
Citation: Min, Q.; Tan, R.; Zhang, Y.;

Wang, C.; Wan, Y.; Li, J. Multi-

Crosslinked Strong and Elastic

Bioglass/Chitosan-Cysteine

Hydrogels with Controlled Quercetin

Delivery for Bone Tissue Engineering.

Pharmaceutics 2022, 14, 2048. https://

doi.org/10.3390/pharmaceutics

14102048

Academic Editor: Thierry

Vandamme

Received: 23 August 2022

Accepted: 19 September 2022

Published: 26 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Multi-Crosslinked Strong and Elastic Bioglass/Chitosan-
Cysteine Hydrogels with Controlled Quercetin Delivery for
Bone Tissue Engineering
Qing Min 1,†, Ronghua Tan 2,†, Yuchen Zhang 1, Congcong Wang 2, Ying Wan 2,* and Jing Li 3,*

1 School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
2 College of Life Science and Technology, Huazhong University of Science and Technology,

Wuhan 430074, China
3 School of Medicine, Huzhou University, Huzhou 313000, China
* Correspondence: ying_wan@hust.edu.cn (Y.W.); 02966@zjhu.edu.cn (J.L.)
† These authors contributed equally to this work.

Abstract: Chitosan-cysteine (CH-CY) conjugate with an optimal content of thiol groups was synthe-
sized and combined with amino-functionalized mesoporous bioglass (ABG) nanoparticles (NPs) with
radially-porous architecture to build multi-crosslinked ABG/CH-CY composite hydrogels. Besides
the network formed by self-crosslinking of thiol groups in CY-derived side chains, difunctionalized
PEG (DF-P) crosslinkers with varying lengths of PEG segments were used to crosslink amino groups
on CH-CY or ABG NPs to form other networks in the composite gels. Quercetin (Que) was loaded
into ABG NPs before these NPs were incorporated into the hydrogel, intending to achieve sustainable
and controllable Que release from so-built ABG/CH-CY gels. The lengths of PEG segments in
DF-P were found to impose remarkable impacts on the strength or elasticity of multi-crosslinked
ABG/CH-CY hydrogels. Some ABG/CH-CY hydrogels had their elastic modulus of around 8.2 kPa
or higher along with yielding strains higher than 70%, specifying their mechanically strong and
elastic characteristics. In addition, these gels showed the ability to release Que and Si or Ca ions
in controllable ways for various durations. The optimally achieved ABG/CH-CY hydrogels were
injectable and also able to support the growth of seeded MC3T3-E1 cells as well as the specific matrix
deposition. The obtained results suggest that these ABG/CH-CY gels have promising potential for
bone repair and regeneration.

Keywords: multi-crosslinked hydrogel; chitosan-cysteine conjugate; amino-functionalized bioglass
nanoparticles; quercetin; strength and elasticity; controllable and sustainable release

1. Introduction

Injuries to bone tissues often occur in a variety of situations, primarily including bone
fractures, trauma, infections, tumor excision, congenital malformations, or skeletal diseases;
severe bone damage can lead to lifelong disability in many patients [1]. Bone autografting is
generally acknowledged as an ideal approach for bone repair but it is hindered on account
of the limited donor availability and possible donor-site morbidity [2]. As for allografting,
despite its availability, allografting may expose patients to several potential risks such as
immunogenicity, disease transmission, and a high incidence of non-union healing [3,4].

In search of alternative therapies for bone injuries, biomaterial-based tissue engineer-
ing technology has emerged as a promising option for clinical bone repair and regen-
eration [5,6]. Among various forms of biomaterials, injectable polymer hydrogels with
biocompatibility and biodegradability have attracted a lot of interest in bone tissue engi-
neering because they can fill irregular bone defects with discretional shapes and form into
self-supporting objects in situ during tunable periods via a minimally invasive injection
procedure [7,8]. Besides these, they behave similar to liquids before injection and can
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in situ transform into solid-like fillers with interconnected porous structure, high water
retention, and good permeability after injection, making them particularly conducive to
delivering cells, drugs, and bioactive molecules as well as easy transport of nutrients and
metabolites [7–9]. Nowadays, various kinds of natural polymers, commonly including
collagen, gelatin, silk fibroin, chitosan (CH), dextran, alginate, and hyaluronic acid, have
been extensively investigated for hydrogel applications as they are gelable while showing
adequate biocompatibility and easy biodegradation [8,10,11], and meanwhile, these natural
polymer-based hydrogels are found to have much better biological performance in many
cases than those synthetically sourced polymer hydrogels [10,11].

Of mentioned natural polymers, CH has been intensively investigated as an injectable
scaffold material for a wide range of biomedical applications due to its well-demonstrated
advantages, such as non-toxicity, non-antigenicity, anti-microbial nature, bio-adherence,
and cell affinity [12,13]. In particular, CH molecules have their chemical structure closely
similar to glycosaminoglycans (GAGs), a kind of tissue component existing in many types
of extracellular matrix (ECM). Due to these distinctive biological properties of CH, extensive
research has gone into the development of CH-based hydrogels so far [13,14], and many
of them have already been utilized for the repair and regeneration of injured skin, nerve,
cartilage, and bone [11–15]. Despite the wide-ranging usability, the hydrogels based on
innate CH often show low strength, poor elasticity, and fast in vivo degradation, which
limits their application in repairing certain tissue injuries where the establishment of a
sufficiently strong and elastic microenvironment for housing the seeded or migrated cells
is specifically required.

Many studies have revealed that multi-component hydrogels with dual or multi-
network structures could be substantially enhanced in their mechanical performance and
degradation tolerance through chain entanglement, intermolecular interactions, and mutual
network restriction provided that the right components for the gel construction are selected
while employing suitable physical or chemical crosslinking techniques [16–18]. Hence, it
should be feasible to combine CH with other ingredients or utilize modified CH rather than
the innate CH to build certain strong and elastic CH-based hydrogels. Chitosan-cysteine
(CH-CY) conjugate is a kind of CH-derivatives and it contains both amino and thiol groups,
and therefore, CH-CY itself can be processed into dual network hydrogels by crosslinking
its amino or thiol groups [19–21]. Nevertheless, the gels built by crosslinking only a single
CH-CY component have mechanically weak attributes with high swelling [19,22].

For the hydrogel intended for use in bone repair, apart from endowing it with excellent
mechanical properties, compounding certain pro-osteogenic ingredients is one of the
practical strategies for promoting its bone repair ability. To date, bioglass (BG) nanoparticles
(NPs) have been commonly used together with hydrogels for bone repair because of their
several meritorious properties: (i) they can transform into hydroxyapatite-like substances
under the action of physiological fluids and firmly bond to the bone tissue at the defect [23];
(ii) their certain dissolution products have bioactivity in stimulating osteogenesis and
angiogenesis [23–26]; and (iii) they could mechanically enhance hydrogels as long as
they are effectively cross-linked with the polymer networks in the gels [23,27]. Bioactive
glasses are usually composed of calcium-containing silicates, but many other kinds of
bioactive glasses with different element doping have also been developed. Typical doping
elements include phosphate, silver, copper, zinc, magnesium, selenium, strontium, and
boron [28]. These various doped bioactive glasses are being explored for varieties of
biomedical applications [28–30].

Owing to the presence of amino and thiol groups in CH-CY, it can thus be envisaged
that thiol- or amino-functionalized BG NPs would be a suitable ingredient to combine with
CH-CY conjugate for building multi-crosslinked BG/CH-CY hydrogels with improved
mechanical properties and additional functions as well. By employment of mesoporous BG
NPs for constructing BG/CH-CY hydrogel, it becomes possible to use the resulting gels as a
vehicle for delivering drugs or bioactive molecules since mesoporous BG NPs can serve as a
reservoir for loading the required therapeutic agents. Quercetin (Que) is a kind of naturally
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sourced flavonoid compound and it shows a wide spectrum of biological activities [31,32],
including antioxidation, anti-inflammation, anti-hypertension, anti-carcinogenicity, im-
munomodulatory actions, and so on. Que has also been used for bone repair due to its
functions for promoting osteogenesis, anti-oxidation, anti-inflammation, and so on [33–38].

In this context, it would be rational to develop a new type of composite hydrogel
with strong and elastic nature while having the ability to sustainably deliver bioactive ions
and Que to the defect site for the intended use in bone repair. Accordingly, Que was first
loaded into amino-functionalized mesoporous BG (ABG) NPs, and the resulting ABG NPs
were then combined with CH-CY to construct multi-crosslinked composite hydrogels using
difunctionalized polyethylene glycol (dibenzaldehyde-terminated PEG, DF-P) with various
lengths of PEG segment as a crosslinker. In these composite hydrogels, the thiol groups in
CH-CY can be self-crosslinked to form a network, and the amino groups in CH-CY or ABG
NPs can be cross-linked by the terminal aldehyde groups in DF-P molecules to build more
networks inside the gels. Schematic illustrations for synthesizing BG and ABG NPs and the
composition of resulting composite gel as well as potential gel application in bone repair
are shown in Scheme 1. Some optimally constructed gels were found to have mechanically
strong and elastic characteristics while showing a well-defined ability to administer the
release of Si or Ca ions and Que. They were also able to support the growth of seeded
MC3T3-E1 cells and matrix deposition. The results suggest that these composite hydrogels
have the potential to function as an injectable material for bone tissue engineering.
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preparation of composite hydrogel, and the intended use in bone repair.

2. Materials and Methods
2.1. Materials

CH, Que, L-cysteine (CY), 3-(aminopropyl)triethoxysilane (APTES), tetraethyl orthosil-
icate (TEOS), N-hydroxysuccinimide (NHS), cetyltrimethylammonium bromide (CTAB),
and 1-ethyl-3-(3-dimethylaminopropyl carbodiimide) hydrochloride (EDC) were supplied
by Aladdin Inc. (Shanghai, China). The purchased CH was further treated in a 50 wt%
NaOH aqueous solution to increase its degree of deacetylation (DDA) using the method
described in our previous study [39], and the DDA and viscosity-average molecular weight
of the treated CH were measured to be around 94.8% and 4.9 × 105, respectively. DF-P
(benzaldehyde-PEG-benzaldehyde) crosslinkers with various lengths of PEG segment were
purchased from Ponsure Biotechnology, Ltd. (Shanghai, China), and they were referred
to as DF-P1000, DF-P3400, and DF-P5000, respectively, where the number following the
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DF-P indicates the Mn of PEG segments. Other chemicals were of analytical grade and
purchased from Sinopharm (Shanghai, China).

Mesoporous BG NPs were synthesized using methods similar to that described in our
previous study [27]. The amino-functionalization of BG NPs was conducted by reacting BG
NPs with APTS in dry toluene. In a typical process, BG NPs (30 mg) were suspended in
20 mL of dry toluene with ultrasonic treatment for 30 min, and 0.30 mL of APTS was then
added to this suspension with stirring at 80 ◦C for 6 h. Amino-functionalized BG (ABG)
NPs were retrieved by centrifugation, washed with dry toluene and methanol, air-dried
for 24 h, and dried again at 45 ◦C under reduced pressure for 24 h. The content of amino
groups in ABG NPs was determined with a ninhydrin assay [40].

Two kinds of Que solutions (100 or 200 mg/mL) in anhydrous ethanol were first
produced and they were then used for the preparation of Que-loaded NPs. In brief, 2 mL
of either Que solution was introduced into an EP tube that contains a prescribed amount
of ABG NPs, and the mixture was sonicated for 10 min to facilitate dispersion of NPs.
Afterward, the tube was shaken on an orbital table for 24 h at 37 ◦C and 60 rpm under
light-shielding conditions. The Que-loaded ABG NPs were retrieved by centrifugation at
8000 rpm for 10 min, washed with 30% ethanol and PBS, freeze-dried, and dried again in an
oven at 60 ◦C under reduced pressure for 24 h. By changing the mass ratio of Que to ABG
NPs, four kinds of Que-loaded ABG NPs were prepared, and they were entitled ABG-Q1,
ABG-Q2, ABG-Q3, and ABG-Q4, respectively. The amount of Que loaded was determined
by measuring the difference of Que concentrations in the loading medium before and after
soaking ABG NPs by using spectrophotometric measurement [34,41]. Drug load (DL) was
calculated using the following formula:

DL = [M0/M] × 100% (1)

where M0 is the mass of Que loaded inside NPs, and M denotes the mass of NPs.

2.2. Synthesis of Chitosan-Cysteine Conjugate

CH-CY conjugates were synthesized by grafting CY onto the C-2 sites of the CH backbone.
Typically, 0.726 g CY (-COOH: ca. 6.0 mmol) was dissolved in N,N-dimethylformamide
(10 mL), followed by the addition of 2.3 g of EDC (ca. 12.0 mmol) and 1.381 g of NHS (ca.
12.0 mmol). The resulting solution was activated for 6 h at room temperature and then
introduced into a CH solution (514 mg of CH in 40 mL 0.1 M HCl; -NH2: ca. 3.0 mmol) with
stirring. The pH value of the reaction system was adjusted to around 5 using a 1.0 M NaOH
solution. After reaction for 24 h at room temperature, the synthesized CH-CY conjugate
was dialyzed against 5 mM HCl solution for 12 h, and then against 5 mM HCl solution
containing 1% NaCl for an additional 12 h. It was further dialyzed against 1 mM HCl
solution for 12 h, followed by freeze-drying. The reactions and dialysis were conducted in
the dark and the dialysis temperature was maintained at 4 ◦C. Different CH-CY conjugates
with varied substitution degrees of thiol groups were synthesized by changing the molar
ratio of carboxyl groups in CY to amino groups in CH. The content of thiol groups in
CH-CY conjugates was measured by Ellman’s method [42], and the substitution degree of
thiol groups in CH-CY conjugates was determined by comparing the peak area between
methylene protons on -CH2SH and C-2 protons of glucosamine units in CH.

2.3. Characterization

Fourier transform infrared (FTIR) spectra of samples were detected using a spectrome-
ter (Vertex70, Bruker, Ettlingen, Germany) in the transmission mode. CH-CY conjugates
were dissolved in D2O to reach a concentration of 10 mg/mL and their 1H NMR spectra
were recorded on an NMR spectrometer (Avance600, Bruker, Rheinstetten, Germany). A
transmission electron microscope (TEM, Tecnai, FEI, Hillsboro, OR, USA) was employed
to observe the morphology, size, and dispersion of NPs. A dynamic light scattering (DLS)
instrument (Nano-ZS90, Malvern, Worcestershire, UK) was used to detect the hydrody-
namic size and zeta (ζ) potential of NPs. For the measurements of isotherms and pore-size
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distributions, NPs were first dried in a vacuum oven at 100 ◦C for 12 h before loading
into the sample chamber of the surface area and pore size analyzer (ASAP2020 Plus, Mi-
cromeritics, Norcross, GA, USA). After being degassed at 120 ◦C for 6 h, the volume of
nitrogen adsorption-desorption was measured at different pressures. The specific surface
areas of NPs were determined using the BET method, and the corresponding pore size was
calculated with the BJH method.

2.4. Preparation of Hydrogels

CH-CY hydrogels without incorporation of NPs were prepared as follows. Briefly,
the selected CH-CY was dissolved in deionized water to prepare CH-CY solutions with
various concentrations. Aliquots (1 mL) of CH-CY solutions were introduced into glass
vials placed in an ice/water bath and each solution was mixed with a given amount of
DF-P1000 to prepare a series of mixtures. The pH values of the mixtures were adjusted
to about 7 using a 5% NaHCO3 solution with stirring for 5 min, and the vials were then
moved to an incubator for gelling the mixtures at 37 ◦C.

In the case of ABG/CH-CY composite hydrogel preparation, Que-loaded ABG NPs
were added to a CH-CY solution (2.5 w/v%), followed by the addition of DF-P with various
lengths of PEG segment as a crosslinker. So prepared composite solutions were introduced
into different vials in an ice/water bath with stirring and their pH values were also adjusted
to around 7 using a 5% NaHCO3 solution. After that, the vials were incubated at 37 ◦C for
gel formation.

2.5. Rheological Measurements

Rheological measurements were conducted on a rheometer (Kinexus Pro KNX2100,
Southborough, MA, USA). Spectra for elastic modulus (G′) or viscous modulus (G′′) versus
frequency were detected in a range between 0.1 and 100 Hz at 37 ◦C with a constant strain
of 1%. Strain sweep spectra for G′ and G′′ of gels were detected by setting the temperature
at 37 ◦C and frequency at 1 Hz. Shear viscosity sweeps for gels were conducted in a shear
rate range between 0.1 and 200 s−1 at 25 ◦C using liquid samples.

2.6. Release of Ions and Que

The cylindrical ABG/CH-CY gel samples (0.5 mL, diameter: 10 mm) were first pro-
duced. These gels were respectively introduced into different vials that were filled with
5 mL of PBS, and the vials were vortexed on the shaking table at 37 ◦C and 60 rpm. At each
predetermined sampling point, 1 mL of supernatant was withdrawn and an equal volume
of fresh release buffer was replenished. The collected supernatants were diluted 20, 40,
80, and 160 times according to their concentration differences so that the concentrations
of the dilutions were within the linear range of the respective standard curves of different
ions. These dilutions were then assayed using inductively coupled plasma atomic emission
spectrometry (ICP-AES, SPECTRO CIROS-CCP, Kleve, Germany) to measure the released
amount of ions. Standard curves for Si or Ca ions were established using standard solutions
containing silicon or calcium compounds. In the case of Que release measurements, the
released amount of Que from gels was detected using spectrophotometric methods [34,41].
In brief, a standard curve for Que was first generated using Que solutions in ethanol with a
concentration gradient series (19.2, 23.0, 32.9, 38.3, 46.0, and 57.5 µg/mL) and absorbance
of these Que solutions was detected at 256 nm. At each prescribed time point, an aliquot of
release medium was taken with replenishment of an equal amount of fresh release buffer.
The aliquot was diluted to the desired concentration so that its absorbance was registered
within the linear range of the standard curve. The concentration of the released Que in the
aliquot was spectrophotometrically determined.

2.7. Cell Culture

MC3T3-E1 cells (Type Culture Collection of the Chinese Academy of Sciences, Shang-
hai, China) were used to evaluate the cell-gel constructs. Cells were expanded in the α-MEM
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medium supplemented with 10% fetal bovine serum, and 1% penicillin/streptomycin in a
5% CO2 humidified atmosphere at 37 ◦C. The expanded cells were resuspended in PBS for
further use.

The selected composite solutions were placed in glass dishes to form a thin layer and
the dishes were exposed to UV light at 4 ◦C for sterilization. For cell seeding, an aliquot of
the composite solution was homogeneously mixed with a given volume of cell-containing
culture medium to produce a mixture. Different mixtures were produced by altering the
cell density and the employed composite solution. The prepared composite solutions and
the cell-containing mixtures were used for the follow-up cell experiments.

A Live/Dead assay was performed using MC3T3-E1-containing gels to access the
cell viability. The proliferation of MC3T3-E1 cells that were seeded in different gels was
accessed with a CCK-8 cell counting kit (Dojindo Molecular Technologies, Gaithersburg,
MA, USA). Details for Live/Dead staining and cell proliferation measurements can be
found in our previous study [42].

Some cell-gel constructs were cultured for extended durations and the alkaline phos-
phatase (ALP) activity and type-I collagen synthesis of the seeded MC3T3-E1 cells were
measured. At predetermined time intervals, samples were washed with PBS, crushed,
and lysed in the lysis buffer at 4 ◦C. Supernatants were collected and subjected to ALP
activity and type-I collagen measurements using an ALP assay kit (Beyotime, Shanghai,
China) and a collagen type I ELISA kit (Biological, Salem, MA, USA). The total protein
content in cell-gel constructs was detected using a bicinchoninic acid protein assay kit
(Beyotime, Shanghai, China).

2.8. Statistical Analysis

Data were expressed as mean ± standard deviation. The mean of independent groups
was compared using Student’s t-test. The difference between groups was tested using
one-way ANOVA. Differences were considered to be statistically significant at a p-value
less than 0.05.

3. Results and Discussions
3.1. Characterization of CH-CY Conjugates

Representative FTIR spectra for CH and CH-CY are provided in Figure 1A. The
spectrum of CH exhibits absorbance at around 1661 cm−1 as a shoulder for carbonyl (C=O)
stretching of amide I, indicative of the high DDA feature of CH [39], and a clear absorbance
peak at about 1602 cm−1 belongs to amide II vibration of CH. In the spectrum of CH-CY,
the lower field shift of the peak from 1661 to 1631 cm−1 indicates the amide bond formation
due to the reaction between the amino group of CH and carboxylic group of CY [19,43]; and
a weak absorbance peak registering at 2543 cm−1 can be ascribed to S-H stretching [43,44].
Figure 1B shows the 1H NMR spectrum for CH-CY. It can be seen that, besides several
peaks belonging to CH at δ(ppm): 2.04, 3.13–4.91 [22,39,45], a new peak appeared at δ
(ppm): 2.92, which can be assigned to methylene protons on -CH2SH in CH-CY [20,22]. The
results in Figure 1 demonstrate that CH-CY conjugate has been successfully synthesized.

Four kinds of CH-CY conjugates were synthesized by changing the molar ratio of the
carboxyl group in CY to the amino group in CH while keeping the reaction conditions
constant, and several parameters for them are provided in Table 1. The content of thiol
groups in CH-CY conjugates was detected to significantly increase as the molar ratio
changed from 1.0 to 2.0, and it did not rise with a further increasing molar ratio up to
3.0. CH-CY-c was thus selected for the follow-up gel preparation whenever the CH-CY
conjugate was involved.
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Table 1. Parameters for CH-CY conjugates.

Sample
Name

Molar Ratio of
-COOH in CY to

-NH2 in CH

Content of
Thiol Groups

(µmol/g) (a)

Substitution
Degree of Thiol
Groups (%) (b)

Solubility
in Water (c)

CH-CY-a 1 56.8 ± 4.31 2.44 +
CH-CY-b 1.5 103.4 ± 7.52 4.45 +
CH-CY-c 2 149.2 ± 10.14 6.32 +
CH-CY-d 3 146.3 ± 11.69 6.27 +

(a) Content of thiol groups in CH-CY was determined by Ellman’s method. (b) The substitution degree of thiol
groups in CH-CY was determined by 1H NMR. (c) “+” indicates the full solubility of CH-CY conjugates (2.5 wt%)
in water.

3.2. Parameters for Bioglass Nanoparticles

BG NPs with a high pore volume were first synthesized so that they could be suitable
for subsequent drug loading after amino-functionalization. The inserted TEM micrograph
in Figure 2A displays that BG NPs were spherical and highly porous with radially porous
morphology and good dispersion. Their hydrodynamic size exhibited a nearly symmetrical
distribution. After amino-functionalization, the achieved empty ABG NPs were still spher-
ical and well dispersive, and importantly, their radial pore architecture was still clearly
visible (Figure 2B), connoting their suitability for subsequent drug loading.

The recorded N2 adsorption-desorption isotherms for BG and ABG NPs are presented
in Figure 2C. Three characteristics can be drawn from Figure 2C: (i) there were typical
hysteresis loops in these isotherms; (ii) the inception turning points in these isotherms were
around 0.5 (p/p0) and (iii) the isotherm corresponding to BG NPs showed a steeper upward
trend in the higher relative pressure range compared to ABG NPs. These characteristics
make the point that there are mesoporous pores inside these BG and ABG NPs, and
additionally, BG NPs may contain more pores with larger pore sizes in comparison to ABG
NPs [46,47]. Curves in Figure 2D exhibit pores in BG and ABG NPs had wide pore-size
distributions and some pores were measured to be larger than 10 nm. Several sets of
samples for both BG and ABG NPs were measured to determine their parameters and the
results are summarized in Table 2.
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Figure 2. Size distributions (DLS measurement) and TEM micrographs for BG NPs (A) and ABG NPs
(B); and nitrogen adsorption-desorption isotherms (C) as well as pore-size distributions (D) for BG
and ABG NPs.

Table 2. Parameters for different kinds of nanoparticles.

Sample
Name

Surface
Area

(m2/g)

Pore
Volume
(mL/g)

Pore Size
(nm)

ζ-Potential
(mV)

Particle
Size (nm)

(b)

Content of
Amino
Groups

(µmol/mg)

BG (a) 579.4 ± 43.6 1.53 ± 0.11 9.47 ± 0.69 −13.6 ± 1.02 341.6 ± 13.8 −
ABG 416.1 ± 39.2 1.08 ± 0.09 7.53 ± 0.51 30.7 ± 1.38 367.2 ± 23.6 0.573 ± 0.042

(a) CaO/SiO2 molar ratio for BG NPs was detected to be around 0.13 from their energy dispersive spectra (b) Data
were obtained via DLS measurements.

It can be seen that ABG NPs had a significantly smaller surface area, pore volume,
and pore size but had larger hydrodynamic particle size and positive ζ-potential when
compared to BG NPs. Because of the highly porous features of BG NPs (Figure 2), DF-P
molecules would thus react with the hydroxyl groups on the surface of pores inside BG
NPs, and also, with the hydroxyl groups on the surface of BG NPs [47,48], which would
result in the reduced surface area, pore-volume, and pore-size for the ABG NPs. BG NPs
are known to have negative ζ-potential because of their hydroxyl group-exposed surface.
After amino-functionalization, many free amino groups will appear on the surface of the
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resulting ABG NPs. Consequently, ABG NPs attain positive ζ-potential and relatively
enlarged size compared to BG NPs.

Que was loaded into ABG NPs by mainly changing two variables: the concentration
of feed Que solutions and the mass ratio of Que to ABG NPs, while maintaining processing
conditions unchanged. Several parameters for four kinds of Que-loaded ABG NPs are
itemized in Table 3. Data in Table 3 reveal that these Que-loaded NPs had slightly larger
mean sizes (p > 0.05) but remarkably reduced ζ-potential (p < 0.001) when compared to
their blank counterpart (Table 2). Although any of these Que-loaded NPs can be used for
the construction of ABG/CH-CY composite hydrogels, ABG-Q4 NPs have been selected
for the subsequent preparation of composite gels on account of their notably higher DL
(p < 0.01) compared to the other three kinds of NPs. In addition, only one kind of Que-
loaded NPs was employed for building composite gels, which would be conducive to
figuring out the effect of the gel matrix on the release patterns of Que and ions.

Table 3. Parameters for quercetin-loaded ABG nanoparticles.

Sample
Name

Ratio of Que to
ABG NPs (wt./wt.)

Que Concentration
(mg/mL) DL (%) Particle Size

(nm) (a)
ζ-Potential

(mV)

ABG-Q1 1.0 100 10.37 ± 0.52 382.6 ± 22.54 10.4 ± 0.31
ABG-Q2 1.0 200 13.29 ± 0.47 391.1 ± 23.47 9.8 ± 0.43
ABG-Q3 2.0 100 14.84 ± 0.61 404.7 ± 20.16 9.2 ± 0.52
ABG-Q4 2.0 200 18.26 ± 0.73 409.3 ± 28.63 8.7 ± 0.49

(a) Data were obtained via DLS measurements.

3.3. CH-CY Hydrogels

Previous studies indicated that CH-CY is gelable through thiol-involved linkages
without the aid of additional chemical crosslinkers [19,22], and β-glycerophosphate sodium
can help to expedite the gelation of CH-CY solution due to the presence of amino groups
in the C-2 sites of CH backbone and CY-derived side chains [22]. Nevertheless, so-built
CH-CY hydrogels were found to be mechanically weak. Thus, DF-P was used as an
additional crosslinker for building amino-bridged networks in the CH-CY gels to enhance
their strength. By changing the concentration of CH-CY solutions or the applied amount
of DF-P1000, two sets of CH-CY gels were constructed, as illustrated in Table 4. In this
study, although CH-CY solutions with a concentration of 3 wt% or even higher were also
gellable, such concentrated CH-CY solutions were found to be unsuitable for the subsequent
preparation of ABG/CH-CY composite gels because a higher concentrated ABG/CH-CY
solution could gelatinize quickly, leading to difficulty in its injection application. The
CH-CY solution concentration used for the present gel preparation was thus controlled at
2.5 w/v% or lower.

Table 4. Parameters for hydrogels without incorporating nanoparticles.

Sample Name CH-CY (w/v %) DF-P1000 (w/v %) G′ at 1 Hz
(Pa)

G′′ at 1 Hz
(Pa)

CH-CY-1 1.5 0.3 962.5 ± 51.4 81.4 ± 6.1
CH-CY-2 2.0 0.3 1283.2 ± 82.6 93.5 ± 7.3
CH-CY-3 2.5 0.3 1561.8 ± 94.8 116.2 ± 8.9
CH-CY-4 2.5 0.4 2079.3 ± 129.1 217.8 ± 16.2
CH-CY-5 2.5 0.5 2647.1 ± 136.2 253.7 ± 20.6
CH-CY-6 2.5 0.6 3312.4 ± 172.3 265.3 ± 22.4

Frequency sweep spectra of G′ and G′′ for CH-CY gels were detected and the gel
strength was compared to each other within the linear viscoelastic region (LVR) with an
upper-frequency limit of less than 10 Hz [49]. The curves in Figure 3A exhibit that the G′

value of CH-CY-1, CH-CY-2, and CH-CY-3 gels markedly increased with the increasing
concentration of CH-CY solutions, and on the other hand, at a fixed 2.5% CH-CY solution
concentration, the G′ value of CH-CY-4, CH-CY-5, and CH-CY-6 gels rose from around
2.0 to 3.3 kPa when the applied amount of DF-P1000 started its linear ascent from 0.4 to
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0.6 w/v%. In Figure 3B, G′′ for these gels showed a growing trend similar to their G′,
but the difference in G′′ was less significant in each set of gels when compared to their
G′. To quantitatively compare these gels, many groups of gel samples were measured to
determine their average G′ and G′′ at 1 Hz, and the obtained data are also provided in
Table 4. The magnitude of G′ and G′/G′′ ratio can be in principle used for assessing the
strength of the hydrogel. In general, a mechanically strong hydrogel has a large G′, and
conjointly, its G′ is one order or even two orders of magnitude greater than their G′′ [49,50].
CH-CY-1, CH-CY-2, and CH-CY-3 gels have mechanically weak characteristics in view of
their low G′ value. CH-CY-4, CH-CY-5, and CH-CY-6 gels show significantly improved
strength, but they cannot be considered mechanically strong ones because their G′ value is
not high, and the corresponding G′/G′′ ratio is about 10 or slightly higher.
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Strain sweeps of G′ and G” for these gels were also detected for evaluating their
elasticity using the yielding strain as an indicator [49,50], and strain sweep spectra together
with average yielding strains for these gels are represented in Figure 3C,D. CH-CY-1,
CH-CY-2, CH-CY-3, and CH-CY-4 gels showed their yielding strains of around 20% or
slightly higher without significant differences, indicating their poor elasticity. CH-CY-5 and
CH-CY-6 gels had higher yielding strains than other gels, revealing that they have attained
some improvements in their elasticity. Despite the establishment of the dual networks
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inside these CH-CY gels, their strength and elasticity still need to be substantially improved
to meet mechanical requirements in bone repair [1,7,9,14]. Based on the results elucidated
in Figure 3 and Table 4, Que-loaded ABG NPs were thus incorporated into CH-CY-6 gel for
constructing multi-crosslinked composite hydrogels.

3.4. Multi-Crosslinked ABG/CH-CY Hydrogels

It is reported that DF-P can crosslink CH via the Schiff base reaction between the
terminal benzaldehyde groups in DF-P and amino groups in CH, and the resulting aromatic
Schiff bases are much more stable than aliphatic Schiff bases [51]. In our previous study,
amino-functionalized mesoporous silica NPs have been effectively cross-linked using
genipin, a kind of small molecule crosslinker [52], indicative of the reactiveness of amino
groups on the surface of NPs. Hence, the presently employed DF-P would be able to
crosslink the amino groups in CH-CY or ABG NPs and contribute to building stable multi-
networks in the ABG/CH-CY composite gels. DF-P with various PEG lengths was used in
this study, intending to achieve the desired gels with high enough strength and elasticity.
To ensure the adequate safety of composite gels, the DF-P dosage was controlled to a level
of 0.6 w/v % or lower. Four kinds of ABG/CH-CY composite gels were thus produced,
and their compositional proportions and relevant results are provided in Table 5 and
Figure 4, respectively.

Table 5. Composition proportions for composite hydrogels.

Sample
Name

CH-YC
(w/v %)

ABG-Q4
NPs (w/v %)

DF-P1000
(w/v %)

DF-P3400
(w/v %)

DF-P5000
(w/v %)

GEL-1 2.5 2.0 0.6 − −
GEL-2 2.5 2.0 − 0.6 −
GEL-3 2.5 2.0 − − 0.6

Figure 4A shows photos for sol-gel transition of an ABG/CH-CY composite solution.
The photos reveal that this solution was flowable at room temperature and able to transform
into a gel at 37 ◦C for around 4 min. The frequency sweep spectra in Figure 4B display
that the G′ value in LVR for GEL-1, GEL-2, and GEL-3 gels was much greater than that
for their counterpart, CH-CY-6 gel (Figure 3A). Bar-graphs in Figure 4C show that these
gels had their G′ of around 6.6, 8.2, and 8.4 kPa, and the G′ of GEL-2 and GEL-3 gels
was seen to be significantly higher than that of GEL-1 gel. Importantly, the G′/G′′ ratio
for GEL-1, GEL-2, and GEL-3 gels reached about 27.9, 31.7, and 31.2, respectively, which
were considerably larger than that for CH-CY-6 gel, demonstrating that GEL-1, GEL-2, and
GEL-3 gels behave similar to mechanically strong gels because of their high G′ and large
G′/G′′ ratios. The functions of G′ and G′′ versus strain as well as the average yielding
strains for GEL-1, GEL-2, and GEL-3 gels are explicated in Figure 4D,E. The bar graphs
show that the yielding strain of GEL-1 was higher than 50%, whereas GEL-2 and GEL-3
gels had their yielding strains higher than 70% with a significant difference when compared
to GEL-1. In comparison to CH-CY-6 gel (Figure 3D), it can be drawn that GEL-1, GEL-2,
and GEL-3 gels have been remarkably improved in their elasticity.

These results are rational because multi-crosslinked networks are constructed inside
these ABG/CH-CY composite gels due to the combination of ABG NPs. The benzaldehyde
groups in DF-P can react with amino groups in the CH backbone and CY-involved side
chains to build a CH-CY alone associated network, and meanwhile, they can also crosslink
amino groups that respectively belong to CH-CY and ABG NPs to build another network.
Together with the thiol-bridged network, there are at least three networks in ABG/CH-CY
composite gels. DF-P molecules have a linear structure and their PEG segment would
thus exist inside ABG/CH-CY composite gels in the form of random curls, and these
PEG curls will unbend during the gel strain. Given that the DF-P molecules with the
long PEG segment are employed for producing ABG/CH-CY composite gels, these DF-P
molecules would have more opportunities to randomly entangle with CH-CY molecular
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chains and interpenetrate into networks when compared to the DF-P molecules having
short PEG segment, which could afford ABG/CH-CY composite gels improved strength
and enlarged extensibility. Taken together, the establishment of multi-crosslinked networks
and the employment of the DF-P with larger Mn of PEG segment (DF-P3400 and DF-
P5000) significantly enhance ABG/CH-CY composite gels in their strength and elasticity in
comparison to the CH-CY gels.
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Figure 4. Photos of the sol-gel transition of the composite solution with the same composition as
GEL−2 gel (A), frequency-dependent functions of G′ and G′′ (B), average values of G′ and G′′ at 1 Hz
(C), variations in G′ and G′′ versus strain (D), average yielding strain (E) and shear rate dependency
of viscosity (25 ◦C, (F)) for gels illustrated in Table 5 (*, p < 0.05; **, p < 0.01; N.S., not significant).

To examine the injective applicability of GEL-1, GEL-2, and GEL-3 gels, their respective
solutions were tested to determine their viscosity versus shear rate, and the results are
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elucidated in Figure 4F. These composite solutions were viscous in the low shear rate range
and showed a similar declining trend in viscosity as the shear rate increased. Their viscosity
became markedly low once the applied shear rate reached 10 s−1 or higher, indicating that
they have shear-thinning features. Considering that the injection of composite solutions
is usually conducted at ambient temperature, the results in Figure 4E account for their
well-defined injectability.

3.5. Release Profiles of Ions and Que

Ion release patterns for the gels formulated in Table 5 were detected and obtained
data are plotted in Figure 5. It is observed from Figure 5A that a Si-ion amount of around
9 µg/mL or less was released from these gels on the first day, and after that, GEL-2 and
GEL-3 gels underwent sustained Si ion release at similar release rates in approximately
linear manners for around three weeks. Curves in Figure 5B delineate certain burst release
features of Ca ions from these gels but show approximately linear release trends starting
from around day 3. In both Figure 5A,B, it can be noticed that the difference in release rate
between GEL-1 and GEL-2 or GEL-3 became very significant after around 7-day release,
whereas GEL-2 and GEL-3 had similar release rates without significant differences. Since
these gels contain the same amount of ABG NPs but differ from each other in strength and
elasticity (Figure 4), the significantly slower release rates of Si and Ca ions observed from
GEL-2 and GEL-3 gels can be ascribed to their higher strength and elasticity compared to
that for GEL-1 gel.
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Que is practically insoluble in water (<10 µg/mL in water at 25 ◦C) [53], and generally,
has low bioavailability and poor stability. When a hydrogel is employed as the carrier for
the local administration of Que, the key issue concerned is how to efficiently load enough
amount of Que into the hydrogel and manage its controlled and sustained release. Direct
loading of Que into hydrogels with the aid of organic solvents such as ethanol and dimethyl
sulfoxide has been explored [33,36,53]. In doing so, the organic solvent should be removed
from the resulting hydrogels otherwise such Que-loaded hydrogels may cause potential
side effects due to the solvent release; in addition, this kind of Que-loaded hydrogel usually
shows a severe initial burst because in many cases, hydrogels constructed with natural
polymers have limited ability to administer the controlled and sustained release of drugs
or biomolecules [8].

In the present instance, Que was first loaded into ABG NPs and the resulting NPs were
then embedded into CH-CY gels. In comparison to some Que-loaded hydrogels reported
in the literature [33,36,53–55], presently developed Que-loaded composite hydrogels can
fulfill several missions at the same time: (I) the Que-load in the composite gels can be
tailored by altering either the Que-load in ABG NPs or the content of Que-loaded ABG
NPs in the composite gels; (II) ABG NPs would contribute significantly to the mechanical
enhancement of the composite gels; and (III) ABG NPs would cooperate with the gel matrix
to synergistically modulate the release of Que. Figure 5C presents the Que release profiles
for GEL-1, GEL-2, and GEL-3 gels. The profiles exhibit that a Que load of around 7% or
less was released from these gels on the first day, and afterward, the release behavior of
Que followed different patterns for a few weeks. The GEL-1 gel released the Que in a
non-linear upward trend and the cumulative release of Que at the end of 7 weeks reached
slightly about 70%. With regard to GEL-2 and GEL-3 gels, Que was seen to release in an
approximately linear way for a few weeks starting from day 3. These results indicate that
the strong gels have a better capability to slow down the release of Que when compared to
that having relatively weak strength.

In this study, by embedding Que-loaded ABG NPs into CH-CY gel, the resulting
composite gels show an ability to administer the Que release in a regulatory manner with
sustained release of quercetin for a period of around 7 weeks. In GEL-1, GEL-2, and GEL-3
gels, the Que-loaded ABG NPs with surface-exposed amino groups would be cross-linked
with CH-CY to some extent by the DF-P crosslinker that corresponds to each of the three
gels, or physically entangled with CH-CY chains, which will lead to the formation of a
capping layer wrapped on the surface of Que-loaded ABG NPs. As a result, Que molecules
have to diffuse out of the capping layer of ABG NPs first and then pass through the gel
matrix to reach the release medium. During the passage of Que molecules through the
gel matrix, the gels having higher strength may exert higher resistance to Que molecules
due to the existence of higher crosslinking or more chain entanglement in these gels, thus
leading to slower Que release. It is worth mentioning that many preliminary experiments
had been conducted in this study to optimize parameters respectively matching with ABG
NPs and ABG/CH-CY gels, which finally results in approximately linear Que release.

To date, numerous release systems have been developed for delivering drugs, proteins,
peptides, therapeutic ions, and genes. Despite the differences in composition, structure, and
function of these delivery systems, several empirical models have been established to de-
scribe their release kinetics [56–58]. In the case of swellable polymer matrices, the kinetic be-
havior of drug release can be estimated from the following semi-empirical equation [56,59]:

Mt/M∞ = ktn or log[Mt/M∞] = logk + nlogt (2)

where Mt/M∞ is the fractional release of the drug at time t; k is a constant correlated to the
structural and geometric characteristics of the release system as well as the release rate; and
n is the release exponent, indicative of the drug release mechanism. Based on Equation (2),
n and k for different gels were calculated and relevant data are summarized in Table 6.
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Table 6. Kinetic parameters for hydrogels.

Sample (a) k n r2

GEL-1 (Si ion) 8.39 0.67 0.9926
GEL-2 (Si ion) 6.91 0.67 0.9959
GEL-3 (Si ion) 5.64 0.7 0.9935
GEL-1 (Ca ion) 10.78 0.51 0.9913
GEL-2 (Ca ion) 8.81 0.51 0.9884
GEL-3 (Ca ion) 7.45 0.52 0.9849
GEL-1 (Que) 6.59 0.61 0.9961
GEL-2 (Que) 5.01 0.61 0.9887
GEL-3 (Que) 4.07 0.62 0.9819

(a) See Table 5 for the definition of sample names.

Generally speaking, the n value less than 0.45 is indicative of a Fickian diffusion
mechanism; the n value ranging between 0.45 and 0.85 indicates anomalous transport
controlled by both diffusion and swelling; the n value larger than 0.85 signifies super case-II
transport which is related to polymer relaxation during swelling [56–58]. Data in Table 6
show that all tested gels had their n values changing between 0.51 and 0.7, revealing that
the release of Si ions, Ca ions and Que from these gels follows an anomalous transport
mechanism modulated by both Fickian diffusion and swelling.

3.6. Cell Growth and Analysis

The CH-CY-6 gel differs from the GEL-1 gel in composition, and in addition, the
crosslinkers used in GEL-1 and GEL-3 gels are different in the length of PEG segments.
Thus, CH-CY-6, GEL-1, and GEL-3 gels were selected for the in vitro evaluation. Figure 6
presents representative fluorescence micrographs for the stained MC3T3-E1 cells that were
seeded in different gels and cultured for various periods of up to 7 days. Very few dead
cells were detected from these gels after the cell-gel constructs were cultured for 3 or 7 days,
respectively. Moreover, the cell density in the micrographs corresponding to the 7-day
culture was remarkably higher than that assigned to the 3-day culture. These micrographs
signify that the seeded MC3T3-E1 cells had high viability, and also, the gels showed similar
abilities to support the growth of seeded cells despite their differences in composition or
cross-linker applied.
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Figure 7A elucidates results for cell proliferation in different gel matrices. The bar
graphs delineate that the cell growth experienced two distinct phases: slow cell growth
from day 1 to day 3; and pronouncedly fast cell growth from day 3 to day 7. The first
phase can be attributed to cell attachment with population recovery, and the second phase
confirms the occurrence of cell proliferation. Figure 7A also exhibits that there were no
significant differences in the cell number among these gels, suggesting that they have
similar capabilities to support cell proliferation.
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ALP activity is known to be a common indicator for evaluating the early stage os-
teogenic development of osteoblast-like cells [1,60]. The cell-gel constructs cultures for
various durations were submitted for ALP activity detection by an ALP essay, and the
obtained data are depicted in Figure 7B. It can be observed that there was no significant
difference in the ALP activity for the cells seeded in these gels after 7-day culture. After
extended culture to 14 days, the ALP activity for GEL-1 and GEL-3 gels was shown to be
similar without significant differences, but it was remarkably higher than that belonging to
the cells seeded in CH-CY-6 gel. As shown in Tables 4 and 5, the key difference between
the CH-CY-6 gel and the other two composite gels is that the CH-CY-6 did not contain any
Que-loaded ABG NPs. The ionic dissolution products of BG NPs composed of CaO and
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SiO2, usually including Si and Ca ions, are known to have osteogenic activity [23,28], and
the Que is also demonstrated to show the capability to promote osteogenesis [32,35,38].
Accordingly, the considerably higher ALP activity detected from GEL-1 and GEL-3 gels
should be attributed to the combined contribution of released ions and Que.

Type-I collagen synthesized by the osteoblast-like cells is often used as another indi-
cation for assessing the osteogenic development of the cells [1,61]. The amount of type-I
collagen in the cell-seeded gels was measured, and relevant data are plotted in Figure 7C.
The bar graphs display that the deposited type-I collagen amount was similar among these
gels after 7-day culture. During this period of culture, the seeded cells need to go through
the process of adhesion, restorative growth, and subsequent proliferation. A 7-day growth
period might be too short for them to synthesize a large amount of type-I collagen, thus
causing an insignificant difference in their type-I collagen deposition. As the culture time
advanced from day 7 to day 14, the amount of deposited type-I collagen was seen to rise at
varied rates among these gels. The deposited amount of type-I collagen in GEL-1 gel was
measured to be much higher compared to CH-CY-6 gel on day 14. GEL-1 gel differed from
CH-CY-6 gel in the ingredient of Que-loaded ABG NPs as well as in strength and elasticity.
Thus, it can be inferred that Que-loaded ABG NPs and much higher strength and elasticity
in GEL-1 gel synergistically contribute to its high type-I collagen deposition compared
to CH-CY-6 gel. With respect to the difference in the synthesized type-I collagen amount
between GEL-1 and GEL-3 gels, the significantly higher type-I collagen deposition in GEL-3
gel should be attributed to the higher strength and elasticity of GEL-3 gel when compared
to the GEL-1 gel. The present study was focused on investigations into the physicochemical
properties, controlled ion and drug release, biocompatibility, and osteogenic potency of
these newly developed composite gels. Further studies related to their application in bone
repair are in progress. The relevant results will be presented in separate reports.

4. Conclusions

A new type of multi-crosslinked network composite hydrogel with certain strong and
elastic characteristics was successfully constructed using CH-CY conjugate and Que-loaded
ABG NPs while employing DF-P with varying PEG segment lengths as a crosslinker. The
formulated ABG/CH-CY composite hydrogels showed much higher strength and elasticity
in comparison to the gels composed of a single CH-CY component. PEG segment length
in DF-P was found to impose significant impacts on the properties of resulting hydrogels,
and the gel cross-linked by a DF-P crosslinker with a long PEG segment would endow the
resulting ABG/CH-CY gel with significantly higher strength or elasticity when compared
to those cross-linked by a DF-P crosslinker having a short PEG segment. Moreover, some
ABG/CH-CY gels with higher strengths and elasticities exhibited the ability to release Si or
Ca ions and the loaded Que in approximately linear manners for a few weeks. ABG/CH-CY
gels were capable of supporting the growth and matrix synthesis of the seeded osteoblast-
like cells. The higher strength and elasticity of the gels were conducive to the synthesis
of type-I collagen. The results demonstrate that these newly developed ABG/CH-CY
hydrogels have the potential for applications in bone repair and regeneration.
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