)

The outcomes of the thermo-gravimetric analysis (TGA) are presented in Figure 2.
The highest weight loss was observed for KP powder, which was less than 2.3% at 100 ◦C,
which could be attributed to the free or bound water [86]. This is in line with Wei et al. [55],
reporting that 2–5% weight loss at temperatures up to 100 ◦C implies the loosely bound
moisture. Increasing the temperature did not increase the weight loss (2.4%) much, indicat-
ing no possibility of thermal degradation at the printing temperature. The weight loss for
all other powder materials and 3D tablets was also less than 2.4%, indicating their thermal
stability throughout the mini-tablet printing process.
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3.3. X-ray Diffraction (XRD)

The crystalline state of GF after 3D printing was assessed using XRD on: as received
GF, HPC and KP powders, PMs, and printed tablets. The XRD diffractograms, presented in
Figure 3, indicate that the polymers are amorphous due to the presence of halo patterns,
while GF exhibits the crystallinity due to the presence of its characteristic peaks [87]. The
diffractogram of PM for 1 wt% GF lacked the characteristic peaks of GF and exhibited a
halo pattern, most likely because the low drug concentration is below the limit of detection
for determining GF crystallinity [88]. Further, the PMs with the drug concentrations of
10 and 20 wt% showed similar characteristic peaks of GF and their lower intensity could
be attributed to the surface coverage and dilution of GF particles with polymers [83,87].
In the diffractograms of printed tablets containing 20 and 10 wt% GF concentration, the
diminished intensities or absences of the characteristic peaks of GF at 13.2◦ and 16.5◦ [87]
indicate partial miscibility of GF with polymers after heat treatment occurring from 3D
printing. The partial miscibility of GF–HPC has also been reported by Rahman et al. [77].
Additionally, these observations were further supported by the DSC results, see Figure S2,
Supplementary Material.
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3.4. Content Uniformity and Dose Titration
3.4.1. Content Uniformity

The variations in drug mass and tablet weight for FDM 3D-printed mini-tablets and
split tablets, are shown in Table 3. The dimensions of the single unit mini-tablet are
also shown in Table S1, Supplementary Material. As per USP <905> L2 criteria [81], the
acceptance value (AV) for n = 30 units cannot exceed 25.0. All mini-tablets had excellent
content uniformity with AV < 7.9. The relative standard deviation (RSD) values in drug
concentrations for all tablets were less than 4.7% and their label claim (LC) values were
within the acceptable range of ±25% of the target dose, see Table 3. The enhanced content
uniformity is not surprising because the intense mixing effect of HME could produce
contently uniform products [58–60]. In addition, FDM 3D-printed mini-tablets exhibited
closely similar weights most likely due to the capability of the 3D printer to create tablets
with precise dimensions, which further facilitates the uniformity in drug content. This
observation is in line with the studies performing HME for filament manufacturing and
achieving contently uniform miniature tablets [32,70]. Surprisingly, Ayyoubi et al. [89]
reported large variations and drug loss of up to 8.5% from FDM 3D-printed mini-tablets.
These issues faced during the manufacturing of the filaments via a single-screw extruder
and printing at high temperatures caused drug degradation. These results emphasize the
importance of optimizing the printing processing parameters and the effectiveness of the
twin-screw extruder to achieve good content uniformity. It is important to highlight that
the enhanced uniformity achieved through the combination of HME and FDM 3D printing.
It could offer an alternative approach to the traditional mini-tablet manufacturing process
which requires extra effort in the judicious selection of several processing parameters
uniformity (e.g., upper limit on the particle size, flow properties, tool alignments [22,37,39])
as they impact the content uniformity.
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Table 3. Drug dose titration for multi-unit mini-tablets and split tablets both at 1 wt% drug concen-
tration, and for single unit mini-tablets at 1, 10, and 20 wt% drug concentrations.

Run DC 1

(wt%)
Number of Tablet

Unit(s)
Tablet Mass

(mg)
Drug Mass

(mg) RSD LC% 2 AV 3

M1 1 1 19.18 ± 0.32 0.19 ± 0.01 4.57 99.67 ± 3.92 7.83
M2 1 5 97.97 ± 1.95 1.04 ± 0.03 2.62 105.96 ± 0.84 0.44
M3 1 10 191.53 ± 1.12 1.93 ± 0.01 0.77 100.79 ± 0.22 1.78
M4 1 15 279.77 ± 3.84 2.85 ± 0.06 2.01 101.97 ± 0.66 2.39
M5 1 20 379.13 ± 2.15 3.91 ± 0.02 0.60 103.17 ± 0.36 6.49
F 1 1 312.23 ± 11.11 2.93 ± 0.07 2.44 93.92 ± 1.04 6.67
H 1 0.5 201.97 ± 2.73 1.95 ± 0.02 0.97 96.73 ± 0.50 2.77
Q 1 0.25 104.63 ± 0.73 1.00 ± 0.00 0.33 95.92 ± 0.08 2.75

M6 10 1 20.03 ± 0.39 1.95 ± 0.04 1.90 97.25 ± 0.52 2.30
M7 20 1 19.60 ± 0.32 3.76 ± 0.06 1.61 96.00 ± 0.35 3.19

1 drug concentration, 2 label claim %, 3 acceptance value.

3.4.2. Dose Titration

The single unit mini-tablet produced with the lowest drug concentration filaments en-
abled dose titration in steps of 0.19 mg to cover the dispensed dose in range of 0.19–3.91 mg
using 1–20 counts of mini-tablets. Tablet count(s) versus drug amounts were plotted to
evaluate the robustness of the dose titration, see the plots in Figure 4. In Figure 4a, a high
accuracy with the R2 of 0.999 was observed. Generally, the parameter critical to determining
the minimum count(s) of mini-tablets necessary for an acceptable low dose and dosing
variability is based on the composite units and not a single mini-tablet [21]. However,
the use of 3D printing led to excellent content uniformity of the single unit mini-tablet
itself. The linear trend achieved (R2 of 0.999) with increasing tablet count(s) confirmed the
reliability of the dosage consisting of a single unit mini-tablet, eliminating the need for
using a multi-unit mini-tablet to determine the minimum reliable dose.
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Rycerz et al. [67] achieved dose titration from specially designed printing patterns. In
their novel design, the dispensed dose was adjusted with the printing process parameters or
the portions of the printing patterns. It is worth mentioning that the mini-tablets containing
~0.19 mg drug eliminates the need for modifications of the printing parameters and allows
dose titration by administering the desired number of tablets.

Tablet fraction(s), i.e., full, half, and quarter, versus drug amounts were plotted to
compare the performance of the split tablet in terms of dose titration, see Figure 4b. All
printed splits tablets were contently uniform and their LC% values were in the acceptable
range (see Table 3). This level of uniformity was expected since the fragmentation issue
of split tablets was not a concern because they were precisely printed instead of having to
divide them into pieces. However, this did not translate into the enhanced linearity in dose
titration, where R2 was found 0.935. The reduced linearity may have a negative effect on
the dosage reliability. Unlike the multiple mini-tablets, where each has similar final mass,
the variation in final mass for the split tablets depends on their final shape and size. The
variation in dosage for the split tablets could be explained by: (i) the swelling behavior of
HPC, which is expected to be different for various tablet shapes/sizes and (ii) the lesser
quality of the equipment used.

Single unit mini-tablets containing higher drug concentrations, see Table 3, were
examined in an attempt to reduce the number of tablets to be administered for the intended
dose. They showed enhanced uniformity with acceptable LC% values. As previously
reported, using filaments of varying drug concentrations is a reliable practice for the dose
adjustment [75]. Thus, the resulting uniformity at higher concentrations was expected to be
similar to a single unit mini-tablet at low concentration. Indeed, the performance in dose
titration for the tablets at higher drug concentrations also showed high linearity with R2

of 0.9996, see Figure 4c. Most remarkably, the drug amounts in twenty single mini-tablets
containing 1.0 wt% drug concentration, resulted in the dose of 3.91 ± 0.02 mg, whereas
one single mini-tablet containing 20.0 wt% drug concentration, resulted in the dose of
3.76 ± 0.06, Table 3. These values are similar, although the higher drug concentration of the
filament limited the escalation extent in dose titration. Regardless, the use of higher drug
concentration filaments significantly reduces the number of tablets to be administered and
could be useful for the age-specific formulations without an appreciable loss of prevision
in dose titration. These are the major strengths of the 3D printing approach for producing
mini-tablets suitable for age-specific dosages.

3.5. Drug Dissolution

The release profiles of the 1–20 unit(s) mini-tablets are presented in Figure 5a, where
the profiles of the composite units in ranges of 5–20 counts were found statistically similar
with each other as per the bootstrap ƒ2 similarity test (see Table S2, Supplementary Mate-
rial). However, the release profile of the single unit mini-tablet showed slight differences
compared to that of multi-units. This could be the result of the low drug amount, ~190 µg,
in a single tablet, which possibly caused variations in the individual release profiles, in-
dicative of their release curve having relatively large standard deviations, see Figure 5a.
Interestingly, Mitra et al. [21] suggested the need for additional method developments for
testing the dissolution profile of a single mini-tablet at a low drug concentration. Nev-
ertheless, these outcomes reinforced that using solidified HPC and the inherently dense
matrix of FDM 3D-printed tablets [73,90,91] facilitated achieving similar release profiles
from composite unit mini-tablets. As previously demonstrated [75], the resulting negligible
variation in tablet size (see Table S1, Supplementary Material), implying closely similar
SA/V for each individual mini-tablet, might have further contributed to the similarity in
release profiles.
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Incomplete dissolution profiles are commonly reported for 3D-printed tablets mostly
due to their inherently dense matrix structure that limits water penetration in the dosage
form [32,92]. On the contrary, nearly complete drug release was observed for the mini-
tablets in this work, most likely due to their small size promoting the diffusion of the
drug from its matrix. Palekar et al. [32] reported a similar observation, where enhanced
drug diffusion was attributed to the smaller size of the 3D-printed mini-caplets because
of the increased erosion of the polymeric matrix. Further, 3D printing provides great
convenience for dose tailoring due to the flexibility with size, shape, and design of the
final product [93,94]. These flexibilities offered by 3D printing can potentially affect the
drug release behaviors [65,94]. Buyukgoz et al. [75] addressed this issue by printing fixed-
size duo-tablets with internal placebo regions of varying sizes to achieve similar release
profiles from the resulting constant surface area to volume ratio. Unfortunately, the duo-
tablet dosage form is much larger in size and cannot offer as precise dose adjustment as
the mini-tablets.

Next, the drug amounts were kept similar for comparing the split tablets and multi-
unit tablets (see Table 3 for the details of the corresponding doses). The drug release
profiles from printed split tablets are presented in Figure 5b. The release profiles of full,
half-split, and quarter-split tablets were found to be statistically different according to the
bootstrap ƒ2 similarity test, (Table S2, Supplementary Material). The full and half-split size
tablets exhibited seemingly similar release profiles; however, large standard deviations
appeared in the dissolution curve of the half-split tablets, most likely the reason of statistical
difference. The release profiles of full, half, and quarter tablets exhibited slower drug release
due to their significantly larger size over mini-tablets; therefore, the split-tablets could not
compete with the performance of drug release rate and the consistency in the drug release
from mini-tablets.

The release profiles of the mini-tablets at higher drug concentrations are presented in
Figure 5c. The mini-tablets with 10.0 and 20.0 wt% drug concentrations showed statistically
similar drug release profiles, yet different from the release profiles with the mini-tablets
at 1.0 wt% drug concentration. This was expected since the large difference in the drug
concentration range could change the drug release characteristic, although inherently dense
FDM 3D-printed tablets [75,91] show some dominating effect on drug release. Nevertheless,
GF concentration within the range of 10.0–20.0 wt% could help reduce the number of mini-
tablets for the prescribed dose while providing similar drug release profiles.

Overall, this study assessed various design options for dose titration via FDM 3D
printing by considering dose accuracy and consistency in drug release. As a major novelty,
single unit mini-tablets enabled dose titration in steps of 0.19 mg with an enhanced content
uniformity. Moreover, the composite unit mini-tablets showed similar release profiles.
These results compare favorably with those offering dose adjustment by manipulating
the tablet sizes, structure, or shapes via FDM 3D printing yet achieving different release
profiles [62,95]. Thereby, this study demonstrates the feasibility of dispensing precise
dosages with lesser manufacturing steps in mini-tablet manufacturing.

4. Conclusions

Tailored dosages were achieved via FDM 3D-printed mini-tablets by addressing the
need for specific patient adjustment or titration in their prescribed dose. It was found
that HME processing followed by FDM 3D printing promoted content uniformity, even
for miniature tablets containing very low doses, and their label claim (LC) values were
within the acceptable range. Such capability offered the desired flexibility in the range of
0.19–3.91 mg and high accuracy (R2 of 0.999) for precise dose titration through multi-unit
mini-tablets. Further, reliable dosing was reinforced with similar drug release profiles from
multi-unit mini-tablets afforded by the similarity in size and inherently dense structure. In
contrast, the split tablets demonstrated different release behaviors, which was expected
due to their size and shape differences. Additionally, mini-tablets with higher drug con-
centrations demonstrated similar release behaviors to each other. This capability points
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to the possibility of formulating the required dosage using mini-tablets at higher drug
concentrations while reducing the number of tablets to be administered. The proposed
approach to utilize FDM 3D printing to create mini-tablets with consistent drug release
profiles eliminates many of the challenges associated with traditional tablet manufacturing
while delivering high flexibility for drug delivery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14112305/s1, Figure S1: The layered structure of
mini-tablets at (a) 1 wt% and (b) 20 wt% drug concentrations; Figure S2: DSC thermograms of physical
mixtures (PMs), GF-loaded filaments (FL) and the printed mini-tablets (3D) at 1 wt%, 10 wt%, and
20 wt% drug concentrations; Table S1: Drug content uniformity for single unit mini-tablet containing
1 wt% drug concentration; Table S2: Similarity (ƒ2) analysis for dissolution profiles of the 3D-printed
tablets. References [96–99] are cited in the supplementary materials.
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