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Abstract: Gel layer characteristics play a crucial role in hydrophilic hydroxypropyl methylcellulose
(HPMC) matrix development. Effervescent agents have the potential to affect the gel layer microstruc-
tures. This study aimed to investigate the influence of effervescence on the microstructure of the gel
layer around HPMC matrices using a combination of texture analysis and imaging techniques. The
relationship with drug release profile and release mechanisms were also examined. The high amounts
of effervescent agents promoted a rapid carbonation reaction, resulting in a high gel layer formation
with a low gel strength through texture analysis. This finding was ascribed to the enhanced surface
roughness and porosity observed under digital microscopy and microporous structure of the gel layer
under scanning electron microscopy. The reconstructed three-dimensional images from synchrotron
radiation X-ray tomographic microscopy notably exhibited the interconnected pores of various sizes
from the carbonation reaction of effervescent and microporous networks, indicating the gel layer on
the tablet surface. Notably, effervescence promoted the increase in interconnected porosities, which
directly influenced the strength of the gel layer microstructure, drug release patterns and release
mechanism of the effervescent matrix tablet. Therefore, combined mechanical characterisation and
imaging techniques can provide new insights into the role of effervescent agents on the gel layer
microstructure, and describe the relationship of drug release patterns and release mechanism of
matrix tablets.

Keywords: effervescence; gel layer; matrices; mechanical; imaging; characterisation

1. Introduction

The matrix system is a controlled-release drug dosage form fabricated to solve dis-
advantages of conventional dosage forms, such as reducing the frequency of dosing and
side effects [1–3]. Hydrophilic matrix systems are, currently, most widely used to control
the release rate of drugs [3]. A hydrophilic matrix is a homogeneous dispersion of drug
molecules within a skeleton, in which one or several of the excipients incorporated are
hydrophilic polymers that swell when in contact with water. Hydroxypropyl methylcellu-
lose (HPMC) has been and continues to be the most frequently used hydrophilic polymer
in formulations. This compound is a cellulose derivative in which the R substituents
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have the general structure of methoxy- (OCH3) and hydroxypropyl- (CH2OCH(OH)CH3)
groups [4]. The hydrophilic matrices in contact with water become hydrated instead of
disintegrating. This hydration, which is due to the increase in the size of polymer molecules
as a consequence of solvent entry, leads to the formation of a zone, known as the gel layer,
in which the polymer transitions from the crystalline state to a rubbery state. Several
transport phenomena occur through this gel layer: entry of the aqueous medium, exit of
the drug to outside the system, and matrix erosion. The penetration of the medium into the
matrix is accompanied by the formation of a series of fronts, which later disappear during
matrix dissolution [3,5,6]. The erosion or dissolution front is located on the outer surface of
matrices and separates the gel layer zone from the medium. The diffusion front is located
between the swelling and erosion fronts and separates the zone of the swollen glassy layer
containing the drug dissolved in the medium from the gel layer, whereas the swelling
front separates the dry core zone containing the undissolved solid drug from the swollen
glassy zone [7]. Colombo and colleagues explained the characteristics of the gel layer with
swelled polymers, which is located between the diffusion and erosion fronts and controls
the release kinetics of the drug [6]. Over time, the water penetrates into the system and
modifies the characteristics of the gel layer, which becomes thicker, owing to the extension
of polymer chains. The thickness of this region is a crucial factor in the drug release process
and is largely influenced by the drug dose and polymer viscosity [8]. The characteristics
observed during matrix swelling include an increase in the gel layer thickness, a decrease
in the size of the dry core, and an increase in the diameter of the matrix with time [9]. In
this study, HPMC K15M was used as a matrix-forming agent in model matrix systems.
To develop a matrix tablet, it is necessary to have other excipients to improve the physi-
cal properties of the powdered mixtures formed by the drug and polymer [3]. Previous
findings demonstrated that the physicochemical characteristics of co-excipients can alter
the release rate and mechanisms of the drug from the matrix. Jamzad et al. explained
the effect of excipient types on front movement, erosion, and drug release behaviour of
hydrophilic matrix tablets. Matrices containing water-soluble excipients demonstrated
more pronounced swelling front movement and hence drug release relative to the matrix
tablet containing water-insoluble excipients [10]. For matrices fabricated with 20% by
weight of HPMC as retardant polymers, studies have been conducted to assess the effect of
adding spray-dried lactose, microcrystalline cellulose (MCC) and partially pre-gelatinised
maize starch as diluents at approximately 50%. The drug release rate increased in the
matrix containing MCC and spray-dried lactose, whereas the release rate of the matrix with
partially pre-gelatinised maize starch decreased because starch was incorporated into the
HPMC gel structure, making it stronger [11]. In the present study, the effervescent agents,
which included a mixture of sodium bicarbonate (NaHCO3) and citric acid anhydrous (CA)
at the ratio of 1.3:1 by weight, were incorporated into the HPMC matrix tablet. Carbonation
reaction can occur immediately upon contact with water and produce gas bubbles (car-
bon dioxide; CO2), allowing for the rapid release of the active pharmaceutical ingredient
(API) [12,13]. Effervescent agents have been widely used in floating systems which can be
buoyant within the stomach [14]. Effervescent agents can react with hydrochloric acid when
systems come into contact with gastric fluids and CO2 gases are produced. The liberated
CO2 gases are entrapped in the hydrocolloid matrix which causes tablet buoyancy and
influences the drug release behaviours [15,16]. For effervescent floating systems, swellable
polymers are mixed with effervescent agents such as NaHCO3, calcium carbonate, tartaric
acid, and CA [17,18]. Effervescent floating systems can be categorised into single-layer,
bilayer and multiple-unit systems which depend on different fabrication methods [14].
Jiménez-Martínez et al. reported that the addition of NaHCO3 into the HPMC matrix
formulation could improve gastric retention time by increasing the hydration of tablet and
increasing the surface area of drug diffusion [19]. Additionally, the increment of NaHCO3
content decreased the drug release rate from the matrix because the CO2 gas bubble may
have obstructed the drug diffusion path [19]. In addition to preparation and formulation
factors, pH variation in the gastrointestinal tract should also be considered. For instance,
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the administration of a dosage form together with 240 mL of water can increase the pH
value up to 4.6 [20,21]. Furthermore, the acidity of various parts of the human digestive
system differs significantly [21,22]. This pH variation can affect the carbonation reaction of
effervescent agents and might alter the floatation and drug release properties of the system.
Typically, organic acids such as CA, malic acid, fumaric acid and tartaric acid have been
used in combination with NaHCO3 as effervescent agents. This combination might reduce
the impact of pH variation on tablet buoyancy properties in the stomach [23]. This is one
of the reasons why the mixture of NaHCO3 and CA was chosen as effervescent agents
in this study. To date, effervescent floating system have been successfully developed as
commercial products in various drugs. For example, fluoroquinolone antibiotics including
ofloxacin (Zanocin OD®) and ciprofloxacin (Cifran OD®), anti-hyperglycemic metformin
hydrochloride (Riomet OD®), and anti-hypertensive prazosin hydrochloride (Prazopress
XL®) [14,24]. In addition, previous research has demonstrated that CO2 liberation from
effervescent agents can promote porous structures in polymer membranes [25] and hy-
drogels [26]. This condition may affect the microstructure of matrices, resulting in altered
drug release and release mechanisms of HPMC matrices. However, no previous study has
reported the modification of hydrophilic HPMC matrix tablets using effervescent agents
and their effect on the microstructure of the matrix system.

Currently, a variety of imaging techniques are used within the pharmaceutical field to
better understand and characterise a wide range of phenomena associated with drug release
from hydrophilic matrix tablets. These imaging techniques include near infrared (NIR),
magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), terahertz, confocal
laser scanning microscopy (CLSM), ultraviolet (UV) dissolution imaging and synchrotron
radiation X-ray tomographic microscopy (SRXTM). NIR has been used to monitor the
development of the gel layer formed in compacts containing HPMC [27] and monitoring
of drug release as a result of erosion [28]. MRI has been implemented to monitor the
movement of water in pastes [29], model polymer dissolution [30] and structural evolution
of hypromellose tablets [31]. A novel imaging application using NMR was also developed
and used to monitor water front penetration [32], water mobility and drug diffusion in
hydrophilic matrices [33]. Terahertz pulsed imaging has been used to monitor the swelling
and drug diffusion of tablets containing HPMC [34,35]. CLSM has also been utilised in a
variety of pharmaceutical applications, such as monitoring of gel layer growth and water
penetration in hydrophilic matrices [36,37]. UV dissolution imaging has begun to diversify
into an analytical tool for the monitoring of dissolution events. These dissolution events can
be events with API [38,39], release from transdermal patches [40], dissolution behaviour of
polymers [41], and swelling behaviour of the matrix tablet containing HPMC as a model
hydrophilic matrix former [42]. Recently, the use of SRXTM has demonstrated a major
advantage in the investigation of internal three-dimensional (3D) structures for a variety of
solid objects, offering great possibilities for some quantitative evaluations and designs of
solid dosage forms. Yin et al. confirmed that the interior porous channels and irregular
surfaces in tablets can be quantified by fractal dimensions, which also correlated well with
the drug release kinetics of felodipine osmotic pump tablets [43]. In addition, hydration
dynamics and relative importance of the erosion and swelling layer were investigated using
SRXTM and correlated with the felodipine release by a statistical model [44].

A texture analyser is primarily designed for the measurement of mechanical properties
of products, particularly food products. Currently, it is a versatile research and development
instrument that has been widely used in the food industry. By using different probes and
assessment criteria, food scientists can monitor or demonstrate the texture quality and
palpability of different foods [45]. The usage of texture analysers can be applied to various
dosage forms. They have been used to optimise the adhesiveness and cohesiveness of
water-in-oil emulsions [46], disintegration behaviour of fast-dissolving preparations [47]
and evaluation of the mucoadhesive properties of various polymers [48]. In addition,
texture analysers can be employed to investigate the swelling and erosion behaviour of
matrix tablets in correlation with their drug liberation [49]. Moreover, some researchers
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investigated the thickness and maintenance of the gel layer of the matrix tablet and polymer
hydration using a texture analyser [50–52]. The texture analyser procedure is relatively
simple, versatile, and cost effective; the same instrument can possibly be used for multiple
measurements by changing either the testing probes or measurement parameters.

This study aimed to investigate microstructural changes in the gel layer surrounding
HPMC matrices containing effervescent agents using a combination of a texture analyser
and imaging techniques, including digital microscopy, scanning electron microscopy (SEM)
and SRXTM. The eutectic mixture of ibuprofen (IBU) and poloxamer 407 (P407) was em-
ployed as a model drug in matrix systems. To better understand the function of effervescent
agents in HPMC matrices, the influence of effervescent agents on the microstructural
changes of matrix tablets was investigated and correlated these parameters with drug
release profiles and mechanisms. To observe the influence of medium types on the be-
haviour of the HPMC matrix, hydrophilic HPMC matrix tablets with various amounts of
effervescent agents were also studied in pH-changed media (pH 1.2 HCl buffer (0.1 N) and
phosphate buffer pH 6.8).

2. Materials and Methods
2.1. Materials

IBU (Lot No. 4000/1101/18/A-0150B), which was purchased from PC Drug Co., Ltd.,
Bangkok, Thailand, was used as the model drug, whereas P407 (lot no. WPDF563B, BASF,
Ludwigshafen, Germany) was used as the co-eutectic forming agent for IBU. The diluent in
this formulation was MCC (PH101 grade; lot no. C1910113, Mingtai Chemical Co., Ltd.,
Taoyuan City, Taiwan). NaHCO3 (Batch No. AF310196, Ajax Finchem, Seven Hills, NSW,
Australia) and CA (lot no. 90900209, Maxway Co., Ltd., Bangkok, Thailand) were employed
as effervescent agents, and HPMC (K15M grade; Lot No. PH26012N31, DuPont (Thailand)
Co., Ltd., Bangkok, Thailand) was used as the matrix-forming agent.

2.2. Preparation of IBU-P407 Effervescent Matrix Tablets

In this study, effervescent matrix tablets (5E and 10E) and a control tablet (IPM) were
fabricated by the melt granulation method. First, IBU and P407 at the ratio of 1:1.5 by weight
were co-grinded using a mortar and pestle for 10 min to induce the eutectic formation. Then,
effervescent agents (NaHCO3 and CA at the ratio of 1.3:1 by weight), MCC PH101 and
HPMC K15M were sieved through a no. 20 sieve (850 µm) and mixed with the IBU-P407
eutectic mixture for 5 min. For the control tablet, only MCC PH101 was added and mixed
with the IBU-P407 eutectic mixture. The mixture was then transferred to a glass beaker
and placed in a circulating water bath (model: CWB-13L, Han Yang Scientific Equipment
Co., Ltd., Seoul, Korea). The mixture was stirred continuously, and the temperature was
controlled at 70 ◦C throughout the experiment until melted granules were obtained. After
2 h of cooling down to room temperature, the melted granules were sieved through a no.
18 stainless steel sieve (1.0 mm of open diameter). Granules were compacted into 1000 mg
matrix tablets using 12.7 mm round, flat and plain punches by a hydraulic press (Carver
press, Wabash, IA, USA), at a compression force of 2 tons and dwell time of 10 s. Table 1
shows the compositions of the effervescent matrix tablets.

2.3. Evaluations of Effervescent Matrix Tablets
2.3.1. Determination of Physical Properties

The thickness, hardness, diameter, and weight of effervescent matrix tablets were
evaluated for their physical characteristics. Ten tablets of each formulation were tested for
their diameter and hardness with a hardness tester (ERWEKA, model: TBH-325, Langen,
Germany), and the thickness was measured with a thickness tester (Teclock, model: SM-112,
Nagano, Japan). Tablet weights (n = 10) were determined using an analytical balance (model:
CP224S, Sartorius, Göttingen, Germany), and the average weight and standard deviation
(SD) were calculated. The statistical significance of the obtained data was examined using
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the independent t-test with a significant level at p < 0.05. The analysis was performed using
SPSS for Windows (Version 11.5, SPSS Inc., Chicago, IL, USA).

Table 1. Compositions of IBU-P407 effervescent matrix tablets.

Compositions
Formulations (mg)

IPM 5E 10E

IBU 200.0 200.0 200.0
P407 300.0 300.0 300.0

NaHCO3 - 28.3 56.5
CA - 21.7 43.5

HPMC K15M - 200.0 200.0
MCC PH101 500.0 250.0 200.0

Total 1000.0 1000.0 1000.0
Remarks: E = % by weight of effervescent agents (the mixture of NaHCO3 and CA at the ratio of 1.3:1 by weight)
in each formulation.

2.3.2. Determination of Gel Strength upon Hydration

Each tablet of the effervescent matrix was placed in a dissolution apparatus filled
with 900 mL pH-changed dissolution medium (including pH 1.2 HCl buffer (0.1 N) and
phosphate buffer pH 6.8) and stirred with a paddle at a rotational speed of 50 rpm. This
investigation was conducted in pH 1.2 HCl buffer (0.1 N) for 1.5 h. Then, the pH of the
medium was raised to 6.8 until the operation was completed at 4 h. At 15 and 30 min
and 2 and 4 h, five swollen tablets were carefully removed, and the gel strength was
separately measured using a texture analyser (TA.XT plus, Stable Micro Systems Ltd.,
Surrey, UK) equipped with a 2 mm diameter flat-tipped, round steel probe (Figure 1). The
test conditions were controlled at 0.2 mm/s pre-test speed, 0.1 g trigger force and 0.1 mm/s
test speed. Gel strength was calculated as the ratio between the force and penetration depth
of the probe inside the gel in accordance with the following equation:

G =
F
x
× 1

rp
× 0.0098 (1)

where G = gel strength (mPa), F = force (g) registered at the probe penetration, x = penetra-
tion depth (mm) and rp = radius of the probe (1 mm). The gel strength at the gel–solution
interface was considered as the first point after the probe came into full contact with the
gel (trigger force reached), and the initial noise disappeared. The average gel strength was
calculated as the mean of five consequent data [53].
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2.3.3. Sample Pretreatment for Topological and Microtomographic Studies

According to previous reports, the freeze-drying method can maintain the microstruc-
ture of the hydration layer as much as possible with its rapid cooling process [44,54].
Therefore, a standard dissolution test was carried out to evaluate temporal changes in the
microstructure of the effervescent matrix tablets during hydration. The swollen tablets were
carefully removed at predetermined time intervals (0, 15 and 30 min; 2 and 4 h) together
with 2 mL medium and placed individually in a glass Petri dish with a diameter of 5 cm.
The glass Petri dishes containing the tablets in various states of hydration and erosion
were then immediately placed in an ultra-low temperature refrigerator (model: UF-V 500,
BINDER GmbH, Tuttlingen, Germany) at −80 ◦C for 12 h. After this process, the tablets
were freeze-dried over a period of 24 h at −40 ◦C and 15 mbar vacuum conditions using a
freeze dryer (TriadTM, Labcondo, Kansas City, MO, USA). The tablets were then kept in a
desiccator under ambient temperature for further testing.

2.3.4. Matrix Morphological Change under Digital Microscopy and SEM

After the freeze-drying process, the morphological changes in the surface and cross-
sectional effervescent matrix tablets after being hydrated in the dissolution media were
recorded using a digital microscope with a magnification of 26.8× (model: AM-413ZT,
Dino-Lite Pro, CHOSEN Technology Co., Ltd., Bangkok, Thailand). For the surface mor-
phological study, SEM (Maxim 200 Camscan, Cambridge, UK) was used to observe the
surface morphology of dried tablets at an accelerated voltage of 15 kV and a magnification
of 250×.

2.3.5. SRXTM and Porosity Determination

Microtomographic images of dried effervescent matrix tablets were acquired using an
SRXTM beamline (BL1.2W: X-ray imaging and tomographic microscopy) at the Synchrotron
Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The synchrotron X-ray
radiation was generated from 2.2-Tesla multipole wiggler at the Siam Photon Source
operated at 1.2 GV. Using a filtered polychromatic X-ray beam with a distance of 32 m
from the source to a sample, the experiments were conducted at a mean energy of 11.5 kV.
Based on the formulations composed of IBU-P407 eutectic mixture, which can melt at low
temperatures, an excessively prolonged exposure time to an X-ray beam during testing can
melt the dried effervescent matrix tablet. To reduce exposure time to an X-ray beam during
testing, a dried effervescent matrix tablet was divided into eight parts, and one-eighth
was mounted on the stage. Then, X-ray radiographs were collected from 0◦ to 180◦ with
an angular increment of 0.3◦. The collected X-ray radiographs were then analysed using
Octopus Reconstruction software (TESCAN, Gent, Belgium) [55] to create reconstruction
images. A total of 600 reconstruction images were selected, and the porosity based on
binary images was calculated using Octopus Analysis software (TESCAN, Gent, Belgium).
The reconstruction images were computed using Drishti software (National Computational
Infrastructure, Canberra, Australia) [56] to produce the 3D tomographic volume.

2.3.6. In Vitro Drug Release Study and Release Kinetics

To investigate the effect of medium types on the drug release pattern of effervescent
matrices, 900 mL pH-changed medium was used in this study. The in vitro drug release
in pH 1.2 HCl buffer was conducted for 1.5 h. Then, the medium pH was adjusted to 6.8
by adding 1.09 g sodium hydroxide, 3.06 g monobasic potassium phosphate and 5.02 g
dibasic sodium phosphate until completion of the operation at 24 h. The in vitro drug
release was studied using a dissolution apparatus (DT 820, Erweka, Langen, Germany)
and the paddle method at 37 ± 0.5 ◦C with a rotational speed of 50 rpm which complied
with the USP43 <711> dissolution procedure [57]. At predetermined intervals, each 5 mL
aliquot was withdrawn from the dissolution medium and replenished with 5 mL fresh
medium. The amount of dissolved drug was measured using UV-vis spectrophotometer
(Cary 60 UV-vis, Agilent Technology, Santa Clara, CA, USA) at a wavelength of 220 nm.
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The mean cumulative drug dissolution ± SD was calculated (n = 3). The mechanisms of
drug release were determined by fitting the drug release data with zero-order, first-order,
Higuchi’s, Korsmeyer–Peppas, Hixson–Crowell, Hopfenberg, and Peppas–Sahlin equations
using DDSolver software, which is a menu-driven add-in program for Microsoft Excel
(Redmond, WA, USA) written for visual basic applications [58]. Moreover, mathematical
analysis was performed by calculating the coefficient of determination (R2), Akaike infor-
mation criterion (AIC) and model selection criterion (MSC) for the drug release data with
appropriate modelling.

3. Results and Discussion
3.1. Physical Properties of Effervescent Matrix Tablets

The effervescent matrix tablets were successfully fabricated by melt granulation using
a circulator water bath at 70 ◦C. Given the effervescent matrix tablets consisting of a
eutectic mixture between IBU and P407, these components can melt at approximately
50 ◦C [59]. This mixture acted as a meltable binder and facilitated the agglomeration of
powder particles into granules. All fabricated effervescent matrix tablets had good physical
appearance. The physical properties, including thickness, hardness, diameter, and tablet
weight, were investigated, and are illustrated in Figure 2. No significant difference was
observed in the thickness, diameter, and average tablet weight of all formulations. In
the case of hardness, IPM showed the highest hardness at 170.40 ± 2.79 N. The hardness
values for 5E and 10E decreased significantly to 126.20 ± 7.79 N and 132.80 ± 6.14 N,
respectively, due to the incorporation of effervescent agents. Nevertheless, a non-significant
difference in hardness was observed between 5E and 10E. The hygroscopic nature of
effervescent agents, particularly CA, can soften tablet texture, leading to reduced tablet
hardness [60,61]. The lower amount of MCC PH101 in the effervescent matrix tablets
(5E and 10E) compared with the IPM tablet promoted a lower tablet hardness. MCC has
an extremely low coefficient of friction and very low residual die wall pressure, which
provide tablet binding properties [62,63]. MCC can also cause the adhesion between particle
agglomerates, resulting in higher hardness with less friability of tablets [64].
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3.2. Gel Strength of Effervescent Matrix Tablets after Immersion in pH-Changed Media

The effect of effervescent agents on the gel layer formation surrounding the matrix
tablet has not been previously reported. In this study, the hydrated matrix tablets were
characterised for their gel strength using a texture analyser at different dissolution times.
Typically, three regions in a swollen matrix tablet were identified based on the degree of
hydration: gel layer (highest hydration), swollen glassy layer (low hydration) and dry core
(no hydration) as schematically shown in Figure 1; therefore, the mechanical properties can
be identified using a texture analyser [53]. At the gel–solution boundary, the gel strength
was the lowest and gradually increased toward the centre of the tablet. The swollen
glassy layer (partially hydrated region) was characterised by a continuously subsided
increase in gel strength until the dry core was reached (Figure 1). Figure 3 exhibits the
gel strength profiles of different effervescent matrix tablets. In this study, all formulations
were immersed in pH 1.2 HCl buffer (0.1 N) for 1.5 h before the pH medium was raised
to 6.8 until 4 h. Thus, the sampling time points at 15 and 30 min depicted the gel strength
profiles in acidic medium, and those at 2 and 4 h represented the gel strength profiles in
pH 6.8 phosphate buffer. An IPM tablet consisting of a eutectic mixture between IBU and
P407 and MCC PH101 was used as the control in this study. The gel strength profiles of
all formulations showed the same pattern. They started with a plateau before showing a
linear increase in the gel strength. When the medium pH was raised to 6.8, the gel strength
profiles dramatically dropped. Typically, the low gel strength of the matrix tablets indicated
a gel layer surrounding them [53]. In the case of matrix tablets containing 5% (Figure 3B)
and 10% (Figure 3C) by weight of effervescent agents, in comparison with the IPM tablet
(Figure 3A), the gel strength profiles of both formulations were drastically reduced. Similar
patterns could be observed in both gel strength profiles. However, a slightly lower gel
strength was found in higher amounts of effervescent-agent-incorporated matrix tablets.
At the same level of HPMC concentration in the matrix tablets (20% by weight), the higher
number of effervescent agents (10E) promoted a gel layer with a low strength (Figure 3B,C).

As illustrated in Figure 4, the gel strength profiles of all formulations were compared at
different immersion times. The effect of medium types on gel strength was also studied. In
the acidic medium, the gel strengths at 15 and 30 min (Figure 4A,B) were higher than those
at 2 and 4 h in pH 6.8 phosphate buffer (Figure 4C,D). This finding can be explained by
the higher solubility of IBU-P407 [59,65] and gel layer-forming capability of HPMC [66,67]
upon contact with the medium. There was a significant decrease in gel strength after HPMC
incorporation of formulations (5E and 10E) after immersion for 30 min and 2 h. The decrease
in gel strength was due to continued hydration and partial dispersion of the gel layer matrix
between 30 min and 2 h. Practically, the height of the gel layer surrounding the matrix tablet
can be measured by estimating the inflection point, which is the point of change in the slope
of gel strength profiles. Table 2 shows the estimated gel layer height and gel strength at the
gel–solution interface and the rate of gel layer formation. In pH 1.2 HCl buffer (0.1 N) for
30 min, 10E formulation showed the highest gel layer height of 2.70 ± 0.28 mm, followed
by 5E and IPM tablets (1.90 ± 0.10 and 1.17 ± 0.15 mm, respectively). After the medium pH
was raised to 6.8, a higher gel layer height was detected in the 5E and 10E formulations. As
a result, the formation of the gel layer surrounding the tablet occurred more rapidly because
of the incorporation of effervescent agents. Typically, the surface roughness increased with
the increase in effervescent agents, which allowed the inward penetration of the medium,
that is, deeper into the tablet, and increased the tablet wetting rate. The high wetting
rate promoted the fast rate of gel layer formation in the matrix tablet [10,66–68]. For the
gel–solution interface, the IPM tablet had the maximum gel strength of 0.213 ± 0.075 mPa
at 15 min. During the immersion period, the gel strength diminished dramatically, reaching
0.041 ± 0.023 mPa at 4 h due to the dissolution enhancement of the IBU-P407 eutectic
mixture. Compared with the IPM tablet, matrices containing effervescent agents (5E and
10E) exhibited similar patterns of gel strength. The gel strength of the 5E formulation
was greater than that of the 10E formulation. Increasing the porosity in the formulation
containing more effervescent agents can reduce the gel strength. Therefore, the gel strength
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profiles and gel layer heights observed by a texture analyser can be considered as crucial
factors in understanding the influence of effervescent agents on gel layer formation in
matrix tablets.
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Table 2. Estimated gel layer height and strength at the gel–solution interface tested in pH-changed
media (n = 5).

Immersed
Time

Estimated Gel Layer Height (mm)
(Mean ± SD)

Gel Strength at Gel–Solution Interface (mPa)
(Mean ± SD)

IPM 5E 10E IPM 5E 10E

15 min 0.93 ± 0.15 1.73 ± 0.06 2.17 ± 0.32 0.213 ± 0.075 0.034 ± 0.002 0.029 ± 0.017
30 min 1.17 ± 0.15 1.90 ± 0.10 2.70 ± 0.28 0.147 ± 0.034 0.023 ± 0.005 0.011 ± 0.004

2 h 0.60 ± 0.20 4.03 ± 0.25 4.63 ± 0.35 0.047 ± 0.022 0.015 ± 0.003 0.006 ± 0.001
4 h 0.70 ± 0.28 5.00 ± 0.00 5.00 ± 0.00 0.041 ± 0.023 0.015 ± 0.003 0.006 ± 0.003

3.3. Morphological Changes Observed under Digital Microscopy and SEM

After the effervescent matrix tablets were immersed into pH-changed media, a freeze-
drying approach was used in drying, and the obtained dried tablets were further investi-
gated using imaging techniques. Although the freeze-drying method can maintain tablet
microstructure in a dried state, the lack of correlation between dried state and hydrated
state of matrix tablets might be found and should be recognised. However, a combination
of temporal changes of tablet microstructure in the dried state using imaging techniques
and mechanical properties’ characterisation in hydrated state could be of benefit to clarify
the effect of effervescent agents on tablet microstructure.
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Figure 5A,B show the micrographs of surface and cross-sectional effervescent matrix
tablets after immersion in pH-changed media, respectively. The tablet size of the IPM for-
mulation diminished during the immersion periods. The increased roughness observed on
the IPM tablet surface after prolonged immersion in the media indicated the heterogeneous
erosion on the tablet surface (Figure 5A). In the cross-sectional micrographs of IPM, a dry
core was clearly identified, and was surrounded by a thin gel layer. In addition, the cylindri-
cal shape of IPM at the initial time point altered to a tiny sphere after immersion in media
for 4 h (Figure 5B). This finding confirmed the previous explanation for the gel strength
profiles of IPM tablets. Dissolution improvement owing to IBU-P407 eutectic formation
facilitated the erosion and decrement in tablet size as immersion time progressed [66].
Moreover, the thin gel layer surrounding the IPM tablet could not maintain the tablet shape
due to its low viscosity and high solubility in the aqueous system of P407 [69]. In the case
of 5E and 10E formulations, the tablet size gradually enlarged owing to the swelling and
high gel layer formation of HPMC K15M in formulations. High porosity and roughness
were noticeable in the 5E and 10E formulations compared with those of the IPM, but they
were more pronounced in the 10E tablet (Figure 5A). The cross-sectional micrographs of
5E and 10E (Figure 5B) showed the progressively more obvious surrounding gel layer,
whereas the dry core steadily diminished over time. A high porosity was observed in the
10E tablet, especially at the immersion time of 4 h. Some space was observed between
the dry core and the surrounding gel layer, which did not appear in the IPM and 5E
formulations (yellow arrows in Figure 5B). Moreover, the 10E tablets had the lowest gel
strength of 0.006 ± 0.003 mPa at 4 h after immersion in the dissolution media. Therefore,
the high concentration of effervescent agents promoted the increased carbonation reaction,
resulting in a high CO2 gas level. Thereafter, it promoted the porosity and low strength
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microstructure of the matrix tablets, especially the gel layer. In addition, a large porosity
can normally enhance the wetting rate and increase the rate of gel layer formation.
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The surface morphology of all formulations was analysed by SEM (Figure 6). The
SEM micrographs of 5E and 10E showed macropores in various sizes and interconnected
channels distributed on the tablet surface at 15 and 30 min after immersion in the medium.
These pores and channels were caused by CO2 generated by the carbonation reaction of
effervescent excipients in the formulation, and their porosity characteristics promoted the
absorption of a significant amount of water and led to swelling or gel layer formation.
The gel layer was generated, as indicated by the microporous structure (brown arrows in
Figure 6) [70–72]. The pore size was reduced, and a microporous network surrounded the
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pores and channels after the medium pH was elevated to 6.8 at sampling time periods of
2 and 4 h (yellow arrows in Figure 6). Moreover, the obtained pore size of the 10E tablet
(diameter > 200 µm) was larger than that of the 5E tablet (diameter < 200 µm), leading to a
higher rate of gel layer formation, which was evident in the microporous network of 10E
tablets. This result was consistent with the above findings on gel strength and morpho-
logical changes under digital microscopy and confirmed the previous explanation about
the effect of effervescence on the microstructure of matrix tablets. For IPM formulation,
a tiny microporous network was unequally distributed. In addition, surface erosion was
observed in the first 30 min in acidic medium, and it was more pronounced in the medium
with a high pH. This finding proved the heterogeneous erosion at the surface of the IPM
tablet, which was in accordance with the previous results in the gel strength study.
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3.4. SRXTM and Porosity Determination

Figure 7A,B illustrate the surface and cross-sectional reconstructed 3D images of
effervescent matrix tablets in pH-changed media at various immersion times, respectively.
The 5E and 10E formulations had pores and channels on their surfaces in the first 15 min
after submersion in the acidic medium. The noticeable appearance of pores and channels
was observed in matrix tablets containing higher amounts of effervescent agents (10E
formulation). The microporous structure was identified clearly and was inhomogeneous in
terms of the size and shape of pores after immersion in nearly neutral medium at the time
point of 4 h, signifying that the gel layer covered the surface of the matrices. On the other
hand, surface roughness was observed in the IPM formulation at both time points in acidic
and neutral media. These surface-reconstructed 3D images corresponded to the findings of
the gel strength study and previously mentioned morphological changes.
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As illustrated in Figure 7B, the colour gradient from light brown to dark brown
indicates low to high X-ray absorption. Higher absorption referred to as higher density
is mapped as white. Well-distributed, organised white spots were observed in the cross-
sectional reconstructed 3D images of 5E and 10E (white circles), and they were especially
greater in the 10E formulation. These white spots diminished over time and were absent in
the porous structure at 4 h after immersion. These white spots, however, were not observed
in the IPM tablet. The detected white spots represented bicarbonate salts in the 5E and 10E
formulations, based on the X-ray absorption behaviour of the metal salt [73,74]. Given its
mainly density-based contrast, SRXTM is well suited for the detection of voids or pores
in the matrix, providing high-resolution images [75–77]. For IPM tablets, the difference in
density was observed and identified in the outer and inner layers of the tablets. After the
tablets were immersed in the media, the surrounding water was ingressed. Subsequently,
the tablets gradually expanded and eroded, as internal cracks in the hydrate tablet formed
after immersion in the media for 2 and 4 h (white arrows in Figure 7B). The water-soluble
components, such as P407 and IBU-P407 eutectic mixtures in the tablets, were dissolved and
then released into the medium, resulting in heterogeneous surface roughness on the surface
of tablets depending on their distribution [76]. In the cases of 5E and 10E, at the initial
stage (15 and 30 min), interconnected pores of various sizes and shapes were observed at
the outer layer of tablets. The surrounding gel layer appeared as the pore size diminished,
and the microporous structure increased steadily when formulations were immersed in a
medium with a higher pH at 2 and 4 h. These characteristics were in accordance with the
morphological changes observed during digital microscopy and SEM.

The porosity parameter, which was also the important feature retrieved from SRXTM,
was determined from 600 reconstruction images using Octopus Analysis software. Figure 8
illustrates the opened, closed, and total porosities of all formulations. According to the
study by de Terris and colleagues, closed porosities are completely isolated inside a dense
material, whereas opened porosities are pores near the part of the surface which is not com-
pletely enclosed [78]. The highest values of opened (57.62%) and total (57.69%) porosities
were evident in 10E (Figure 8A,C, respectively) after immersion in dissolution media for 4 h,
whereas 5E exhibited lower values of 55.42% and 55.52%, respectively (Figure 8B). There-
fore, carbonation reaction promoted the interconnected pores in Figure 7B (orange arrows),
and closed porosities were found in less than 1% of cases. This finding was in accordance
with the study by Hesaraki et al. [79]. They developed a macroporous calcium phosphate
cement matrix using a mixture of NaHCO3 and CA as effervescent agents. The high num-
ber of effervescent agents provoked the increase in the total porosity and interconnected
pores of cement and altered its physicochemical properties, especially the compressive
strength. In the case of IPM tablets, the closed porosities were more pronounced than
the opened and total porosities owing to the dissolution of water-soluble components
from the formulation as explained above [76]. Therefore, the effect of effervescent agents
on the microstructure of matrices was well clarified using imaging techniques, including
morphological study under digital microscopy, SEM, and tomographic study with SRXTM
investigations. Effervescent agents promoted the interconnected pore structures or opened
porosities in the microstructure of matrix tablets, particularly the surrounding gel layer.
Subsequently, they affected the gel strength of matrices and the drug release behaviour of
the formulation, as mentioned.
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3.5. In Vitro Drug Release and Release Kinetics

Figure 9 illustrates the in vitro drug release profiles of effervescent matrix tablets in
pH 1.2 HCl buffer (0.1 N) and pH-changed media. To determine the effect of the medium
on the drug release behaviour of formulations, cumulative drug dissolution in pH 1.2 HCl
buffer (0.1 N) and pH 6.8 phosphate buffer was independently fitted and displayed in
Tables 3 and 4, respectively. The best model can be derived from the highest and closest
value to 1.0 for the R2, the highest value of MSC, and the lowest value of AIC [58]. The
IPM tablets exhibited the highest drug release of 6.4% within 1.5 h in pH 1.2 HCl buffer
(0.1 N). The 5E and 10E formulations showed drug releases of 3.8% and 2.4%, respectively
(Figure 9A). When all formulations were further immersed in a medium with a pH of
6.8, the drug release pattern of IPM dramatically increased to around 25% after 2 h and
then steadily increased to 100% within 12 h. Notably, the drug release patterns from 5E
and 10E tablets continuously rose steadily, reaching 50.8% and 57.5%, respectively, at 24 h
(Figure 9B).
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Table 3. Mathematical modelling of IBU release from effervescent matrix tablets in pH 1.2 HCl buffer
(0.1 N).

Modelling Formulation Parameters R2 Adjusted AIC MSC

Zero-order
IPM k0 = 4.3977 0.9685 0.0607 2.6787
5E k0 = 2.2858 0.9566 −3.8335 2.5255

10E k0 = 1.6920 0.9624 −11.1238 2.5833

First-order
IPM k1 = 0.0452 0.9714 −0.5353 2.7781
5E k1 = 0.0232 0.9544 −3.5304 2.4749

10E k1 = 0.0171 0.9640 −11.4244 2.6334

Higuchi’s
IPM kH = 4.4344 0.9245 5.2908 1.8070
5E kH = 2.2293 0.7662 6.3148 0.8341

10E kH = 1.7110 0.9373 −7.2374 1.9356

Kosmeyer–Peppas
IPM kKP = 4.4822 n = 0.8128 0.9860 −5.1810 3.5523
5E kKP = 2.1939 n = 1.2903 0.9736 −6.1534 2.9121

10E kKP = 1.7299 n = 0.7760 0.9892 −20.2020 4.0963

Hixson-Crowell
IPM kHC = 0.0149 0.9705 −0.3396 2.7454
5E kHC = 0.0077 0.9551 −3.6304 2.4916

10E kHC = 0.0057 0.9635 −11.3240 2.6167

Hopfenberg
IPM kHB = 0.0023 n = 93.2625 0.9642 1.4792 2.4423
5E kHB = 0.4191 n = 0.0390 0.9855 −9.8755 3.5325

10E kHB = 0.0014 n = 20.3999 0.9548 −9.4031 2.2965

Peppas–Sahlin
IPM k1 = 2.7052 k2 = 1.7390 m = 0.5990 0.9862 −5.4580 3.5985
5E k1 = 1.2791 k2 = 0.8772 m = 0.9303 0.9752 −6.3063 2.9376

10E k1 = 1.1047 k2 = 0.6117 m = 0.5863 0.9891 −20.2437 4.1033

Remark: The significance of bold indicates the estimated parameters from the best-fitted mathematic model.
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Table 4. Mathematical modelling of IBU release from effervescent matrix tablets in pH 6.8
phosphate buffer.

Modelling Formulation Parameters R2 Adjusted AIC MSC

Zero-order
IPM k0 = 9.8725 0.8070 50.0124 1.3762
5E k0 = 2.2892 0.9509 47.3542 2.8195

10E k0 = 2.5741 0.9692 46.1229 3.2903

First-order
IPM k1 = 0.2126 0.9549 59.7612 2.9031
5E k1 = 0.0296 0.9894 31.9786 4.3571

10E k1 = 0.0345 0.9977 19.7189 5.9307

Higuchi’s
IPM kH = 25.0070 0.7664 76.2141 1.2578
5E kH = 8.8980 0.8997 54.5326 2.1017

10E kH = 9.9457 0.8774 60.0271 1.8998

Kosmeyer–Peppas
IPM kKP = 14.2673 n = 0.9289 0.9833 14.5716 3.5403
5E kKP = 4.3409 n = 0.7735 0.9968 19.1651 5.6385

10E kKP = 4.3089 n = 0.8179 0.9960 26.1915 5.2834

Hixson–Crowell
IPM kHC = 0.0564 0.9846 49.0139 3.9778
5E kHC = 0.0091 0.9830 36.8165 3.8733
10E kHC = 0.0105 0.9960 25.6593 5.3366

Hopfenberg
IPM kHB = 0.0836 n = 1.8288 0.9957 36.9415 5.1851
5E kHB = 0.0001 n = 828.0660 0.9880 33.9938 4.1556

10E kHB = 0.0027 n = 22.3850 0.9977 20.8258 5.8200

Peppas–Sahlin
IPM k1 = −282.7329 k2 = 284.2489 m = 0.1229 0.9990 −2.8625 7.8988
5E k1 = 3.3267 k2 = 1.5962 m = 0.5233 0.9976 17.8431 5.7707

10E k1 = −12.5306 k2 = 14.2621 m = 0.2888 0.9986 15.9478 6.3078

Remark: The significance of bold indicates the estimated parameters from the best-fitted mathematic model.

For mathematical model fitting (as shown in Supplementary Materials), the IBU release
from the IPM formulation in both media exhibited the tendencies of Peppas–Sahlin, in
which the R2 was close to 1.0. The kinetic parameters were estimated using Peppas–Sahlin
model fitting, and the release mechanism was indicated by a higher value when comparing
the k1 and k2 values. A higher k1 value would suggest that the diffusion process was the
predominant drug release mechanism, whereas a higher k2 would indicate that poloxamer
relaxation or heterogeneous erosion was the main drug release mechanism [80]. Negative
k values could typically be observed and indicated as one term in model for compensating
to produce the best fit to data; nevertheless, this should not be included in interpretation
of the release mechanism using the comparison of k value [80]. IPM tablets showed the
highest dissolution rate of 2.7052% dissolved drug/h in pH 1.2 HCl buffer (0.1 N), with
Fickian diffusion as the predominant drug release mechanism, as indicated by the higher
k1 value shown in Table 3. When the medium pH was raised to 6.8, the positive k2 value
(Table 4) indicated that heterogeneous erosion was the main drug release mechanism, and
the dissolution rate dramatically increased to 284.2489% dissolved drug/h [80]. This finding
implied that the medium pH influenced the drug release pattern of IPM tablets owing to the
solubility of the IBU-P407 eutectic mixture, which was dependent on the medium pH. This
finding was in accordance with the results of Dugar et al., who developed various ratios of
eutectic mixture between IBU and P407 using the fusion method and discovered that the
drug release pattern of this eutectic mixture could increase to around 60% within 1 h, and
drug release reached 100% in pH 7.2 phosphate buffer within 10 min [59]. In the case of
5E tablets, cumulative drug release profiles in pH 1.2 HCl buffer (0.1 N) were fitted using
the Hopfenberg model with the highest R2 value of 0.9855. Thus, heterogeneous erosion
was the predominant release mechanism of 5E tablets in pH 1.2 HCl buffer (0.1 N). After
the medium pH was adjusted to 6.8, Peppas–Sahlin model displayed a strong tendency
with the R2 close to 1.0. Fickian diffusion was the main release mechanism for the drug
release pattern of 5E formulation in pH 6.8 phosphate buffer, according to the higher k1
value in Table 4. For the 10E formulation, drug release patterns in pH 1.2 HCl buffer (0.1 N)
and pH 6.8 phosphate buffer showed the best fit with the Peppas–Sahlin model, in which
the R2 values were 0.9891 and 0.9986, respectively. However, the main release mechanism



Pharmaceutics 2022, 14, 2299 20 of 25

changed from Fickian diffusion in the pH 1.2 HCl buffer (0.1 N) to polymer relaxation in
the pH 6.8 phosphate buffer. As a result, the medium pH possibly affected the release
mechanism of effervescent matrices but slightly influenced the amount of drug that was
dissolved in the dissolution medium.

In comparison with IPM tablets, effervescent agents in 5E and 10E tablets can facilitate
the carbonation reaction at the beginning of immersion in the acidic medium. CO2 gases
were generated and promoted porosity in the surrounding gel layer and tablet surface.
Increased porosity caused a higher water ingression into the tablet, resulting in the rapid
formation of the surrounding gel layer and retarded drug release from matrices consisting
of effervescent agents. This finding can explain how 5E and 10E can retard and modulate
the release of drugs from effervescent matrices. Compared with effervescent matrices in pH
1.2 HCl buffer (0.1 N), the higher concentration of effervescent agents in 10E formulation
can facilitate the formation of highly porous structures. This phenomenon can promote
the fast rate of water penetration, resulting in high hydration and swelling rate of HPMC
K15M, which was the gel-forming agent, followed by the rapid formation of gel layer
acting as a drug release barrier. This result can describe the diffusion process as the
main release mechanism of 10E in the pH 1.2 HCl buffer (0.1 N) [81–83]. The lower
concentration of effervescent agents in the 5E formulation, however, suggested that the rate
of gel layer formation was slower than the rate of the carbonation reaction of effervescent
agents, which resulted in a more prominent surface erosion. Thus, heterogeneous erosion
was the predominant release mechanism of 5E in the pH 1.2 HCl buffer (0.1 N). After the
formation of a sufficiently strong gel layer in the pH 6.8 phosphate buffer as immersion time
progressed, the amount of drug released from the effervescent matrices decreased depending
on the rate of drug diffusion, rate of gel layer disruption and system erosion [84,85]. This
event caused the diffusion process to become the main release mechanism of 5E in pH
6.8 phosphate buffer. During drug release, erosion front occurred at the external interface
between the surrounding medium and effervescent matrices [82]. Owing to the higher
porosity of the gel layer in 10E, the surface area significantly increased compared with that
of the 5E formulation [68], resulting in the increased surface erosion. Therefore, polymer
relaxation was the predominant release mechanism of 10E in pH 6.8 phosphate buffer.

In comparison with the study of Xu et al. [86], who developed the extended-release
tacrolimus matrix tablets using HPMC as a matrix-forming agent, tacrolimus was mixed
with Compritol® ATO888 and Pluronic F127 to prepare a tacrolimus solid dispersion. Drug
release data fitted the Kosmeyer–Peppas model very well with an n value of 0.85, indicating
an anomalous transport mechanism of the tacrolimus release. The anomalous transport
was a combination of diffusion and erosion-controlled release mechanisms, which was
consistent with the matrix erosion and swollen behaviour of the formulation [86]. In
addition, the drug release pattern can be tailored by the composition of matrix materials,
such as the type and content of HPMCs and preparation methods. Viridén and colleagues
investigated the effect of the chemical heterogeneity of HPMC on the release of model
drug substances from hydrophilic matrix tablets. Interestingly, the interaction between the
hydrophobic part of HPMC and butylparaben made the gel of tablets less hydrated and
more fragile and, therefore, more affected by erosional stresses [87]. This finding revealed
the possible variability in the drug release depending on the substituent heterogeneity
of the HPMC used. Moreover, the effect of the solubility of the additive on the HPMC
matrix tablet can be studied by a novel NMR microimaging method [88]. The rate of
solvent transport into the tablet depends on the solubility of the additive and affects the
release mechanism of the matrix tablets [88]. In this study, the addition of effervescent
agents modified the drug-release pattern of the matrix tablets. The morphological and
topological changes in the gel layer microstructures observable under digital microscopy,
SEM and SRXTM, can describe the alteration of the drug-release pattern and gel strength
of effervescent matrices, as described above. Therefore, combination of mechanical and
imaging characterisation might be alternative methods to investigate the temporal change
of tablet microstructure, and to also clarify the drug release mechanism. In addition, these
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combined techniques could be applied to determine the microstructure and drug release
mechanism of other dosage forms such as polymer membrane for wound healing [25],
hydrogels for tissue engineering applications [26] and carbohydrate-based hydrogel for
substitute as articular cartilages [89].

4. Conclusions

Effervescent matrix tablets were successfully fabricated by melt granulation using a
circulating water bath at 70 ◦C. The IBU-P407 eutectic mixture acted as a meltable binder,
facilitated the agglomeration of particles into granules and was compressed into tablets
using a hydraulic press. Based on their hygroscopic properties, effervescent agents can
affect the physical properties of matrix tablets, especially tablet hardness. When effervescent
matrix tablets were immersed in pH-changed media, the high amounts of effervescent
agents promoted a rapid carbonation reaction, resulting in a high gel layer formation with
a low strength, which was investigated by a texture analyser. This finding was described by
the surface roughness and porosity observed under digital microscopy and microporous
structure at the gel layer detected during SEM. However, it should be acknowledged that,
from some perspectives, there is no association between the mechanical characteristics
of the hydrated state and the imaging characterisation of the dried state. In addition,
SRXTM was used to investigate the tablet microstructure and porosity. The reconstructed
3D images showed the interconnected pores of various sizes from the carbonation reaction
of the effervescent and microporous network, which indicated the presence of the gel layer
on the tablet surface. Notably, CO2 gases from the carbonation reaction of effervescent
agents can promote the increase in opened or interconnected porosities, which affects the
strength of the gel layer microstructure, drug release patterns and release mechanism of the
effervescent matrix tablet. Therefore, combined mechanical characterisation and imaging
techniques can provide new insights into the influence of effervescent agents on the gel
layer microstructure and describe the relationship with drug release patterns and release
mechanism of matrix tablets. In addition, the application of these combined techniques in
different dosage forms such as polymer membranes and hydrogels would be a fascinating
point for further research.
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