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Abstract: Research on nanoparticles, especially metal nanoparticles, in cancer therapy is gaining mo-
mentum. The versatility and biocompatibility of metal nanoparticles make them good for various
applications in cancer therapy. They can bring about apoptotic cell death in cancer cells. In addition to
apoptosis, nanoparticles mediate a special type of autophagy facilitated through mitochondria called
mitophagy. Interestingly, nanoparticles with antioxidant properties are capable of inducing mitophagy
by altering the levels of reactive oxygen species and by influencing signaling pathways like PINK/Parkin
pathway and P13K/Akt/mTOR pathway. The current review presents various roles of metal nanoparti-
cles in inducing mitophagy in cancer cells. We envision this review sheds some light on the blind spots
in the research related to mitophagy induced by nanoparticles for cancer treatment.

Keywords: metal oxide nanoparticles; mitophagy; dysfunctional mitochondria; cancer; oxidative
stress-related pathway

1. Introduction

Nanoparticles have wide applications in the medical field with important roles to play
in cancer management. They help in imaging as contrast agents, drug carriers in gene
delivery, etc. [1]. They are explicitly used in cancer therapy due to their capacity to deliver
drugs to remote regions of the body that are normally inaccessible [2]. Among the different
types of nanoparticles, metal nanoparticles are exceedingly used for medical applications
due to their thermal, chemical, and optical features [3]. Compared to their counterparts, the
metal nanoparticles possess many highly active uncoordinated sites with a large surface-
to-volume ratio which makes them attractive. They are found to have a catalytic effect
due to their special structural and physical features like the active surface atoms that can
change size and shape rendering structural flexibility. The optical polarizability, electrical
conductivity, ease with which they can complex with biopolymers, etc. make them ideal
for biomedical applications [4] including cancer therapy.

Research reveals that the antitumor potency increases when conventional drugs are con-
jugated with nanoparticles. This is mainly due to the subcellular performance of nanoparticles
to penetrate and reach organelles such as endosomes, nucleus, mitochondria, endoplasmic
reticulum, Golgi apparatus, etc. Metal nanoparticles have a specific affinity towards mito-
chondria due to the membrane potential difference and can bring about the inhibition of
mitochondrial respiration and can induce cell death in tumor cells by various mechanisms
such as apoptosis and autophagy [5]. The role of nanoparticles in mitochondria-mediated cell
death (mitophagy) is a relatively less exploited area of research. This review focuses on the
role of metal-based nanoparticles in inducing mitophagy in tumor cells.

Even though mitochondria are best known as ‘the powerhouse of the cell’, it possesses
other important roles in cellular metabolism. Mitochondria are recognized as the center of
oxidative phosphorylation producing highly reactive oxygen species (ROS). It is the converg-
ing point of many metabolic processes and is also actively involved in the cell cycle process,
cell differentiation, and cell death. That is why mitochondrial dysfunction is involved in
the proliferation and progression of cancer cells. Any dysfunction in the mitochondria can
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lead to the disruption of oxidative phosphorylation, resulting in reduced energy metabolism,
ROS accumulation, inflammation, etc. which render cancer progression. Therefore, targeting
mitochondria is an emerging trend in cancer therapy to induce apoptosis [6].

Molecular mechanisms such as autophagy and apoptosis take up the housekeeping
role to help the cells to eliminate faulty organelles. Nanoparticles can act as autophagy
modulators due to their effect on signaling pathways, thus creating an overstimulating
signaling cascade in cancer cells than in non-cancerous cells. ROS-induced autophagic cell
death brought about by silver nanoparticles in cancer cells was studied as a selective mecha-
nism of autophagic cell death [7]. The unique property of nanoparticles to induce or inhibit
ROS to induce toxicity in cancer cells has enabled their usage in the medical field. In normal
skin cells treated with zinc oxide nanoparticles, abnormal accumulation of autophagosome
was observed resulting from ROS accumulation in a concentration dependent manner. It
was also found to activate autophagy through the inhibition of PI3K/Akt/mTOR signaling
pathway [8]. The differences and similarities between autophagy and mitophagy are sum-
marized in Table 1 and the various effects brought about by nanoparticles while inducing
autophagy are listed in Table 2.

Table 1. Differences and similarities between autophagy and mitophagy.

Autophagy Mitophagy

Type General form of degradation of cellular
components including organelles Specific degradation of mitochondria

Regulation Dependent on the nutrient/energy/stress signals Independent of the nutrient/energy/stress signals

Stimulus

Nutrient and energy stress, ER stress,
pathogen-associated molecular patterns (PAMPs),
danger-associated molecular patterns (DAMPs),
hypoxia, redox stress, mitochondrial damage

Mitochondrial membrane depolarization, changes
in cytosolic pH

Malleability Malleable as it can degrade specific targets, entire
organelles, and large portions of cytoplasm

Not malleable at all as it degrades only
mitochondria

Substrate Sequestosome 1/p62 (SQSTM/p62)

Mitophagy involves unique and additional
substrate identification mechanisms, notably
PTEN-induced kinase 1 (PINK1) and parkin RBR
E3 ubiquitin protein ligase (PRKN)

Types

Three types—
1. Chaperone-mediated autophagy (initiated by

chaperone Hsc70 and recognizes one protein
at a time)

2. Microautophagy (initiated by invagination of
lysosomal membranes. Lipid, protein or
organelles can be degraded) and

3. Macroautophagy (double membraned
organelles are degraded)

Only one type where

1. Only mitochondria are degraded

Methods of detection

1. Conventional electron microscopy to detect
the autophagosome number and autophagic
flux

2. Fluorescence microscopy to count the
average number of punctate structures per
cell (puncta formation assay)

3. Immunoblotting to detect the conversion of
the cytosolic form of LC3 (LC3-1) to its
membrane-bound lipidated form (LC3-II)

4. Flow cytometry to detect the degradation of
autophagy-selective substrates

1. Electron microscopy
2. Fluorescence microscopy to detect

co-localization of mitochondria with
autophagosomes or lysosomes

3. Western blotting to measure the degradation
of mitochondrial proteins (like LC3)

4. Fluorescent protein-tagged assays like
MitoTimer, mt-Keima, and mito-QC
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Table 1. Cont.

Similarities

Activation of similar molecular machinery (i.e., BECN1, ULK1/2, LC3)

Generation of ROS molecules can act as a trigger for both processes

Both processes result in cellular damage and apoptosis

Essential for quality control of the cells’ defense mechanism

Both processes are forms of degradation mechanisms rather than cell death mechanisms (unlike apoptosis).

SQSTM1—Sequestosome 1, BECN1—the gene encoding the protein Beclin 1, ULK 1/2—Unc-51 such as autophagy
activating kinase (1/2), LC3—Microtubule-associated protein 1A/1B-light chain 3.

Table 2. Autophagy induced by different nanoparticles.

Nanoparticle
(Size) Mode of Cellular Recycling Mechanism/Outcome Conjugation In Vitro/In Vivo Model Ref.

Polydopamine
nanoparticle

(101.96 ± 6.70 nm)
Autophagy Photothermal cell

killing

Beclin 1- derived
peptide (Beclin 1),

polyethylene glycol
(PEG) and cyclic

Arg-Gly-Asp
(RGD) peptides

(PPBR)

NIH3T3 cells, HeLa cells [9]

Au NPs
(15 nm) Autophagy ROS generation by

cellular uptake

Poly (acryloyl-L,D)
and racemic valine

(PAV)
MDA-MB-231 cells [10]

Autophagy Cascade
Amplification NPs

(Self-assembled
peptide-cholesterol

monomers)
(150 nm)

Autophagy

Overactivated
autophagy and

enhanced tumor
antigen processing

Oxaliplatin
prodrug

(HA-OXA)
CT26 tumor-bearing mice [11]

ZnO NP
(300 nm) Autophagy

ROS-mediated
enhanced tumor
chemotherapy by
overstimulated

autophagy

Bare

P-gp-mediated multi-drug
resistant human breast cancer

cells (MCF-7/ADR cells),
BALB/c mice

[12]

Nickel oxide NPs
(24.05 ± 2.9 nm) Autophagy Oxidative stress,

JNK activation Bare HeLa [13]

Silver NPs
(78 nm) Autophagy Lysosome injury

and cell hypoxia Bare Prostate cancer cell line (PC-3) [14]

Silver NPs
(11–23 nm) Enhanced autophagy

Inhibition of
NLRP3

inflammasome
Bare THP-1 cells, AMJ-13 cells,

HBL cells [15]

Gold NPs
(60.00 ± 4.24 nm) Autophagy ROS-mediated cell

death Bare
Human ovarian

adenocarcinoma cells
(SKOV-3)

[16]

Hollow mesoporous
titanium dioxide

nanoparticles (HMTNPs)
(∼100 nm)

Escape from macrophage
phagocytosis

Sonodynamic
Therapy

Hydroxychloroquine
sulphate (HCQ)

MCF-7, MDA-MB-231,
HepG2, NIH3T3, [17]

Copper oxide NPs
(5.4 ± 1.2 nm) Destructive autophagy

Enhanced
radio-sensitizing

effect
Bare MCF-7 [18]

ZIF-82-PVP nanocrystals
(~240 nm) Autophagy

Apoptosis
promoted by

X-ray-induced
nitrosative stress

Conjugation with
PVP

MDA-MB-231, 4T1 and
Panc-1 cells [19]
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Table 2. Cont.

Nanoparticle
(Size) Mode of Cellular Recycling Mechanism/Outcome Conjugation In Vitro/In Vivo Model Ref.

Fe3O4 NP
(26.3 ± 4.42 nm) Autophagy

ROS-mediated
NF-κB and TGF-β
signaling pathway

activation

Polyethyleneimine HeLa [20]

Branched Au-Ag NPs
(~200 nm) Autophagy Photothermal

toxicity

Polydopamine-
coated Human bladder cancer cells

(T24 cells) [21]

TiO2 NPs
(20–30 nm) Autophagy blockage

Cytotoxicity and
apoptosis

induction with
enhanced

chemotherapeutic
effect

5-fluorouracil Human AGS gastric cancer
cells [22]

Au NPs
(42.6 ± 5.3 nm) Autophagy Immunogenic

cancer cell death Polydopamine MCF-7 and MDA-MB231 [23]

Copper-palladium alloy
tetrapod nanoparticle

(~50 nm)
Pro-survival autophagy

TNP-1-mediated
photothermal

therapy
-

Triple-negative (4T1),
drug-resistant (MCF-7/MDR)

and patient-derived breast
cancer models

[24]

Spheroid fluorescent
polystyrene nanoparticles

(PS-NPs)
(30 nm)

Selective autophagy

Inhibition of
autophagosome
formation and

rescued
ATG4-mediated

autophagy

Functionalized
with amino groups OAW42 cells [25]

Chitosan nanoparticles
(100.0 ± 6.7 nm) Cytoprotective autophagy ROS generation - Hela cells and SMMC-7721

cells [26]

Selenium nanoparticles
(60 nm)

Activation of early autophagy
but inhibition of late

autophagy

Promoting
apoptosis

Laminarin
polysaccharides HepG2 cells [27]

Cuprous oxide NPs
(200 nm) ERK-dependent autophagy ROS-mediated

apoptosis - T24, J82, 5637, and UMUC3 [28]

Mitophagy is the molecular event where dysfunctional or damaged mitochondria
are effectively degraded and eliminated (Figure 1). Programmed mitophagy generally
happens during the developmental process as a specialized form of autophagy. Persistent
damage to mitochondria during stress and other pathophysiological conditions can lead to
mitophagy. Starvation or hypoxia can also lead to mitophagy. Impaired mitophagy is com-
mon among autoimmune diseases, cardiovascular diseases, neurodegenerative diseases,
metabolic disorders, and various types of cancers [29]. As metabolic reprogramming is
common in cancer, the mitophagic processes are dysfunctional; mitophagy behaves as a
tumor promotor or suppressor depending on the components, the type of cancer, and the
microenvironment of the cancer cells. For example, BCl2 Interacting Protein 3 (BNIP3) is
a pro-mitophagic receptor that is supposed to induce mitophagy. However, it functions
as a tumor suppressor in breast cancer but acts as a promoter of tumor activities in the
case of melanoma, renal cell carcinoma, and pancreatic cancer [30]. Other modulators or
regulators of mitophagy such as PTEN-induced putative protein kinase 1 (PINK1) and
Parkin, also have distinct roles in mitophagy. PINK1/Parkin has tumor suppressive activ-
ity and is frequently deleted in several types of cancers such as breast, ovarian, bladder,
etc. [31] confirming that the loss of function of PINK1/Parkin can lead to the inhibition of
mitophagy and in turn promote tumorigenesis in various types of tumors [32]. Overall, this
indicates that mitophagy may have dual roles of inducing cell death as well as promoting
cell survival [33].
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Figure 1. The process of mitophagy. When the outer mitochondrial membrane is disrupted, PINK1
is accumulated which in turn helps in the recruitment of Parkin and other receptor proteins. Au-
tophagosomes formed prepare the mitochondria for mitophagy where the damaged or dysfunctional
mitochondria are engulfed by lysosomes and degraded.

Understanding the role of various components such as Pink1/Parkin, BNIP3, FUN14
domain-containing protein 1 (FUNDC1), optineurin (OPTN), microtubule-associated pro-
tein 1A/1B-light chain 3 (LC3), etc. in mitophagy will help in managing tumor progression.
Chemotherapeutic drugs can induce cytotoxic effects through the induction of mitochon-
drial dysfunction as a result of oxidative stress that has an inhibitory effect on these
components [33]. Many natural compounds are found to have varying effects in the induc-
tion of mitophagy [29]. However, at times, the complex nature of mitochondria makes it a
challenge to target them for mitophagy. Consequently, a series of research have revealed
that conjugating the drugs with ligands that target mitochondria can selectively perturb mi-
tochondrial functions. Some of these studies used nanoparticles as effective drug carriers as
they are very responsive to photosensitizers, radiosensitizers, and theranostic agents. They
can target the energy machinery of tumor cells and effectively manipulate the underlying
functional mechanisms in tumor cells. Nanoparticle-induced toxicity is an emerging area
of research with special emphasis given to mitophagy as the means of cell death induced
by nanoparticles [34] (Figure 2).



Pharmaceutics 2022, 14, 2275 6 of 22Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 24 
 

 

Figure 2. Effect of nanoparticle on mitophagy in cancer cells. Healthy cells undergo mitophagy (A) 

whereas cancer cells accumulate damaged mitochondria and mitophagy is impaired (B). Nanopar-

ticles can restore normal homeostasis by restoring mitophagy and thus protecting the cells (C). 

2. Different Metal-Based Nanoparticles and Their Mode of Action 

Metal-based nanoparticles are used extensively in the medical field as drugs and im-

aging agents [35]. One way by which the nanoparticles exert their therapeutic effect is the 

covalent bonding with biomolecules. The covalent binding of metal-based nanoparticles 

with other biomolecules is responsible for the extensive ligand exchange chemistry of the 

drug. The ligand exchange property of nanoparticles helps to understand and interpret 

the molecular events at atomic levels so as to study the variations in the property of the 

drug. The formation of a covalent amide bond with carboxylic acid on the surface of a 

mesoporous silica nanoparticle, in synergy with zinc oxide quantum dots, was responsi-

ble for the inherent anticancer properties. Induction of mitophagy was found to be asso-

ciated with the anticancer property triggered by excessive ROS formation [36]. The redox 

Figure 2. Effect of nanoparticles on mitophagy in cancer cells. Healthy cells undergo mitophagy
(A) whereas cancer cells accumulate damaged mitochondria and mitophagy is impaired (B). Nanopar-
ticles can restore normal homeostasis by restoring mitophagy and thus protecting the cells (C).

2. Different Metal-Based Nanoparticles and Their Mode of Action

Metal-based nanoparticles are used extensively in the medical field as drugs and
imaging agents [35]. One way by which the nanoparticles exert their therapeutic effect is
the covalent bonding with biomolecules. The covalent binding of metal-based nanoparticles
with other biomolecules is responsible for the extensive ligand exchange chemistry of the
drug. The ligand exchange property of nanoparticles helps to understand and interpret
the molecular events at atomic levels so as to study the variations in the property of the
drug. The formation of a covalent amide bond with carboxylic acid on the surface of a
mesoporous silica nanoparticle, in synergy with zinc oxide quantum dots, was responsible
for the inherent anticancer properties. Induction of mitophagy was found to be associated
with the anticancer property triggered by excessive ROS formation [36]. The redox balance
is important for cellular homeostasis that regulates a plethora of biological processes
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deciding the physiological well-being of the cell. Zinc oxide nanoparticle was found to
induce ROS-mediated autophagy in CAL 27 oral cancer cell line [37]. PINK1/Parkin-
mediated mitophagy was reported as the basis for the anticancer activity of the metal oxide
nanoparticle. The high expression of ROS in cancer cells results in the oxidation of cell
components resulting in the loss of cell function and triggers autophagy. HC11 cells, treated
with silver nanoparticle increased the expression of proteins associated with oxidative
stress [38]. Hemeoxygnase-1 (HO-1), Kelch-like ECH-associated protein 1 (Kaep1), BTB
and CNC homology proteins 1 (Bach1) and nuclear factor erythroid related factor 2 (Nrf2)
were found to increase in the cells treated with the nanoparticles.

Another mode of action of nanoparticles is the activation of the immune system by
phototherapy. Metal-based nanoparticles are excellent photosensitizers; they can be easily
sensitized even by low-intensity light sources as in photodynamic therapy (PDT) and
the irradiation creates ROS in cancer cells that can affect the mitochondrial membrane
potential to induce mitophagy. In photothermal therapy (PTT), the nanoparticles sensitized
with intense light and electromagnetic waves can instigate the expression of heat shock
proteins (HSP) on the cell surface which simultaneously leads to the release of cytokines
and other inflammatory regulators [2]. The immune system of the cells’ defense mechanism
is activated upon the release of antigens in photo-immune therapy (PIT). The interventional
PDT and PTT can trigger signaling molecules that act on the mitochondrial proteins
directing the mitochondria for destruction by mitophagy. Iron oxide nanoparticle was
directed to induce mitophagy in MCF-7 cell line through a photothermal effect. When the
photosensitized nanoparticles enter the cancer cells, they form aggregates in lysosomes
and exocytosis is inhibited [39].

3. Selectivity and Targeting of Mitophagy by Nanoparticles

Early reports on the depolarized mitochondria being deported for damage control
indicated mitochondrial autophagy through selective targeting. The involvement of specific
proteins such as the key component ATG32 and BNIP3L/NIX, Drp1, etc. were identified
and found to have a decisive role in selective targeting [40]. As a sign of cell survival, this
mechanism is responsible for clearing the damaged, superfluous, or aged mitochondria
with a definite advantage of complete turnover of all the components including the mem-
brane and its associated proteins. Mitochondrial degradation needs to be highly specific
and selective as even in extreme conditions such as natural or induced starvation, the mito-
chondria should be preserved as a source of energy. In such cases, restricted mitochondrial
fission followed by a fused mitochondrial network will prevent mitophagy. The bite-sized
fragments formed because of this selective induction of mitophagy are degraded. Thus,
selective mitophagy throughout the prolonged starvation period is an adaptive response
by the cell’s defense mechanism to augment and optimize the mitochondrial population.
Activation of mitophagy and blockage of mass autophagy was observed in human hepato-
cellular carcinoma (HepG2) cells treated with silver nanoparticles. Mitochondrial fission
induced by Drp1 and oxidative stress promoted mitochondrial degradation but blocked
autophagic flux [41]. Similar results were observed in NSCLC cell lines when gold nanopar-
ticle promoted Drp1-dependent mitophagy activation [42]. In addition to the mechanism
of action, the size, shape, and conjugation of the nanoparticles with other biomolecules
also decide the selectivity of mitochondria in nanoparticle-induced mitophagy. The effec-
tive strategy is to conjugate nanoparticles with peptides and amino acids to effectively
deliver them to the receptors on the mitochondrial membrane and make them ready for
mitophagy rather than any other type of programmed cell death (such as apoptosis or
necrosis). However, understanding the relationship between the size, shape and conjuga-
tion of nanoparticles will help to target their interactions as it acts as a feedback mechanism
for inducing mitophagy. Furthermore, these interactions are believed to have a decisive
role in the distribution and intracellular trafficking behaviors of nanoparticles in terms
of mitophagy [43]. The feedback mechanisms for the initiation of mitophagy demand au-
tophagosome sequestration and nanoparticles can be selectively manipulated to induce or
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inhibit mitophagy depending on how this differential role is required to affect the treatment
outcome of various cancers [7]. The range of structural diversity of nanoparticles provides
them with unlimited combinations that can be employed in the targeted delivery of cancer-
specific drugs to mitochondria to effect mitophagy. Surface coating of the nanoparticles
such as iron oxide with dimercaptosuccinic acid (DMSA), or 3-aminopropyl-trietoxysilane
(APS) is found to affect the intracellular trafficking of drugs [44]. These mechanisms will
help in directing the nanoparticles to induce mitophagy.

Mitochondrial targeting can be active or passive. Active targeting is achieved by
surface functionalization of the nanoparticles with mitochondria-specific ligands. These
ligands could be special moieties that can either be loaded onto the drug or can be stan-
dalone. Ligands such as natural products (glycyrrhetinic acid), mitochondrial peptides,
α-tocopherol, etc. can be used for active targeting of nanoparticles to the mitochondrial
membranes. However, the limitations such as immunogenicity, high production costs,
complexities during synthesis, off-target toxicity, prolonged blood circulation period, and
delay in clearance from the biological system must be taken into account when designing
the proper nanoparticle for active targeting. Passive targeting depends on the physiological
and chemical microenvironment of the mitochondria. pH, surface charge, the potential
difference between both membranes, surface functionalization, etc. are factors affecting the
passive targeting of nanoparticles to mitochondria. This offers an advantage compared to
active targeting as the flexibility of nanoparticles allows the manipulation of their physical
properties according to the requirements. However, the disadvantage is the possibility of
the formation of nanoparticle aggregates resulting in rapid clearance from the host system.

4. Metal Nanoparticles and Their Roles in Mitophagy

In contrast with bulk autophagy, selective autophagy (like mitophagy) identifies
specific organelles for degradation depending on cargo-specific receptor proteins. These
receptor proteins act as chaperons for translocators to induce the effect and nanoparticles
are found to be good candidates for inducing mitophagy due to their physiochemical and
biochemical aspects [34]. Even though toxicity is a limiting factor in the extensive use of
nanoparticles in medicine, there is research describing nanoparticle-induced toxicity being
redirected for inducing apoptosis, oxidative stress, autophagy and even mitophagy [45].
Most of these nanoparticles can effortlessly cross biological barriers and therefore can
promote mitophagy. It is essentially due to the physiochemical and biological advantages
of nanoparticles that they are capable of crossing biological barriers. Nanoparticles are
known to have enhanced permeability and retention effect (EPR) that help them to easily
accumulate in the permeable vasculature. The EPR effect along with the ability of nanopar-
ticles to reach specific locations to release drugs in a controlled mode can enhance their
therapeutic index.

Pink/Parkin and BNIP3 are the two major pathways involved in mitophagy. Several
nanoparticles such as gold, iron, silver, zinc, etc., and their oxides can be found to induce
mitophagy in cancer cells through various mechanisms involving these pathways (Figure 3).
Some of the nanoparticles or their oxide forms are capable of inducing mitophagy by
disturbing the membrane potential of the mitochondria, or increasing the ROS content
in the cell, or influencing the signaling pathway [46]. They are even capable of acting as
tracking molecules that can trace the routes of various components of mitophagy.

4.1. Gold-Based Nanoparticles

Gold nanoparticles (GNPs/Au NPs) are one of the most studied nanoparticles in cancer
research. GNPs can be used to sensitize the tumor cells so that mitochondrial function can
be altered accordingly. Human breast cancer cell lines (MDA-MB-231) incubated with GNPs
were irradiated with 225 kVp X-rays and were found to influence mitochondrial function
resulting in decreased cell survival. The GNPs induced oxidation in the mitochondrial
membrane, and mitochondrial polarization was observed [47]. Fluorescently labeled Au
NPs (Cy5@ Au NPs) were found to have a high tolerance to lysosomal proteins whereby
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they could tolerate photobleaching and thus can be used for tracking lysosomes to image
mitophagy [48]. Induction of mitophagy, concomitant with apoptosis, was observed in THP-1
cells exposed to gold nanoparticles. These functionalized nanoparticles affected oxidative
phosphorylation and protein ubiquitination also. In another study, it was observed that the
gold nanoparticle-peptide conjugate can induce mitophagy with a change in the mitochondrial
membrane potential. This type of association with nanoparticles and peptides was found to
assist cell metabolism as well, even as intracellular trafficking was activated [43]. Autophagic
mitochondrial fission was observed in NSCLC cell line treated with Au NP. The Au NP was
found to cause excessive mitochondrial fragmentation in the cells under study. This was
accompanied by a drastic increase in the recruitment of dynamin-related protein 1 (Drp1),
mitochondrial dysfunctions, and enhanced induction of autophagy [42].
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mTOR—mammalian target of rapamycin, ULK1—Unc-51–like kinase 1, ATG14—autophagy-related 14.

4.2. Iron-Based Nanoparticles

Iron nanoparticles (Fe NPs), especially superparamagnetic iron oxide nanoparticles
(SPIONs), are found to induce mitophagy in cancer cells. Iron oxide nanoparticles were
traditionally made use of in magnetic resonance imaging where they act as contrast agents.
SPIONs were found to recruit PARKIN from the cytoplasm to mitochondria, mediated by
the protein PINK-1 located on the outer mitochondrial membrane [45]. The ubiquitination
of PARKIN makes them susceptible to degradation by lysosomes and thus, mitophagy is
induced in the cells under study. The increased involvement of mitochondrial proteins LC3-
II and p62 in cells treated with iron oxide nanoparticle are further proof of the execution
of mitophagy. Furthermore, iron oxide nanoparticles exhibit enzyme mimicking proper-
ties [49] that could be translated to antitumor properties. The inherent enzyme-like activity
of iron oxide nanoparticles could initiate mitophagy and protect the cell from oxidative
damage mediated by ROS molecules [50]. The ultra-small size of the iron nanoparticles
is favorable for their easy transport to mitochondria where they can induce mitophagy
after compromising the integrity of the mitochondrial membrane [51]. Cellular internal-
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ization was maximized when spindle-shaped iron oxide nanoparticles were used as nano
transducers in mitochondria [52].

4.3. Silver-Based Nanoparticles

Silver nanoparticles (Ag NPs) are known to cause damage to DNA mediated by oxida-
tive stress and mitochondrial dysfunction leading to cell death [53]. Silver ions can attach to
protein receptors on the cell surface and bring about the denaturation of proteins resulting
in pores in the cell membrane. This can lead to the disparity of membrane potential in
mitochondria. In the A549 cell line, excessive ROS production and oxidative imbalance
due to Ag NPs were found to induce autophagy. This led to mitophagy mediated by
PINK1/Parkin pathway as evidenced by upregulation of LC3 II/I, p62 expressions. Mito-
chondrial membrane potential was reduced accompanied by the upregulation of caspases 3
and 9, cytochrome c and BAX/BCl2. Human hepatocellular carcinoma (HepG2) cells, when
treated with Ag NPs, were found to stimulate mitochondrial fission and oxidative stress.
There was a crosstalk between dynamin-related protein 1 (Drp1)-dependent fission and
oxidative stress that triggered the Ag NP-mediated mitophagy [41,54]. Ag NPs can also
decrease the membrane potential of mitochondria to stimulate mitophagy and apoptosis as
observed in glioma cells [55]. As potent ROS inducers, Ag NPs contribute to autophagic
flux through redox signaling that involves hypoxia-inducing factors such as HIF-α, thus
triggering mitophagy. The combined effect of ionizing radiation and Ag NP on a panel of
lung cancer cell lines revealed a dose- and time-dependent increase in protein oxidation re-
leasing mitochondrial ROS. The exposure was found to result in decreased cell proliferation
and caused cell cycle arrest in the cells under study [56]. (3-(2,4-dioxocyclohexyl)propyl-
Net2-Coumarin (DCP-Net2C)) is a probe developed to analyze the sulfenylated proteins
in mitochondria that are affected by treatment with Ag NPs [57]. Rather than acting on
the mitochondrial membrane permeability transition pore proteins, the silver nanocrystals
coated with bovine serum albumin are found to interact with the phospholipid bilayer to
induce mitochondrial membrane permeability transition (MPT) resulting in rupture of the
mitochondrial membrane [58].

4.4. Zinc-Based Nanoparticles

The treatment of human tongue cancer cells (CAL 27 cell line) with zinc oxide nanopar-
ticles (ZnO NPs) resulted in an increase in the non-functional swelling of mitochondria
implying cellular damage to mitochondria resulting in mitophagy and cell death. Further to
this, an increase in the intracellular levels of reactive oxygen species along with a decrease
in mitochondrial potential was also found in the cells treated with ZnO NPs [37]. The
transport of Parkin from the cytosol to the mitochondrial membrane of the treated cells im-
plies the execution of mitophagy by ZnO NPs [59]. The upregulation of hypoxia-inducible
factor-1α (HIF-1α) endorsed by the inhibition of prolyl hydrolase and ROS was explained
as due to mitophagy induced by ZnO NPs [60]. The synergistic effect of ROS and Zn ions
was specially assessed in the upregulation of HIF-1α. The treatment of osteosarcoma cells
with ZnO NPs also was found to result in mitophagy. As a result of mitophagy, the cell
adhesion protein β-catenin was degraded, and tumor metastasis was impaired in the cells
under study [61].

5. Contradiction Where Nanoparticle Treatment Inhibits Mitophagy Instead of
Promoting Mitophagy

An interesting research reported a contradictory result where ZnO NP treatment
caused aberrant expression of LAMP-2 that resulted in impaired autophagic flux and
sequential dysfunctional mitophagy [62]. This resulted in the accumulation of damaged
mitochondria and accumulated ROS that was in total disagreement with previous research
where ZnO NP induced mitophagy. Furthermore, the intracellular ROS levels were found
to be efficient in chemodynamic therapy where the iron-based nanocatalyst effectively
inhibited the PINK1/Parkin-mediated mitophagy in endometrial cells [50].
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Probable Mechanism of Action of Nanoparticles That Is the Basis for the Contradictory Action

Instead of promoting mitophagy, nanoparticles are found to inhibit mitophagy in
some cases. The contradictory action may be because of the variation in biological and
physicochemical properties exhibited by the nanoparticles. Though there are limitations
to the toxicological assessment of nanoparticles (for example, the inability to quantify the
correct dose to get an optimum, quantifiable in vivo effect), the in vitro tests have helped
to successfully evaluate the interaction of the nanoparticle with the cellular environment
and come up with plausible explanations for the contradictory effect. ROS generation is
one of the major reasons for mitophagy induction where membrane potential is affected.
Nanoparticles can inhibit intracellular ROS generation thus leading to the inhibition of
mitophagy. Platinum nanoparticles retained mitochondrial membrane potential thus
inhibiting intracellular ROS in the human brain glioblastoma cancer cell line [63].

6. Pathways Involved in Nanoparticle-Mediated Mitophagy

Mitophagy being an evolutionarily conserved mechanism, the metabolic processes and
the cell’s defense mechanisms make sure to accurately execute the process of mitophagy
to eliminate the damaged mitochondria at the earliest through an interplay of different
signaling pathways. It is therefore imperative to understand the components of the pathway
that are involved in the process of mitophagy mediated by nanoparticles. The metal
nanoparticles are known to have an intrinsic selectivity in activating the pathways leading
to mitophagy in cancer, especially as compared to their normal counterparts [64]. Multiple
pathways drives mitophagy mediated by nanoparticles, and they may be dependent on
regulatory, and signaling pathways, with regular crosstalk between them [29] (Figure 4).

6.1. PINK1/Parkin Pathway

One of the most significant pathways of mitophagy is the PINK1/Parkin pathway
which is based on ubiquitin which proceeds to degrade the damaged mitochondria. PINK1
is the first protein to respond to the damage in mitochondria as it can easily sense mito-
chondrial transmembrane potential loss [65]. PINK1 belongs to the serine/threonine kinase
family that is activated under mitochondrial damage. PINK1 is generally very stable in a
normal state as they are cleaved by matrix processing peptidase (MPP), and Presenilins-
associated rhomboid-like protein (PARL). The accumulation of cleaved PINK1 is prevented
by translocating them back to the cytosol to be degraded by proteasomal enzymes [66,67].
However, the cleavage of PINK1 and its further translocation back to the cytosol is impaired
upon depolarization due to the loss of transmembrane potential in damaged mitochondria.
There is an upsurge in PINK1 followed by the phosphorylation of ubiquitin molecules at
serine 65 on the outer mitochondrial membrane. PINK1 along with the phosphorylated
ubiquitin then recruits Parkin from the cytosol to the outer mitochondrial membrane where
it conjugates with the phosphorylated ubiquitin. Parkin is a cytosolic E3 ubiquitin ligase
that promotes the degradation of the ubiquitinated protein. With the help of LC3-II, the
ubiquitinated proteins on the outer mitochondrial membrane lead the damaged mitochon-
dria towards the lysosome for destruction by proteasomal enzymes [68]. Other proteins
such as NDP52 and optineurin are also involved in the stimulation of mitophagy but they
are found to act independent of Parkin [69].

Advanced studies show that when hepatic cells were treated with SPIONs, the im-
munofluorescent signals given out by PINK1 were increased along with high proportions
of mitochondrial LC3-II and p62 [46]. This is indicative of the role of SPIONs in PINK1/Parkin-
dependent ubiquitin-mediated mitophagy. Further, biogenically synthesized selenium nanopar-
ticles (Se NPs) tested on IPEC-J2 cells were found to abate the fusion of mitochondria and
lysosome, reduce the overproduction of ROS and decrease the mitochondrial membrane po-
tential (MMP). The PINK1 and Parkin expression in the cells were found to be down-regulated
confirming mitophagy induction by Se NPs [70] and Au NPs [71].
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Figure 4. Crosstalk between different signaling pathways in nanoparticle-induced mitophagy. The
involvement of nanoparticles in the induction of mitophagy is regulated mainly by PINK1/Parkin
pathway with the involvement of additional pathways such as PI3/Akt/mTOR, ERK/MAPK and
HIF-1α. (PI3K—phosphatidylinositol 3-kinase, Akt—protein kinase B, mTOR—mammalian target
of rapamycin, ERK—extracellular signal-regulated kinase, MAPK—mitogen-activated protein kinase,
HIF-1α—hypoxia-inducible factor-1alpha, LC3—microtubule-associated protein 1A/1B-light chain 3).

6.2. P13K/Akt/mTOR Pathway

PI3K/Akt/mTOR is another major signaling pathway involved in mitophagy. Phos-
phatidylinositol 3-kinases (PI3Ks) are a group of enzyme transducers involved in a variety
of cellular activities including the growth and proliferation of cancer cells. Akt (Protein
kinase B) is a serine/threonine kinase involved in supervising the movement of parkin
to the damaged mitochondria [72]. The mammalian target of rapamycin (mTOR) is an-
other highly conserved serine/threonine protein kinase that is phosphorylated at Serine
473. While mTOR is important for the formation of autophagosomes, its inactivation is
essential for autophagy because hyperactivity of mTOR is found to repress PINK1 expres-
sion and this, in turn, will decrease the translocation of Parkin to mitochondria [73]. The
proliferation of A549 cell lines was found to be affected by blocking the PI3K/Akt/mTOR
pathway heralded by autophagy [74] as this pathway is classified as a negative regulator
of autophagosome formation [38]. The decreased levels of mitophagy markers were ob-
served accompanied by the inhibition of the PI3K/Akt/mTOR pathway in the cultured
glioblastoma multiforme (GBM) cells treated with solid lipid curcumin particles (SLCP).
Low expression levels of mitophagy markers were found after treatment confirming the
signaling pathway inhibition. MCF-7 breast cancer cell line treated with gold nanocomplex
was found to have differential expression patterns of the genes belonging to the PI3K/Akt
pathway [75]. Forkhead Box O1 (FOXO1), the transcriptional factor that is a downstream
target of the Akt signaling pathway, was found to be activated by the treatment with
nanocomplex. Additional data suggests the suppression of TSC2, a potent inhibitor of
mTOR. The study concluded that the crosstalk between PI3K/Akt/mTOR pathways was
essential to mediate the various mechanisms involved in the multiple pathways to induce
the inhibitory effect on the cancer cell lines under study. mTOR also acts as a mediator in
the crosstalk between PI3K/Akt and AMPK pathways and in PC-3 prostate cancer cells,
Ag NPs were found to activate autophagy through the AMPK-mTOR pathway [14].
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6.3. MAPK/ERK Pathway

MAPK/ERK pathway is a prominent signaling pathway involving mitophagy. Mitogen-
activated protein kinase (MAPK) belongs to the line of ubiquitous proline-directed, protein-
serine/threonine kinases. They are actively involved in the three-tiered protein kinase
cascade controlling some of the major cellular activities leading to the functional and
developmental organization of cells in an organism [76]. The extracellular signal-regulated
kinase 1/2 (ERK 1/2), c-Jun N-terminal kinase (JNK) and p38 are the major responders
to this pathway. While JNK and p38 MAPK pathways are related to stress-mediated
apoptosis in cells, the MAPK/ERK pathway is fundamental in the signal transduction
network [77]. The anti-apoptotic effect of the signaling pathway has a major role in cancer
cell proliferation. Additionally, the MAPK/ERK pathway is found activated in mitophagy
in response to oxidative stress [78]. Reports confirm that the activity-based localization of
ERK2 to mitochondria is sufficient to induce mitophagy. The constitutive overexpression of
active ERK2 further increased fusion proteins such as GLP LC3, a mitochondrial marker
for autophagic vesicles, on the mitochondrial membrane emphasizing the overall role of
this signaling pathway in mitophagy. The changes in MAPK/ERK pathway are highly
dysregulated in malignant tumors.

Sonodynamic therapy based on nano-sensitized liposomes showed a visible increase
in MAPK/p38 phosphorylation regulated by ROS formation. An increase in phosphoryla-
tion suggested aggravated oxidative stress, and reduced mitophagic vacuolization with
impaired Parkin translocation [79]. Absorption of iron oxide nanoparticles led to the failure
of respiration and mitophagy of the cells. Gold nanoparticles, on the other hand, were
found to induce autophagic flux resulting in impaired lysosomal function.

6.4. Hypoxia-Inducible Factor-1α (HIF-1α) Pathway

There is a high demand for oxygen and nutrients in cancer cells; the failure of balancing
the demands will lead to a hypoxic microenvironment in the tumor cells. Tumor cells
counter this abnormality by modifying the expression pattern of transcriptional factors
that respond to hypoxia. HIF-1 is the major component of the transcriptionally regulated
pathway where under normal conditions, the prolines of the HIF-1α subunit become
activated and interact with The von Hippel-Lindau (VHL) protein and are degraded.
Under conditions of hypoxia, the hydroxylases of proline remain inactive and fail to form
the complex with VHL. The unhydroxylated 1α subunit moves freely to the nucleus to
associate with the β subunit (HIF-1β) and CBP/p300. This complex then combines with
the hypoxia response elements (HRE). The association of the HIF-1β/CBP/p300 complex
with HRE elicits more transcriptional activities resulting in the transcription of more genes
downstream of the pathway. More than 60 such genes are known to be transcribed during
the process. Many cellular metabolic activities are affected by the regulation of these
processes [80]. Nanoparticles are known to be hypoxia-responsive once they extravasate
into the tumor microenvironment. This quality promotes the efficiency of nanoparticles
in tumor therapy [81]. Iron oxide nanoparticle-doxorubicin complexed with hypoxic cell
radiosensitizer SAN (sanazole) induced downregulation of HIF-1α [82]. The associated
genes, vascular endothelial growth factor (VEGF), and Akt are also downregulated. On the
other hand, the treatment of A549 cells with Ag NPs showed an increase in the expression
of HIF-1α where exposure of the cells to hypoxia blocked oxidative stress induced by the
nanoparticles. It was noted that the autophagic flux was restricted through the regulation
of LC3-II and p62 [83].

6.5. Oxidative Stress-Related Pathways

It is well known that levels of ROS can decide the fate of cells; high ROS can lead
the cells to apoptotic cell death whereas a low concentration of ROS in cells can lead
to mitochondrial dysfunction. This can be a trigger for mitophagy where the damaged
mitochondria are removed for cell survival and maintenance of cell homeostasis [84]. The
treatment of cells with copper oxide (CuO) NPs aggravates the build-up of excessive ROS in
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the form of superoxide anions that may result in impaired mitophagic flux. Dysfunctional
mitochondria are believed to be the source of ROS accumulation here. Ag NPs were capable
of regulating autophagy mediated by injury to mitochondria and lysosomes in A549 cells.
Excessive ROS production with an imbalance between the oxidant/antioxidant systems
was evident in the cells under study [53].

7. Blind Spots in Research Involving Mitophagy, Nanoparticles, and Cancer

Much research and data are found on the cause and effect of mitophagy in research re-
lated to neurodegenerative diseases such as Parkinson’s disease. The mitophagic pathway
is extensively studied in these disease conditions. It is understandable as there is a direct
involvement of PINK1/Parkin in neurodegeneration. However, the fact that there is a
crosstalk between the proteins involved in the process of mitophagy in neurodegeneration,
inflammation, immunomodulation, and cancer seems to be overlooked. Different cancers
such as colon, liver and pancreatic cancers have a serious overlap between inflammation
and immunomodulation. Receptor-mediated mitophagy can reveal a lot about the mecha-
nism of action of nanoparticles that can help in developing the nanoparticles as an effective
strategy to combat various types of cancer. Further, new models such as 3D cell culture that
can mimic human physiology could be developed. The 3D models can emulate the in vivo
model in a much better way than the pretend in vitro environment. Experimentation with
the 3D models will largely enhance the possibilities for trying multiple target proteins to
be studied at the same time. In addition, 3D models will help to minimize research with
animal models thus avoiding ethical issues to a larger extent. There are many challenges in
studies involving nanoparticle-induced mitophagy, some of which are listed in Figure 5.
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Figure 5. Challenges in studies involving nanoparticle-induced mitophagy.

When the mitochondrial metabolism is targeted by the molecules, it can result in
the inhibition of the glycolysis/TCA cycle, redox signaling, or one-carbon metabolism
responsible for the production of ROS and antioxidants. Proteins such as SOD, NADH,
αTOS, etc. can also be targeted by these molecules resulting in the up- or down-regulation
of ROS and other antioxidant enzymes such as GPX (Figure 6).
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Figure 6. Possible targets to induce mitophagy in cancer. In addition to mitochondrial proteins,
the function and metabolism of the mitochondria may be targeted with the metal nanoparticles
resulting in mitophagy. The increase in the expression of the reaction product is indicated by
the up arrow and the decrease is indicated by the down arrow. SOD—superoxide dismutase,
NADH—nicotinamide adenine dinucleotide, αTOS—alpha-tocopherol succinate, SDH—succinate
dehydrogenase, ROS—reactive oxygen species, mPTP—mitochondrial permeability transition pore,
ANT—adenine nucleotide translocase, TCA—tricarboxylic acid, NAPDH—nicotinamide adenine
dinucleotide phosphate, GPX—glutathione peroxidase, TrxR—thioredoxin reductase.

8. Recent Developments in Nanoparticle-Mediated Mitophagy

Through the advancement of the nanobiotechnology, scientists can fabricate new,
sophisticated biomaterials that incorporate multiple functions and activities, and can offer a
versatile platform for the newly fabricated materials [85]. Enzyme-instructed self-assembly
(EISA) and aggregation-induced emission (AIE) are two advanced models employed in
cancer therapy.

8.1. Enzyme-Instructed Self-Assembly or EISA

EISA is a process where the self-assembly of cellular components such as protein is
mediated by enzymatic processes. Molecular assemblies can be manipulated and modified
to stimulate various enzymatic reactions leading to the self-assembly of peptides to form
nanostructures. EISA substrates can form supramolecular assemblies that can selectively
target cancer cells because of their high penetrating power. They can accumulate in the
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mitochondrial matrix and induce mitochondrial dysfunction leading to the initiation of
mitophagy [86]. Nanofibers, formed by EISA, can be transported to mitochondria where
they induce mitochondrial dysfunction even at a relatively lesser concentration. This could
lead to cell death activated through multiple signaling pathways [87]. Self-assembled nano
peptides could be directed towards PD-L1 (programmed cell death ligand 1) on the cell
surface to selectively degrade and thus manipulate their levels so as to avoid immune
escape. This high efficiency of nano peptides to bind to immune cells and manipulate them
was probably due to the multivalent binding sites found on the surface of the self-assembled
nano peptides [88]. Mitochondria-targeted EISA can serve as an alternate strategy to target
cancer cells through the production of highly selective, multitargeted nano peptides with
minimal drug resistance [89].

8.2. Aggregation-Induced Emission (AIE)

Certain fluorescent molecules can emit higher fluorescence upon entering a crystalline
state. Organic compounds with luminescent properties show higher efficiency when
aggregated as compared to the solution. This phenomenon called aggregation-induced
emission is found to be very high in metal nanoclusters and helps them to locate proteins.
Aggregation-induced emission probes are developed that are sensitive to viscosity and
regardless of the intensity of the mitochondrial membrane potential, this probe can be
discreetly directed to the mitochondria. This is a unique but accurate way of detecting
mitophagy [90]. The real-time monitoring of mitochondrial viscosity proved to be better
as it is closely associated with the mitochondrial respiratory state reflecting the state
of physical wellness or disease of the mitochondria. A near-infrared fluorophore with
lipocationic property was developed to selectively accumulate in the mitochondria of cancer
cells [91]. This competent multimodal theranostic agent could evaluate mitophagy activities
through theranostic approaches. These nanoaggregates could induce mitophagy and block
mitophagic flux to accelerate apoptosis in cancer. They were found to be highly beneficial
in tracing mitophagy in apoptotic cells in PDT [92,93]. Combining the optoelectronic
and sensory properties of these aggregates, they have wide applications in imaging and
theranostics. The strong, dynamic intermolecular interactions, polarity, and the power of
emitting light confer many more possible roles to the AIE system for cancer therapy.

9. Mechanistic Role of Anti-Tumor Nanoparticles in Inducing Mitophagy

Autophagy is a survival mechanism adopted by cells. In cancer cells, it can be activated
to mediate resistance to chemotherapeutic agents. This spontaneous resistance can interfere
with the efficacy of the therapeutic agent. However, there are very less interventions to
mechanistically regulate autophagy. This is because the drugs that can inhibit or activate
autophagy (such as rapamycin and hydroxychloroquine) have not been developed properly
for this function [39]. It was also observed that the intrinsic pharmacological specificity of
these drugs is very low to explicitly target the components of autophagy. This problem
related to specificity arises from the structural complexity of tissues, the wide range of
homologous and heterologous interactions that they are subjected to, and due to their
failure to specifically target a single cell type. However, these challenges may be overcome
by the nanoparticles, at which nanoparticles can explicitly target the decisive molecule in
the pathway. Additionally, enhanced efficacy, stability, solubility, and adaptability make
them pharmacologically effective in acting as anti-tumor agents.

Increased expression of Beclin-1, XBP1, CHOP, and LC3II in cancer cells suggested
the Ag NPs-induced mitophagy in cancer cells. The downregulation of ATG3 and ATG12
was also observed in Ag NP-treated cells [94]. The drug-resistant gene, NPRL2, showed in-
creased expression in cancer cells and upon upregulation, it repressed the mTOR signaling
pathway to activate the process of autophagy and suppressed apoptosis. Table 3 explains
the role of some of these proteins in the induction of mitophagy. The ROS-scavenging prop-
erties of nanoparticles such as iron oxide (Fe3O4) [95], ZnO, and silica (Si) [96] nanoparticles
can disrupt the antioxidant mechanism of the cell resulting in oxidative imbalance, finally
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inducing stress-related mitophagy [96–98]. The exposure to graphene oxide (GO) leads to
the disruption of autophagic flux and weakening of lysosomal function resulting in the
accumulation of the substrate for autophagy such as the autophagosome cargo protein p62
also called sequestosome-1 (p62/SQSTM) [99]. This can lead to mitochondria-mediated
apoptosis in the cancer cells. Fe3O4 NPs are also found to induce excessive autophagy
leading to endothelial dysfunction and inflammation that is assumed to be associated with
the Beclin-1/VPS34 complex [100].

Table 3. Some of the main proteins involved in mitophagy other than PINK1 and Parkin.

Protein Role in Mitophagy References

Beclin-1 Tumor suppressor protein actively involved
in autophagy [53]

X-Box Binding Protein 1 (XBP1)
Protein released upon oxidative stress that can

induce autophagy in cancer cells via JNK activation
and eIF2α phosphorylation

[101]

C/EBP homologous protein (CHOP) Transcription factor required for the initiation
of autophagy [102]

Microtubule-associated protein 1A/1B-light chain
3 (LC3)

Conjugates with phosphatidylethanolamine to form
LC3-phosphatidylethanolamine conjugate (LC3-II).
It is recruited to the autophagosome membrane to

assist degradation by lysosomes

[103]

Autophagy-related 3 (ATG3), Autophagy-related
12 (ATG12) Proteins that are necessary to induce autophagy [104]

Nitrogen permease regulator-like 2 (NPRL2) Repress the mTOR signaling pathway to activate the
process of autophagy and suppress apoptosis [105]

BCL2 and adenovirus E1B19-kDa-interacting
protein3 (BNIP3)

Mediate elimination of mitochondria by initiating
LC3-dependent mitophagy, promote mitophagy by

suppressing PINK1 cleavage
[106]

FUN14domain-containing protein1 (FUNDC1)
Essential role in mitochondrial quality control by

mediating mitochondrial clearance by transducing
hypoxia signals

[107]

Presenilin-associated rhomboid-like protein (PARL) Regulator of PINK1 and Parkin [108]

10. Conclusions

Beyond protein and metal ion corona that can act as probable targets, high-throughput
data can be generated to study the behavior of the nanoparticle when exposed to different
biological conditions. This will give clarity to the dose-time effect in relation to nanoparticle
toxicity. The integration of automated platforms (such as high-throughput screening) and
‘-omics’ technologies could be an effective strategy to fill the existing knowledge gap in
nanoparticle-induced mitophagy in cancer. It is expected that the technical advancements
in the field of nanotechnology will inspire the scientific community to integrate these
techniques (such as EISA) and develop a multi-disciplinary approach to cancer therapy.
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