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Abstract: Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the
host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal
and systemic immunity to combat these infections. The intranasal route of vaccination offers the
advantage of easy accessibility over the injection administration. Therefore, nasal immunization is
considered a promising strategy for disease prevention, particularly in the case of infectious diseases
of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant
and antigens design and optimization, enabling rapid induction of protective mucosal and systemic
responses against the disease. In recent times, the development of efficacious nasal vaccines with
an adequate safety profile has progressed rapidly, with effective handling and overcoming of the
challenges encountered during the process. In this context, the present report summarizes the most
recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative
to conventional vaccines.
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1. Introduction

The respiratory system in mammals performs the essential physiological function of
the exchange of gases between the organism and the environment. As a consequence, the
respiratory system inevitably encounters infections with various foreign pathogens [1],
such as the new severe acute respiratory syndrome coronavirus (SARS-CoV-2), which is
transmitted mainly via the respiratory tract, was responsible for the pandemic that began at
the end of the year 2019, and has emerged as a serious threat to public health. Vaccination
is one of the most effective immunological approaches currently available for enhancing
the lifespan and quality of health in humans. The conventional mode of vaccination is
immunization through an injection. However, this dates back to the 10th century AD in
China, in which the scabs on the rashes of smallpox patients were crushed into powder
and blown into the nostrils of healthy individuals for vaccination against the smallpox [2].
In the recent history of vaccine development, many clinical trials have been conducted on
respiratory mucosal vaccines. The nasal route of vaccination prevents the hepatic first-pass
effect and/or gastrointestinal decomposition, while only little enzymatic degradation of
the vaccine antigens occurs in the nasal cavity, thereby requiring a lower dose of antigens
compared to the parenteral and oral routes of immunization [3]. In addition, nasal mucosal
vaccination reduces syringe usage and medical waste, due to which it is regarded as a
resource-saving and environment-friendly strategy suitable for a sustainable healthcare
model. Moreover, the mucosal vaccines are convenient for use as self-help vaccination,
which ensures the comfort of individuals and enhances individuals compliance, thereby
being suitable for mass vaccinations in the general population [4]. Since nasal mucosal
vaccines have the potential to induce heightened protective immune responses at the
primary site of pathogen infection, including the secretion of antibodies and tissue-resident
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T cell responses, these vaccines allow for blocking the epithelial cells and other cells to
pathogen infection, thereby preventing the infection during the beginning stages rather than
only reducing infection in later stages and preventing the further development of disease
symptoms [5,6]. Meanwhile, nasal mucosal immunization has also been demonstrated to
be ideal for SARS-CoV-2 vaccination [7].

2. Nasal Structure and Immune Responses

Several factors influence nasal vaccine design and mucosal immune responses. One of
these factors is the physiological structure of the nasal cavity. The nasal cavity is divided
into vestibular, respiratory, and olfactory compartments. The lining of the nasal cavity
comprises the epithelium, the basement membrane, and the lamina propria, all of which
are covered by a layer of tissue structure known as nasal mucosa. The human nasal mucosa
has a wide surface area of 150 cm2, which provides a greater effective area for antigen
absorption. The basal layer of the endothelium is referred to as the submucosa, which is
rich in blood vessels and, therefore, facilitates the absorption of the vaccine antigens [8].
On the surface of the nasal cavity, the epithelial cells are tightly connected, forming a
special physical barrier that prevents the invasion of antigenic particles, similar to the
active defense against pathogenic microorganisms [9].

The mucosal immune system is the key to a host’s resistance to pathogen invasion [10].
Functionally, the nasal mucosal immune system is divided into inductive sites and effector
sites, as illustrated in Figure 1. An inductive site is where the induction of the immune
response begins. This is the site where the antigen first reaches the respiratory tract, then
crosses the mucus layer, and is finally absorbed. The inductive site mainly comprises
mucosal lymphoid follicles located within the respiratory zone, which are collectively
referred to as the nasal-associated lymphoid tissue (NALT) [11,12]. NALT constitutes the
Waldeyer ring in humans and can be considered to correspond to the NALT in rodents,
which includes the palatine tonsils, nasopharyngeal tonsils, bilateral lingual tonsils, bilateral
pharyngeal isthmus, and bilateral pharyngeal lymphatic rings [13]. NALT is the only
structurally intact mucosa-associated lymphoid tissue in the upper respiratory tract. In
addition, NALT is encompassed by epithelial cells and a small number of microfold (M)
cells, which are invaginated to form pockets. The basal site of M cells (i.e., inside the
pockets) is a region where the areas rich in B cells, T cells, macrophages, and dendritic cells
(DCs) form a specialized lymphoid tissue [14,15]. M cells serve as a flexible transmembrane
transporter for the non-specific as well as specific endocytosis of the antigens presented on
their outer membranes. Thereafter, these antigen-containing vesicles release an extracellular
secretion on the basolateral side of M cells, thereby enabling the transportation of the
antigens to the antigen-presenting cells (APCs), including macrophages, DCs, and B cells,
for processing and presentation [16]. In addition, certain intraepithelial or subepithelial
DCs are capable of capturing antigens and migrating to the local/regional lymph nodes
via the draining lymphatics [17]. The APCs that have taken up the antigen migrate to the
follicular B cell zone and interfollicular T cell zone, where these cells present the antigens
to the neighboring naive T cells for initiating adaptive cellular immunity [18].

An effector site in the nasal mucosal immune system is where the immune responses of
B and T cells occur. The effector site includes the lamina propria (LP) and the intraepithelial
layer of the respiratory mucosa [19] and is connected to the inductive site mainly through
lymphocyte homing. The majority of the immune cells migrate to the inductive site to
exert their effects, allowing the mucosal immunity to be relatively independent of systemic
immunity and, therefore, exhibiting relative limitation [20]. This functional connection
system, comprising the mucosal induction sites migrating to effector sites, is referred to
as the common mucosal immune system (CMIS) [21]. CMIS may be driven by specific
integrin and chemokine receptor programs [22,23]. In addition, the immune cells enter
other mucosal sites and exert their effector functions, thereby linking the immune responses
in different mucosal sites [24]. Consequently, antigen-specific immunity is not restricted
to only the induction site and may occur even in distant mucosal zones [25]. Moreover,
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the antigen-activated immune cells may migrate via the bloodstream in the body and
participate in systemic immune responses, thereby inducing mucosal and systemic immune
responses, which are characterized by the production of IgA and IgG, respectively [6].
The secretion of local IgA antibodies block the binding of pathogens to nasal epithelial
receptors [26,27]. The systemic and mucosal immune responses elicit potent humoral and
cellular immune responses that may provide cross-protection [28,29].
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Figure 1. Nasal structure and the mucosal immune response. (A) Structure of the nasal cavity. (B) 
The immune response mechanism in the nasal mucosa. M cells or DCs (green) take up the antigens 
at the induction site, migrate to NALT, and interact with T cells (yellow) to activate B cells (blue) 
into plasma cells (purple). A few of the plasma cells migrate to the effector site and secrete IgA 
antibodies. In addition, the remaining B cells and the activated T cells pass through the blood, in-
duce cellular and IgG-based systemic immune responses, and may even differentiate into memory 
B and T cells. 
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Figure 1. Nasal structure and the mucosal immune response. (A) Structure of the nasal cavity.
(B) The immune response mechanism in the nasal mucosa. M cells or DCs (green) take up the
antigens at the induction site, migrate to NALT, and interact with T cells (yellow) to activate B cells
(blue) into plasma cells (purple). A few of the plasma cells migrate to the effector site and secrete IgA
antibodies. In addition, the remaining B cells and the activated T cells pass through the blood, induce
cellular and IgG-based systemic immune responses, and may even differentiate into memory B and
T cells.

Nasal mucosal vaccines function by inducing local tissue-resident memory (TRM)
T cells, which form an essential part of mucosal surface immunity. Studies have sug-
gested that the nasal mucosal immunization with live-attenuated influenza vaccine (LAIV)
produces lung tissue-specific CD4+ TRM T cells and viral CD8+ TRM T cells with a pheno-
type similar to those produced upon infection with the influenza virus. On the contrary,
intranasal immunization with inactivated influenza vaccines (IIV) or intramuscular im-
munization with LAIV reportedly could not elicit T cell responses or provide protection
against viral infection. These findings suggested that both respiratory tract targeting and
live-attenuated strains were required for the induction of TRM T cells [5]. Recent studies in
mouse models demonstrated that while TRM cells migrate from the lung to the mediastinal
lymph nodes during infection, a process referred to as “retrograde migration”, the TRM
cell phenotype is maintained and provides long-term protection [30]. The T-helper cells
induced after infection with the influenza virus are considered critical for the subsequent
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vaccination-based induction of long-term cellular and humoral immunity in the respiratory
tract [31,32], further corroborating the effectiveness of mucosal vaccines.

A thorough understanding of the interactions between the structure of nasal mucosa
and nasal mucosal immunity would provide valuable insights into the design of mucosal
vaccine. In particular, a comprehensive exploration of mucosal APCs, innate lymphocytes,
and TRM cells at mucosal sites could reveal attractive targets for vaccine design. These
insights would assist in designing rational nasal vaccines against various infectious viruses
(including SARS-CoV-2) and cancers using novel vaccine technologies.

3. Insights from the Currently Available Licensed Influenza Nasal Vaccine

Various types of injectable vaccines (including adjuvant inactivated vaccines, subunit
antigen, and RNA vaccines) are currently available in the market; however, these vaccines
have not yet been licensed as nasal vaccines. The only approved intranasal trivalent LAIV
is the FluMist® (Fluenz®), which has been in clinical use in the United States since 2003 [33].
In February 2012, the FDA approved FluMist® Quadrivalent for people aged between 2
and 49 years [34], which was indicative of the completion of its transition from a trivalent
to a quadrivalent nasal LAIV [35]. The genetically engineered LAIV virus in FluMist® is
a cold-adapted (ca), temperature-sensitive (ts), and attenuated (att) influenza virus. This
virus is capable of replicating at 25 ◦C and not at 37 ◦C, suggesting that the LAIV form
of this virus could only infect and replicate in the nasopharyngeal mucosal cells, which
enhances antigen capture and delivery, thereby inducing a pattern of immunity similar to
the one induced upon natural infection [34,36].

The immune response elicited by FluMist® and its demonstrated safety are the main
reasons for its success as a vaccine. Currently, nasal immunization with LAIV is an impor-
tant mode of influenza vaccination [37,38]. In the last few decades, various other intranasal
vaccine candidates against a range of human diseases have been conducted. For instance,
the nasal immunization vaccine against Bordetella pertussis has successfully completed
phase I clinical trial and entered phase II clinical trial [39,40]. Promising preclinical data
have been generated for nasal immunization with Bacillus Calmette-Guérin (BCG) vaccine
for the treatment of mycobacterium tuberculosis [41]. Chimeric RSV/PIV3 vaccine candi-
dates (respiratory syncytial virus (RSV) attachment (G) and fusion (F) genes chimeric to the
attenuated parainfluenza virus type 3 (PIV3)) or recombinant bivalent subunit vaccines
(containing the RSV F protein and PIV3 haemagglutinin-neuraminidase (HN) protein and
combined with adjuvant) have demonstrated effectiveness as nasal immunization vaccines
in animal models [42,43]. Nine SARS-CoV-2 nasal vaccines, including the inactivated, live
attenuated, protein subunit, nucleic acid, viral vector, and other vaccines, are currently in
clinical trials, which further corroborates the feasibility of nasal vaccines [44].

4. Challenges of Nasal Vaccine

In the development of inactivated virus nasal vaccine, split nasal vaccine, subunit
nasal vaccine, peptide nasal vaccine, and nucleic acid nasal vaccine, many factors limit
the antigen absorption and bioavailability. The lipophilicity and size of vaccine molecules
are important in nasal permeation. Lipophilic molecules usually diffuse via transcellular
pathways, while hydrophilic molecules, particularly those with a high molecular weight,
have low membrane permeability [45]. Nasal volume is another limiting factor that restricts
the feasible volume for nasal administration to 25–250 µL [46]. Nasal mucosal cilia clearance
and mucus barrier obstruct the antigen uptake of the vaccine, the enzymatic environment,
and the local pH of the nasal mucosa, all of which would ultimately exert a negative effect
on the stability of the vaccine [6]. These obstacles prevent adequate antigen delivery and the
subsequent uptake and presentation of APCs residing in the nasal cavity, thereby hindering
the initiation of protective immunity [47,48].

To overcome these obstacles, various strategies have been proposed to improve the
efficacy of nasal vaccine in the last few years. Different antigen formulations have been
developed, such as mucoadhesives (chitosan), to reduce the effects of nasal mucosal cilia on
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antigen clearance [49,50]. Sodium alginate (SA) and carboxymethylcellulose-high molecular
weight (CMC-HMW) are reported to prolong the retention of antigens at the mucosal
sites [51]. Phosphatidylcholine and cell-penetrating peptides (CPP) promote the uptake
of antigens at mucosal sites [52–54]. Moreover, genetic optimization of the vaccines based
on viruses, proteins/peptides, and nucleic acids and the use of delivery system (e.g.,
liposomes, nanoemulsions, and virosome) has enabled enhanced vaccine stability [55]. For
instance, the use of immune enhancers, such as toxoid, cytokines, and Toll-like receptor
(TLR) agonist adjuvants, reportedly promote antigen uptake and enhance the local immune
response [47,56], while specific ligands or antibodies targeting APCs or M cells improve
antigen uptake [57]. These strategies aim to stabilize the antigenic components, break the
mucosal barrier, induce effective antigen presentation to the immune system, and activate
mucosal immunity [47,52]. In this context, the present report describes the most recent
findings in the development of nasal vaccines (Figure 2).
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Figure 2. The different types of nasal vaccines and adjuvants. (A) The subtypes of nasal vaccines.
(B) The subtypes of immune enhancement adjuvants. (C) Adjuvant delivery system.

5. Mode of Mucosal Vaccination

Respiratory vaccination primarily targets the nasal or the lower respiratory tract. While
nasal sprays, drops, and gels mainly act on the nasal cavity, the atomized aerosols and
dry powder inhalation formulations act mainly on the lower respiratory tract. Nasal spray
immunization is the most common method of nasal mucosal immunization compared
to other nasal formulations [58]. To prevent infections of the upper respiratory tract,
the particles of the nasal spray vaccine should be approximately 5 µm or above in size.
Currently, the only approved vaccine for the respiratory tract is the nasal influenza vaccine,
which is delivered directly to the nasal cavity as a large spray of particles to prevent
deposition in the lower respiratory tract [59]. Few studies have compared the nasal spray
immunization and nasal drop immunization. One study found that nasal drops have
demonstrated greater effectiveness compared to nasal sprays in reducing the symptoms of
nasal polyps [60], while the other study reported that nasal administration of midazolam
is an excellent alternative for sedation in pediatric nuclear medicine and nasal sprays are
superior to nasal drops [61], suggesting that the preferred routes of administration could
vary with different drugs.
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Small-particle aerosols (≤3 µm) are capable of entering the lower respiratory tract via
aerosol inhalation and protecting against lower respiratory tract infections [62]. Inhalation
of aerosols requires certain aerosol inhalation devices. For instance, vaccines for liquid
measles may be formulated into aerosols using early modified atomizers, and have under-
gone extensive clinical trials. A systematic meta-analysis has confirmed that inhaled liquid
aerosol vaccine against measles is safe, immunogenic, and generally well tolerated [63].
Aerosol vaccines against measles exhibit an immune response that is equivalent to or supe-
rior to injectable vaccines, while the antibody response of the former is relatively strong
and durable using even a small dose of vaccine, thereby providing effective and durable
protection against measles [63–66]. Inhaled dry powder live-attenuated measles vaccine
(MVDP) showed superior storage stability compared to liquid vaccines. After nasal immu-
nization, MVDP induces robust measles virus (MeV)-specific humoral and T cell responses
in macaques, which has been reported to be safe, effective, and conducive to measles
control [67]. Phase I clinical trial of MVDP has confirmed the safety and immunogenicity
of this vaccine [68]. Dry-powder nasal mucosal inactivated influenza virus vaccine has
also partially entered the clinic trial stage (ClinicalTrials.gov Identifier: NCT01488188). The
nasal powder agent prolongs the retention of powder formulations on the nasal mucosa,
potentially increasing local and systemic immune responses and providing better efficacy
in protective immunity [51,69]. The above reports suggest that a mucosal vaccine may be
used in various modes of immunization.

Special application techniques are required due to the high viscosity of nasal gel
vaccines. Various gel polymers-based formulations have been developed, such as cationic
cholesterol-based amylopectin (CHP) nanogels, which serve as antigen carriers for nasal
vaccines to induce effective immune protection [70–73], such as the hydrogels constituted of
branched polyethyleneimine and oxidized dextran or constituted of the polymer Gantrez®

AN119 and Pluronic® F127 (PF127), the gels prepared from deacetylated gellan gum,
chitosan [74–77]. All of these formulations enhance the immune response, demonstrating
that nasal gels are a promising novel alternative for use as a nasal mucosal delivery system.

6. Live-Attenuated Vaccines

The success of attenuated nasal vaccines against influenza has inspired the devel-
opment of other attenuated nasal vaccines. One example is the vaccine containing live-
attenuated Bordetella pertussis strain BPZE1, which colonizes the respiratory tract and
induces a robust protective immune response against Bordetella pertussis infection upon
only a single nasal administration. In addition, it has demonstrated promising results in
phase I clinical trials [40,55,78] (NCT02453048, NCT00870350). Another example is the
attenuated RSV/∆NS2/∆1313/I1314L vaccine, with an application of genetic engineering
technology, the interferon antagonist NS2 gene and the RSV polymerase gene codon 1313
were knocked out and the missense mutation I1314L was introduced, the resulting attenu-
ated virus vaccine was temperature-sensitive, genetically stable, replication-deficient, and
immunogenic in non-human primates [79]. Clinical trials demonstrated that this attenu-
ated vaccine had an acceptable safety level and good immunogenicity in RSV-seronegative
children, although further clinical trials in a large population are warranted [79]. An atten-
uated vaccine against SARS-CoV-2 named COVI-VAC was constructed by re-encoding a
segment of the virus spike protein with a suboptimal synonymous codon pair (codon pair
de-optimization) and introducing 283 silent (site) mutations. In animal models, COVI-VAC
provided protection with a single nasal mucosal immunization [80]. The phase I clinical
trials were about to be conducted (NCT05233826; NCT04619628).

Nasal administration of live-attenuated B. pertussis (BPZE1) by genetic inactivation
or removal of three major toxins provides protection not only early in life (even at birth)
in mice, but up to 1 year after immunization [81]. Another study also found that mice
given intranasal BPZE1 and boosted with the acellular pertussis vaccine showed T cells
and antibody responses [82]. Meanwhile, the BPZE1 also completed the phase I clinical
trial [83,84]. BPZE1f3, a derivative of BPZE1 that contains both serotype 2 (Fim2) and
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serotype 3 (Fim3), produced significantly stronger protection against Fim3-only producing
B. pertussis in mice than BPZE1 [85].

Table 1 presents the clinical status of nasal mucosal attenuated vaccines that are
currently under development. In addition, the already marketed attenuated nasal vaccines
against influenza, most of the other attenuated nasal vaccines under development (vaccines
against RSV, parainfluenza virus, and avian pandemic influenza) are in the phase I clinical
stage, and only a few are in the phase II clinical stage. Therefore, the nasal mucosal
attenuated vaccines have demonstrated great potential, although further investigation is
warranted prior to their availability to the general population.

Table 1. The current progress in the clinical development of nasal attenuated vaccines.

Disease Vaccine Identification ClinicalTrials.gov
Identifier Phase Sponsor Status

Pertussis

BPZE1 NCT01188512
NCT02453048 1 Inserm Completed

Vaccine GamLPV NCT04036526 1/2

Gamaleya
Research Institute
of Epidemiology

and Microbiology

Unknown

BPZE1 NCT03541499 2 NIAID Completed

BPZE1 NCT03942406
NCT05116241 2 ILiAD

Biotechnologies Completed/Recruiting

COVID-19 COVI-VAC NCT05233826
NCT04619628 1 Codagenix, Inc. Active, not recruiting

RSV

RSV
∆NS2/∆1313/I1314L

RSV
D46/NS2/N/∆M2-2-

HindIII
RSV LID ∆M2-2 1030s

RSV 6120/∆NS1
RSV 6120/F1/G2

RSV
6120/∆NS2/1030s
RSV cps2 Vaccine
RSV MEDI ∆M2-2

NCT03227029
NCT03102034
NCT02794870
NCT02952339
NCT03916185
NCT03422237
NCT03099291
NCT04520659
NCT03596801
NCT03387137
NCT01968083
NCT01852266
NCT02237209
NCT01893554
NCT01459198

1/2 NIAID Completed/Recruiting/
Active, not recruiting

MV-012-968 NCT04227210 1 Meissa Vaccines,
Inc. Recruiting

RSV vaccine
formulation 1 NCT04491877 2 Sanofi Pasteur, a

Sanofi Company Recruiting

Parainfluenza
Virus Diseases

rHPIV1
84/del170/942A

Standard Dose HPIV2
rHPIV3cp45

HPIV3/∆HNF/EbovZ
rB/HPIV3

HPIV3-EbovZ GP

NCT00641017
NCT01139437
NCT01021397
NCT03462004
NCT01254175
NCT00366782
NCT00308412
NCT02564575

1 NIAID Completed

RSV and PIV3 MEDI-534
NCT00345670
NCT00493285
NCT00686075

1/2 MedImmune LLC Completed
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Table 1. Cont.

Disease Vaccine Identification ClinicalTrials.gov
Identifier Phase Sponsor Status

Influenza

H2N3 MO 2003/AA
ca Vaccine

Live-attenuated H7N9
A/Anhui/13 ca

influenza virus vaccine
Live Influenza A

Vaccine H7N3 (6-2)
AA ca

H9N2 (6-2) AA ca
H2N2 1960 AA ca

H6N1 Teal HK 97/AA
Influenza A H7N7
H5N1 (6-2) AA ca

NCT01175122
NCT01995695
NCT02251288
NCT02151344
NCT00516035
NCT01854632
NCT00853255
NCT00380237
NCT00722774
NCT00734175
NCT00922259
NCT00110279
NCT01534468
NCT00488046

1/3 NIAID Completed

SIIL LAIV
cH8/1N1 LAIV

LAIV H7N3

NCT01625689
NCT03300050
NCT01511419

1/2 PATH Completed/Recruiting

GHB16L2 NCT01369862 1/2 AVIR Green Hills
Biotechnology AG Completed

CAIV-T
UniFluVec

NCT00224783
NCT00192309
NCT00192413
NCT04650971

1/2/3 MedImmune LLC Completed

A/17/CA/2009/38
(H1N1) NCT01666262 1/2 Mahidol

University Completed

Lactobacillus
rhamnosus NCT00620412 1 Tufts Medical

Center Completed

Human metap-
neumovirus rHMPV-Pa vaccine NCT01255410 1 NIAID Completed

Meissa MV-012-968 NCT04690335 2 Meissa Vaccines,
Inc. Completed

Sendai virus Sendai virus vaccine NCT00186927 1 St. Jude Children’s
Research Hospital Active, not recruiting

7. Nasal Vaccine Adjuvants

The replication-competent viral vector-based nasal vaccines mimic the cell membrane
fusion and replication capabilities of the virus during natural infections, thereby providing
enhanced mucosal and humoral immunity [86]. The other nasal vaccines under develop-
ment, including inactivated virus vaccine, split vaccine, subunit vaccine, peptide vaccine,
and nucleic acid vaccine, require adjuvants to address their poor immunogenicity or im-
prove delivery. The peptide-based vaccines require antigen optimization and adjuvant
application, such as the HIV therapeutic vaccine Vacc-4x, which comprises four slightly
modified HIV Gag p24 shared peptides and has to be used in combination with the Endocine
adjuvant. In phase I clinical trials, Vacc-4x induced a dose-dependent vaccine-specific T cell
response as well as the mucosal and systemic humoral responses (NCT01473810) [87]. The
subunit and inactivated vaccines may also require adjuvants to enhance immune responses.
Figure 2 presents the common nasal vaccines and adjuvants, and Table 2 presents the
clinical progress of peptide, subunit, inactivated, and adenovirus-vectored nasal vaccines.
Most of the vaccines under phase I/II clinical trials were the vector vaccine or the inac-
tivated and subunit nasal vaccine with nasal adjuvants, such as the relatively potential
LTh(αK), or nanoemulsion, liposomal, and type 1 interferon. There are no phase III clinical
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trials on nasal vaccines. Therefore, in-depth research is required on the development of a
nasal vaccine.

Table 2. Clinical progress in the development of peptide, subunit, inactivated, and viral vector-based
nasal vaccines.

Disease Vaccine
Identification Type Adjuvant ClinicalTrials.gov

Identifier Phase Sponsor Status

Influenza

Vaccination Subunit Liposomal NCT00197301 1/2 Hadassah Medical
Organization Completed

OVX836 Subunit NCT03594890 1 Osivax Completed

BW-1014 Subunit Nanoemulsion
Adjuvanted NCT05397119 1 BlueWillow Biologics Recruiting

Trivalent inactivated
influenza virus

vaccine
Flucelvax(R)

BPL-1357

Inactivated Type 1 interferon
NCT00436046
NCT03845231
NCT05027932

1/2 NIAID Completed

NB-1008 Inactivated W805EC NCT01354379
NCT01333462 1 NanoBio Corporation Completed

H5N1 Influenza
Vietnam 1194

Hemagglutinin (HA)

Adenoviral-
vectored NCT01806909 1 NIAID Completed

Hemagglutinin (HA) Inactivated DCB07010 NCT03293732 1 Advagene Biopharma
Co., Ltd. Completed

AD07030 Inactivated LTh(αK) NCT03784885 2 Advagene Biopharma
Co., Ltd. Completed

GelVac™ nasal
powder H5N1

Inactivated
H5N1 NCT01258062 1 Ology Bioservices Completed

HIV

EN41-FPA2 HIV NCT01509144 1 PX’Therapeutics Completed

Ad4-mgag
Ad4-Env150KN Ad4-based NCT01989533

NCT03878121 1 NIAID Completed/
Recruiting

Human
Immunodeficiency
Virus glycoprotein

140 (vaccine)

Glycoprotein 140 LTK63 NCT00369031 1 St George’s,
University of London Terminated

Vacc-4x Peptides Endocine NCT01473810 1 Oslo University
Hospital Completed

MYM-V101 Subunit virosome NCT01084343 1 Mymetics
Corporation Completed

COVID-19

Gam-COVID-Vac Adenoviral-
vectored NCT05248373 1/2

Gamaleya Research
Institute of

Epidemiology and
Microbiology

Not yet
recruiting

AZD1222 Adenoviral-
vectored NCT05007275 1 Imperial College

London Recruiting

AD17002 Subunit LTh(αK) NCT05069610 1 Advagene Biopharma
Co., Ltd. Recruiting

MV-014-212 RSV-vectored NCT04798001 1 Meissa Vaccines, Inc. Recruiting

DelNS1-nCoV-RBD
LAIV

Influenza virus
Vectored NCT04809389 1 The University of

Hong Kong
Active, not
recruiting

DelNS1-2019-nCoV-
RBD-OPT1

Influenza virus
Vectored NCT05200741 1 The University of

Hong Kong
Not yet

recruiting

ACM-001 Subunit CpG NCT05385991 1 ACM Biolabs Not yet
recruiting

SC-Ad6-1 Ad6-vectored NCT04839042 1
Tetherex

Pharmaceuticals
Corporation

Recruiting

AVX/COVID-12
Vaccine NDV Vectored NCT05205746 2 Laboratorio Avi-Mex,

S.A. de C.V. Recruiting

NDV-HXP-S NDV Vectored NCT05181709 1 Sean Liu Recruiting
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Table 2. Cont.

Disease Vaccine
Identification Type Adjuvant ClinicalTrials.gov

Identifier Phase Sponsor Status

RSV

SeVRSV Sendai Virus
Vectored NCT03473002 1 NIAID Completed

Ad26.RSV.preF Ad26-vectored NCT03334695 2 Janssen Vaccines and
Prevention B.V. Completed

RSV001 PanAd3-RSV NCT01805921 1 ReiThera Srl Completed

Ebolavirus
Zaire Glyco-

protein

HPIV3/∆HNF/EbovZ
GP HPIV3-vectored NCT03462004 1 NIAID Suspended

Allergen CYT005-AllQbG10
Immunomodulatory

principle
(QbG10)

NCT00293904 1 Cytos Biotechnology
AG Completed

Anthrax BW-1010 Recombinant
Anthrax Vaccine

Nanoemulsion
Adjuvanted NCT04148118 1 BlueWillow Biologics Completed

Norwalk Norwalk VLP Vaccine VLP NCT00806962 1 LigoCyte
Pharmaceuticals, Inc. Completed

Cholera Cholera Toxin B
Subunit (CTB) Subunit NCT00820144 1 Centre Hospitalier

Universitaire de Nice Completed

Tuberculosis Ag85B-ESAT6 fusion
protein H1 Subunit LTK63 NCT00440544 1 St George’s,

University of London Terminated

The specific structure and immune response of the nasal mucosa render several of
the vaccine adjuvants applicable to intramuscular or subcutaneous administration non-
applicable to mucosal vaccines. The classification of the nasal mucosal adjuvants resembles
mucosal adjuvants and comprises the following two categories: Immunostimulatory ad-
juvants and immune delivery system adjuvants. While immunostimulatory adjuvants,
e.g., E. coli heat-labile enterotoxin (LT), cholera toxin (CT), TLR ligands, chitosan, and
cytokines, activate the natural immunity directly, the immune delivery system adjuvants
comprise viral vectors, virosomes, liposomes, nanoemulsions (nEs), virus-like particles
(VLPs), immune-stimulating complexes (ISCOMs), and a variety of polymers, including
poly(D,L-lactide-coglycolide) (PLGA), poloxamers, and alginate [88,89].

7.1. Immunostimulatory Adjuvants

The nasal mucosa is constantly exposed to an enormous number of pathogenic mi-
croorganisms. Generally, the endogenous cellular and molecular mechanisms in the mucosa
downregulate the mucosal immune response to foreign antigens [90], probably to prevent
inducing excessive immune response against harmless antigens that are frequently encoun-
tered by the mucosa. The physical barrier and the weaker immune response of the nasal
mucosa render it difficult for most protein or nucleic acid-based vaccines to induce a robust
protective antigen-specific mucosal immune response. However, the immunosuppressive
activity of the mucosa may be evaded using mucosal adjuvants.

7.1.1. Toxoid Adjuvants

The currently used mucosal adjuvants include cholera toxin (CT) and heat-labile
enterotoxins (LT), in which the ADP-ribosyltransferase activity and the structural properties
of the A subunit combined with the membrane-bound activity of the B subunit contribute
to the adjuvant activity of LT and CT. It is believed that CT and LT induce mucosal
immune responses by: (1) Increasing the permeability of epithelial cells and enhancing their
antigen uptake; (2) enhancing the antigen presentation on different APCs; (3) regulating
B cell differentiation and promoting IgA secretion; (4) regulating T cell proliferation and
cytokine production [56,86]. However, the target cells and the underlying specific molecular
mechanisms remain elusive to date.

Phosphocholine (PC) is a widely studied broad-spectrum mucosal vaccine. When
conjugated with keyhole limpet hemocyanin (PC-KLH) and CT adjuvant, it induced and
enhanced the IgA titer in nasal wash and saliva. In addition, it increased the response of IL-
4 and IFN by CD4+ T cells. This finding indicated the feasibility of using PC combined with
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toxoid adjuvant as a mucosal vaccine against upper respiratory tract infections and allergic
rhinitis [91]. However, nasal immunization may damage the olfactory nerve [92]. Although
CT and LT have been demonstrated as powerful mucosal immune adjuvants in several
studies, their application to humans is limited due to their toxicity, as evidenced in the case
of CT adjuvants used in polio vaccines [93]. The generation of CT and LT mutants through
genetic engineering could be one solution for eliminating or reducing their toxicity while
retaining their adjuvant properties and using them in subunits or inactivated nasal vaccine.
For instance, isolated LT enzyme A1 (LTA1) has demonstrated excellent efficacy and safety
as an immune adjuvant for inactivated influenza vaccines [94]. LThαK lacks adenosine
diphosphate (ADP)-ribosyltransferase activity and is a detoxified E. coli heat-unstable toxin
derivative that has been studied extensively as a nasal mucosal adjuvant owing to its
prolonged nasal retention and safety. The use of LThαK (NCT03784885) as an adjuvant for
a trivalent inactivated influenza vaccine in phase II clinical trial revealed an acceptable level
of safety and higher antigen-specific IgA responses after two nasal vaccinations [95,96].
CTA1-DD is a nontoxic mucosal adjuvant with the enzymatic properties of CT combined
with B cell targeting capability. In addition, no neurotoxicity was observed after nasal
vaccination with CTA1-DD, which ensures its safety as an adjuvant for nasal vaccines [97].
The HRSV fusion pre-F protein with CTA1-DD as an adjuvant could serve as a potential
nasal vaccine candidate against the hRSV infection in humans [98]. LTK63, another nontoxic
mutant of LT, also demonstrated the safety and efficacy of nasal mucosal adjuvants [99].
Not only the amino acid substitutions of nontoxic mutants are needed for acquiring suitable,
safe, and adjuvant-active toxoid adjuvants, but also the other strategies, such as combining
with other adjuvants and reducing dosage, could be considered. A similar case is the AS01
that contains the MPLA and the saponin QS-21, where the toxicity of QS-21 is reduced
when combined with MPLA [100].

7.1.2. Cytokine Adjuvants

The type I IFN has been used as the adjuvant for the inactivated nasal influenza
vaccine in phase I clinical trial (NCT00436046), which has been successfully completed. The
IL-1 family cytokines, including IL-1A, IL-1B, IL-18, and IL-33, have been used as adjuvants
for the recombinant influenza virus hemagglutinin (RHA) vaccine. This vaccine-adjuvant
combination could significantly stimulate the production of nasal mucosal IgA and system
anti-RHA IgG after nasal vaccination in BALB/c mice [101,102]. Furthermore, DNA-IL-12
plus CTB was used as a mucosal adjuvant for DNA prime/MVA boost nasal vaccinations,
which resulted in enhanced cellular systemic and mucosal genital tract immunity [103].
IL-15 has been proposed as a nasal mucosal adjuvant when developing a novel SARS-
CoV-2 vaccine [104]. Other cytokines, such as those from the GM-CSF family and TNF
family, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IL-18, are also used as mucosal adjuvants to
enhance the sIgA and systemic immune responses. They were studied as candidate nasal
vaccine adjuvants [105]. Overall, cytokine adjuvants were studied as mucosal adjuvants for
inactivated and subunit vaccines, and preliminary research results were presented.

7.1.3. TLR Agonist Adjuvants

TLRs are a group of pattern recognition receptors (PRRs), which recognize microbial
pathogens and initiate host response to infection. The activation of TLRs induces a ro-
bust and immediate innate immune response, which leads to various adaptive immune
responses [106]. Therefore, TLRs are ideal targets when developing effective adjuvants,
especially for subunit or inactivated nasal vaccine. Monophospholipid A (MPL), the toxicity
of which is 1/1000th of the toxicity of lipopolysaccharide (LPS) [107], has been used as a
component of the injectable vaccine adjuvants AS01, AS02, AS04, and AS15 [108–111]. In
a study, nasal administration of mice with the novel fusion protein MRPH-FIMH signifi-
cantly increased the IgG and IgA contents in serum, nasal washings, vaginal washes, and
urine samples, while the addition of MPL as an adjuvant further enhanced the specific
humoral and cellular responses against FIMH and MRPH [112]. In another study, nasal



Pharmaceutics 2022, 14, 1983 12 of 26

vaccination of Pseudomonas aeruginosa PCRV with TLR9 agonist CpG ODN as the adjuvant
significantly increased the titers of PCRV-specific IgA, which is probably a component of
the disease protection mechanism [113]. The use of N3 cationic adjuvant for inactivated
influenza virus vaccine significantly enhanced the systemic and mucosal-specific immune
responses against influenza upon immunization, while the combination of N3 cationic
adjuvant with a TLR5 agonist further enhanced these responses and durably protected
against the heterologous influenza A/H1N1/CA09PDM virus [114]. The TLR3 agonist
PolyI:C and the TLR7/8 agonist resiquimod (R848) are also reported to be effective in
inducing mucosal immune responses [115–117], suggesting that TLR agonists have the
potential to be adjuvants for nasal vaccines.

7.1.4. STING Agonist Adjuvants

Cyclic dinucleotides that activate the stimulator of interferon genes (STING) have
been evaluated as mucosal adjuvants. Nasal administration of a subunit vaccine with a
synthetic cyclic dinucleotide (cyclodiguanide) adjuvant could induce protective immunity
against Mycobacterium tuberculosis in mice, and this response was associated with the
effective induction of TH17 cells [118]. Other cyclic dinucleotides, such as cyclic adenosine
diphosphate (cyclic di-AMP) and cyclic adenosine diphosphate (cyclic di-GMP), have also
demonstrated potential as mucosal adjuvants in previous studies [119,120]. The above
reports provide a strong theoretical basis for the further development of nasal mucosal
adjuvants targeting the STING pathway.

7.1.5. Bioadhesive Adjuvants

Bioadhesive-based nasal vaccines are preferred for achieving nasal clearance [121]. In
this context, chitosan is recognized as an established mucosal adjuvant/delivery system
that has been extensively studied owing to its low toxicity, adhesion, pro-permeability, im-
munostimulation, ability to be absorbed in human tissues, and excellent histocompatibility
with human tissues and organs [122–124]. In addition, the effectiveness of chitosan as a
nasal adjuvant has been confirmed in a mouse model. Nasal vaccination of chitosan and
pneumococcal surface protein A (PspA) reportedly induced lung PspA-specific IFNγ and
STING signaling-dependent IgG1, IgG2c, and IgA responses [125]. The non-ionic block
copolymer named Pluronic F127 (F127), when used with chitosan, enhanced mucosal IgA
secretion [126]. Moreover, EG-coated polylactic acid 80 enhanced IgG and IgA immune
responses. PEG-grafted chitosan nanoparticles reportedly enhanced the nasal absorption of
insulin [127]. These studies suggested that chitosan may be used in combination with other
mucosal adjuvants for protein nasal vaccine to synergistically enhance the immune effect.

Nasal vaccination of protein-coated chitosan nanoparticles encapsulating the influenza
mRNA molecules reportedly protected chickens against avian influenza [128]. The nasal
mucosal immunization with SC2-spike DNA vaccine transported on a modified gold-
chitosan nanocarrier resulted in an immune response with high levels of antibodies (IgG,
IgA, and IgM) and lung mucosal and TRM T cells [129]. Recently, chitosan-based nasal
vaccines have emerged as a research hotspot, and with continued research, chitosan is
expected to play a further important role as an immune adjuvant combined with protein
and nucleic acid-based nasal vaccines.

Another substance that exhibits mucoadhesive properties is PLGA. PLGA and PLGA/
chitosan (chit) nanoparticles (NPs) with mucoadhesive properties may be used to encapsu-
late ropinirole hydrochloride (RH), a dopaminergic agonist against Parkinson’s disease,
to facilitate RH delivery [130]. The feasibility of mucoadhesion adjuvants for clinical use
needs to be validated by further research.

7.1.6. Cell-Targeted Adjuvants

M cell-targeting vaccines are based on the endocytic uptake of foreign antigens by
M cells. UEA-1 is a plant lectin that is used as an M cell-specific ligand for targeting α-l-
fucose (murine PP M cells). The HIV peptide and UEA-1 entrapped in PLG microparticles
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reportedly enhanced the mucosal and systemic immune responses through nasal immu-
nization, which validated UEA-1 as an M cell-targeting nasal vaccine component [131].
Certain specific molecules expressed highly on the surface of M cells, such as glycoprotein 2,
uromodulin, the cellular prion protein (PrPC), α(1,2)-fucose-containing carbohydrate, C5aR,
α-2,3 sialic acid, and β1 integrin, are also used as receptors in M cell targeting [132,133].

To induce an immune response in the respiratory tract, the antigens must be taken
up by APCs [134]. The activation, maturation, and proliferation of DCs are regulated by a
range of molecules, including viral components, antigenic molecules of bacterial origin,
growth factors, and cytokines [135,136]. For instance, FMS-like tyrosine kinase 3 (FLT3) is
an important receptor tyrosine kinase in cell signaling. The binding between FLT3 and the
ligand (FL) of FLT3 is reported to induce conformational changes in the pre-existing homod-
imer and consequently activate the tyrosine kinase, thereby inducing a DC response [137].
Nasal immunization of mice with ovalbumin (OVA) along with a plasmid encoding FL
(pFL) as the nasal DC-targeting adjuvant reportedly induced OVA-specific SIgA and sys-
temic IgG and IgA Ab responses [138]. The nasal administration of a combination of DNA
plasmids encoding the FLT3 ligand (pFL) and CpG oligodeoxynucleotide 1826 (CpG ODN)
(FL/CpG), as the nasal mucosal adjuvant, effectively enhanced the DC responses, balanced
the Th1 and Th2 type cellular responses, and provided rFimA-specific IgA-based protection
in the respiratory tract against Porphyromonas gingivalis [139].

Furthermore, the synthetic glycoside named α-galactosylceramide (also referred to as
α-GalCer; composed of an α-linked sugar and a lipid fraction) binds to the non-classical
MHC I molecule CD1d, thereby inducing the proliferation of natural killer T (NKT) cells
and secretion of IFNγ, which results in the expression of the semi-invariant Vk14 T cell
receptor and ultimately the induction of innate and adaptive immunity [140]. The opti-
mized α-GalCer exhibited better solubility and was effective in stimulating the NKT cells,
thereby inducing the release of Th1/Th2 cytokines, which significantly elevated the titers
of systemic IgG and mucosal IgA antibody and enhanced the production of cytotoxic T
lymphocytes in mouse and in vitro human system. These findings suggest that α-GalCer
analogs with branched acyl chains could serve as effective mucosal adjuvants for inducing
protective immune responses against influenza virus infection [141,142].

Activated mast cells contribute to stimulating inflammatory mediators and releasing
immune cells. The mast cell activators named polymeric compound 48/80 (C48/80) and
the cationic peptide mastoparan 7 (M7) have been used as adjuvants in nasal mucosal
immunization [143], for example, pneumonia vaccine in combination with C48/80 could
combat lethal pneumococcal infection [144]. Certain small molecule mast cell activators
have also exhibited certain mucosal adjuvant effects and may be novel mucosal adjuvants.

7.2. Delivery System Adjuvants

The size of the delivery particles affects the cellular uptake and pharmacokinetics of
the delivered molecules. In addition, the surface modification of the delivery particles alters
the specificity and effectiveness of the ligand–APC interactions [145]. Viral vectors, when
used in nasal vaccine, proliferate in the host tissues after nasal mucosal immunization,
offering greater probability of stimulating immune responses. In the case of delivery
vectors other than the virus-based system, factors such as size, biodegradability, adhesion,
internalization rate, pH sensitivity, antigen release rate, and adjuvant activity have to be
considered, as well.

7.2.1. Viral Vectors

Different vectors usually elicit different immune responses and, therefore, provide dif-
ferent degrees of protection. Therefore, certain vectors may be preferred when developing
nasal mucosal-targeted vaccines owing to their unique properties. For instance, adenovirus
type 5 (Ad5) is a common respiratory virus, and Ad5-based recombinant vectors have
been used widely as vaccine candidates against SARS-CoV-2, influenza, Ebola, HIV-1,
and other infectious diseases [146,147]. Notably, nasal mucosal immunization with an
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Ad5 vector-based vaccine provides better mucosal immunity and protection, which can
effectively reduce viral load in the upper respiratory tract. Therefore, this vaccine is a
suitable candidate for preventing SARS-CoV-2 infection and transmission and mitigat-
ing the impact of the pandemic [146,148,149]. Another nasal vaccine developed against
SARS-CoV-2 was based on the replication-incompetent human parainfluenza virus type 2
(HPIV2) [150]. This vaccine delivers ectopic genes as stable RNA molecules and ectopic
proteins to the membrane, thereby inducing high levels of neutralizing IgG and mucosal
IgA antibodies in mice for the neutralization of SARS-CoV-2 spike proteins. The vaccine is
currently in clinical trial on healthy human volunteers [151]. Human parainfluenza virus
types 1 and 3 (HPIV1 and HPIV3) may be modified through genetic engineering to express
the RSV fusion pre-F proteins, which serve as nasal vaccine candidates with protective
effects [152,153]. Similarly, the influenza virus is a promising vaccine vector, which is
being used for developing a novel nasal vaccine against SARS-CoV-2. This novel vaccine
induces serum neutralizing antibodies comparable to the levels generated in the natural
infection [154,155]. Recombinant attenuated influenza viruses expressing the structural
domain of the RSV G protein reportedly induced robust IgA-specific immune responses
and TRM T cell responses in the lung and bronchoalveolar fluid of mice, thereby protecting
the mice from RSV attack [156,157]. Nasal immunization with HIV vaccine plus BCG or
influenza virus-based vectors was reported to promote HIV-specific cellular and humoral
immune responses in the airway and vagina of mice [158]. Nasal or oral administration of
the baculovirus-vectored human papillomavirus (HPV) vaccine demonstrated protective
effects against vaginal HPV infection [159].

However, the immunoprotection of the Ad5 vector-based vaccines may be reduced
due to the pre-existing anti-Ad5 immunity in humans resulting from natural exposure or
prior vaccination. The vector-specific serum antibodies were reported to severely impede
the seroconversion (change from seronegative to seropositive condition) of neutralizing
antibodies against SARS-CoV-2 in volunteers with intramuscular vaccination [160]. The
nasal mucosal immunization against Ad5-S-nb2 in macaques was reported to induce a
significantly delayed antibody production against Ad5 and lower serum antibody titers
compared to intramuscular administration [148]. This finding suggested that nasal mucosal
immunization with adenoviral vector-based vaccines is less affected by pre-existing Ad5
antibodies [161,162]. Despite the scientific concerns regarding an increased risk of HIV
infection upon using adenoviral vector-based vaccines [163], the HAdV-26 COVID-19
vaccine has been used widely in large-scale trials or after emergency authorizations, and no
increase in the HIV-1 infection rates was reported [163]. The LAIV vector-based SARS-CoV-
2 attenuated vaccine (dNS1-RBD) has completed phase I and II clinic trials, which revealed
weak T cell immunity in the peripheral blood and weak humoral and mucosal immune
responses against SARS-CoV-2 in the vaccinated recipients. However, further studies
are warranted to validate the safety and efficacy of the nasal vaccine as an alternative
immunization route to the currently used intramuscular SARS-CoV-2 vaccine [164].

In clinical trials, viral vector-based vaccines may prove to be significantly ineffec-
tive when the same vector or similar vectors are used, as the efficacy of human vaccines
is reduced in individuals that have been previously infected with these viruses. Sev-
eral non-homologous viral vectors have been studied extensively, among which is the
Newcastle disease virus (NDV), which was used as a vaccine vector for SARS in 2003
and SARS-CoV-2 in 2019 [165–167]. NDV vectors expressing wild-type S or membrane-
anchored S and without polybasic cleavage sites may also be used as vaccine vectors against
SARS-CoV-2. These COVID-19 vaccine candidates reportedly protected mice from mouse-
adapted SARS-CoV-2 attack without any detectable NDV titers and viral antigens in the
lung [168]. Another example is the avian paramyxovirus type 3 (APMV3), which was
used as the vaccine vector against SARS-CoV-2 [169]. In addition, the rabies virus (RV)
vaccine strain, a recombinant vesicular stomatitis virus (VSV), and cowpea mosaic virus
(CPMV) have been used as candidate vaccine vectors [24,170]. However, the mutations
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and biosafety of these candidate viral vectors remain unclear to date, warranting further
investigation prior to application.

7.2.2. Liposome Delivery System

Liposomes are spherical vesicles with a bilayer structure formed by the phospholipids
dispersed in an aqueous solution. Liposomes have diameters ranging from 10 nm to several
µm and contain an aqueous phase encapsulated inside their structures [171]. The encap-
sulated aqueous phase contains water-soluble compounds (e.g., proteins, peptides, and
nucleic acids), while the lipophilic compounds (e.g., antigens and adjuvants) are embedded
in the lipid bilayer of the liposome structures. Liposomes offer the advantages of prevent-
ing antigen degradation, delivering poorly soluble drugs, and reducing drug toxicity. In
addition, the encapsulation of the drug inside a liposome allows for the customization of
the localization and distribution of the drug at the target site. These advantages facilitate
the effect of vaccine antigens in the nasal mucosal environment.

Cationic liposomes to be used as a vaccine adjuvant-delivery system may be prepared
using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dimethyl dioctadecyl ammo-
nium bromide (DDA), and dimethylaminoethane-carbamoyl-cholesterol to further enhance
the immunogenicity of vaccines [171]. In comparison to non-cationic lipid vesicles, DDA-
and PEG-based cationic liposomes used as a vaccine adjuvant-delivery system further
enhance the immune responses [172]. In addition, nasal vaccination with cationic lipo-
somes prepared from DOTAP and carbamoyl-cholesterol are efficiently internalized by
DCs present in the NALT, which induces the production of antigen-specific IgA and T cell
responses in the nasal mucosa tissues [173,174]. Nasal mucosal vaccination with pneu-
mococcal surface protein A plus cationic liposomes composed of DOTAP and cholesteryl
3β-N-(dimethylaminoethyl)-carbamate (DC-chol) (DOTAP/DC-chol liposome) reportedly
induced protective immunity against Streptococcus pneumoniae infection in mice [175].
CAF01 is a novel liposomal adjuvant system comprising cationic liposomal carriers (DDA
and glycolipid immunomodulators (alginate 6,6-dibehenate (TDB)) with a stable struc-
ture [176]. Studies have demonstrated that nasal vaccination with CAF01-based vaccines
for the prevention of influenza or Streptococcus pyogenes was effective in inducing the
production of mucosal effector T cells and IgA immune responses and also protected the
vaccinated model animals. In addition, the spleen of CAF01-vaccinated mice produced
four-fold higher levels of antigen-specific IFN-γ responses compared to the mice with non-
adjuvanted vaccination. This finding demonstrated that CAF01 significantly enhanced the
levels of vaccine-specific serum IgG [177]. Endocine™, which consists of the lipids mono-
olein and oleic acid, has been used in a nasal vaccine (Vacc-4x). The clinical trial confirmed
the safety and mucosal and systemic antibody responses, as well as the dose-dependent
vaccine-specific T cell responses [87]. VaxiSomeTM, a liposome composed of a novel poly-
cationic sphingolipid complexed with cholesterol is another effective adjuvant/carrier
system for nasal mucosal immunization against influenza in mice [178,179]. Furthermore,
the stabilization of liposomes through the layer-by-layer deposition of polyelectrolytes is
reported to increase antigen-specific IgA and IgG antibody levels and T cell-based immune
responses [180]. This finding suggests that the optimization of liposomes significantly
impacts their stability and vaccine-induced immune responses.

Cationic cyclodextrin-polyethylenimine 2 k conjugate (CP 2 k) complexed with anionic
mRNA encoding HIV gp120 reportedly overcame the epithelial physical barrier, prolonged
nasal retention, enhanced the paracellular delivery of mRNA, minimized toxin absorption
in the nasal cavity, induced balanced Th1/Th2/Th17 types, and achieved a robust systemic
and mucosal anti-HIV immune response [181]. Cationic cyclodextrin-PEI conjugated to
the IVT mRNA encoding OVA, significantly promoted nasal mRNA vaccine delivery in
mice after nasal vaccination and also stimulated DC maturation and migration, which
further enhanced the humoral and cellular immune responses [182]. The advent of mRNA
vaccines against SARS-CoV-2 may further facilitate the development of lipid nanoparticle
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nasal mucosal RNA vaccines against respiratory infectious diseases [183]. This suggests
that liposomes could be used for delivering several forms of antigens.

7.2.3. VLP Delivery System

VLPs are self-assembling biomolecules that closely resemble native viruses. VLPs do
not contain any genetic material, which is beneficial for APC recognition and uptake and
also for BCR crosslinking [184,185]. In comparison to recombinant protein vaccines, VLPs
exhibit excellent stability, which is conducive to the development of mucosal vaccines [186].
For instance, VLP-based norovirus vaccine used with chitosan adjuvant has exhibited
effective nasal immunization [187]. In addition, nasal immunization with Norwalk VLP
was reported to induce antibody production at distal mucosal sites [188].

7.2.4. Virosome-Mediated Delivery System

Virosomes are vesicles with a monolayer or a bilayer phospholipid membrane that
encapsulates virus-derived proteins, although these could not replicate. Virosomes are able
to fuse with target cells, and owing to their delivery effectiveness and demonstrated safety,
virosomes are considered to be used for directly delivering the vaccine antigens inside the
host cells [189]. Virosomes containing surface HIV-1 gp41-derived P1 lipidated peptide
(MYM-V101) were reported to induce mucosal anti-gp41 antibodies against conserved
gp41 motifs. In addition, these virosomes are expected to possess the HIV-1 transcytosis
inhibition activity and may, therefore, contribute to the reduction in sexually transmit-
ted HIV-1 (NCT01084343) [190]. Nasal immunization with nasal virosome-formulated
influenza subunit vaccine in a ferret model prevented viral shedding almost entirely and
also protected against homologous viral attack compared to parenteral immunization [191].
The results of phase II clinical trial of an influenza vaccine plus HLT and nasal virosomes as
adjuvants revealed an efficient induction of IgA-neutralizing antibodies in the mucosa [192].
Moreover, Bárbara Fernandes reported the successful construction of a virosome-based
COVID-19 vaccine candidate [193], which indicates good prospects for using virosomes as
a vaccine delivery system.

7.2.5. ISCOMs

ISCOMs are negatively charged nanoparticles with cage-like structures. ISCOMs are
composed of phospholipids, cholesterol, and Quil A (the saponin derived from the bark of
the Quillaja saponaria plant), all of which are capable of accommodating a wide range of
antigens. Hydrophobic antigens may be embedded or anchored directly into the colloidal
structure of the lipid, while hydrophilic antigens require certain modifications prior to their
effective loading into ISCOMs [194]. Initially, ISCOMs were used for injectable vaccination.
Currently, these are being gradually introduced to mucosal vaccination (e.g., nasal and
oral). ISCOMs-based vaccines induce an antigen-specific mucosal IgA response, producing
serum IgG antibodies and cytotoxic T cells (CTL) [195]. Similar to CT and LT, ISCOMs
break the immune tolerance and exert potent mucosal adjuvant activities, secreting IgA
and inducing systemic IgG immune responses and CTL responses [196].

ISCOMs-based vaccines containing influenza virus, Mycobacterium tuberculosis, RSV,
and measles antigen have been indicated to effectively induce an immune response in the
body after nasal/pulmonary vaccination, producing high titers of IgA in the nasal cavity
and the lung [197–203]. In certain cases, this local mucosal inoculation produces greater
immunity compared to that produced upon injectable vaccination. ISCOMs prepared using
Quilaja brasiliensis in place of Quil A may also be used to encapsulate the OVA antigen and
then used as a vaccine adjuvant-delivery system to induce the production of local mucosal
and distal IgA secretion after nasal vaccination [203]. Furthermore, the addition of DNA
plasmids to ISCOMs reportedly induced local cellular and antibody responses against
Haemophilus influenzae after nasal immunization [204]. The combination of CTA1-DD and
ISCOMs was reported to enhance the immunity against BCG through the recruitment of
antigen-specific effector cells to the infected site [200].
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However, the use of ISCOMs as a mucosal vaccine adjuvant-delivery system for nasal
vaccination has certain limitations. The hydrophilic antigens must be modified to improve
lipophilicity for effective delivery, while certain saponin-based adjuvants are highly toxic
when used at high doses. These limitations have curbed the development and application
of ISCOMs in vaccine formulations to a certain extent.

7.2.6. NE-Based Adjuvants

Although emulsion-based adjuvants have demonstrated success in injectable vaccine
applications, these adjuvants have not reached the standard of mucosal vaccine clinical
application to date [205]. Nasal immunization of recombinant anthrax protein vaccine
(BW-1010) in nanoemulsion (NE) adjuvant (oil-in-water emulsion) is in the currently on-
going phase I trial (NCT04148118) conducted by Bluewillow Biologics. The NE adjuvant
was observed to promote Th1 cellular immunity and Th17 cellular immunity, which is
consistent with the results obtained for the Mycobacterium tuberculosis vaccine plus NE
adjuvant system [206,207]. W805EC is another oil-in-water NE adjuvant, when combined
with the inactivated influenza vaccine, the protective hemagglutination inhibiting (HI)
antibody and influenza-specific IgG and IgA were elicited [208]. PEG-b-PLACL (PELC) is
a squalene-based oil-in-water NE adjuvant that reportedly promotes antigen penetration
and uptake in the nasal mucosa and enhances protein interactions [209]. A preclinical
study conducted on a guinea pig model of infection has confirmed the protection provided
by this vaccine system, which was also correlated with systemic and mucosal antibody
induction. NB-1008 is a surfactant-stabilized soybean oil-in-water NE adjuvant. The nasal
mucosal immunization with the NB-1008 adjuvant comprising influenza virus antigens
was reported to induce mucosal and serum antibody responses along with a robust cellular
Th1 immune response [210]. Moreover, 5–15 nm NEs prepared using coupling techniques,
such as lipopeptide coupled with polylysine nuclei, effectively promoted the systemic,
mucosal, and cellular immune responses after nasal vaccination, thereby protecting against
Streptococcus pyogenes infection [211].

8. Conclusions

Nasal mucosal immunization offers the advantage of inducing mucosal sIgA, cel-
lular and systemic immune responses, and immune responses at distal mucosal sites,
which would improve the effectiveness of vaccine against pathogens. The success of
nasal LAIV has inspired the development of numerous other nasal attenuated vaccines,
vector-based vaccines, and nasal mucosal adjuvant vaccines. The advent of genetic
engineering further facilitated the success of attenuated vaccine strains, with several
of the nasal mucosal attenuated vaccines currently in phase I, II, and III clinical trials,
indicating good prospects for nasal mucosal attenuated vaccines. The viral vector-based
vaccines result in greater stimulation of the immune response, although whether the
vector-targeted immune response reduces the immunogenicity of the vaccine is still
confusing. In the case of inactivated vaccines, subunits vaccines, and nucleic acid vac-
cines, the addition of mucosal adjuvants, such as toxoids, cytokines, and TLR agonists,
enhances the immunogenicity of antigens, while ISCOMs, NEs, VLPs, and virosomes are
effective in delivering antigens and ensuring antigenic stability. Some adjuvant-added
nasal vaccines comprise both immune-enhancing and delivery-facilitating adjuvants to
promote the delivery of vaccines to immune cells and also enhance the immunogenicity
of vaccines. The establishment of novel adjuvanted nasal vaccines as safe and effec-
tive requires validation through extensive preclinical and clinical trials, and although
the successful development of nasal vaccines has a long way to go, it owns positive
implications. If the safety of the adjuvant-added nasal vaccines is guaranteed, the ef-
fective candidate for peptide, subunit, inactivated nasal vaccines would be enough to
warrant success.



Pharmaceutics 2022, 14, 1983 18 of 26

Author Contributions: Writing—original draft preparation, X.N., J.Z. and X.Y.; writing—review and
editing, S.H., K.D., X.L. and X.Y. All authors have read and agreed to the published version of the
manuscript.

Funding: The present study was supported by the National Science and Technology Major Project
titled “Major New Drug Manufacturing Program” of China (2016ZX09106003-008) (Wuhan Institute
of Biological Products Co., Ltd.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest that could have influenced the present
study in any manner.

References
1. Churdboonchart, V.; Bhamarapravati, N.; Sirisidhi, K. Immune response in rabbits to dengue viral proteins. Southeast Asian J.

Trop. Med. Public Health 1990, 21, 621–629.
2. Golden, G. Smallpox vaccination: The Minnesota story. Minn. Med. 2003, 86, 20–25.
3. Yin, L.-T.; Hao, H.-X.; Wang, H.-L.; Zhang, J.-H.; Meng, X.-L.; Yin, G.-R. Intranasal Immunisation with Recombinant Toxoplasma

gondii Actin Partly Protects Mice against Toxoplasmosis. PLoS ONE 2013, 8, e82765. [CrossRef]
4. Almeida, A.J.; Alpar, H.O. Nasal Delivery of Vaccines. J. Drug Target. 1996, 3, 455–467. [CrossRef]
5. Zens, K.D.; Chen, J.K.; Farber, D.L. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to

influenza infection. JCI Insight 2016, 1, e85832. [CrossRef]
6. Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal Drug Delivery: How, Why and What for? J. Pharm. Pharm. Sci. 2009,

12, 288–311. [CrossRef]
7. Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020, 41, 1100–1115.

[CrossRef]
8. Chaturvedi, M.; Kumar, M.; Pathak, K. A review on mucoadhesive polymer used in nasal drug delivery system. J. Adv. Pharm.

Technol. Res. 2011, 2, 215–222. [CrossRef]
9. Xing, Y.; Lu, P.; Xue, Z.; Liang, C.; Zhang, B.; Kebebe, D.; Liu, H.; Liu, Z. Nano-Strategies for Improving the Bioavailability of

Inhaled Pharmaceutical Formulations. Mini-Rev. Med. Chem. 2020, 20, 1258–1271. [CrossRef]
10. Iwasaki, A.; Foxman, E.F.; Molony, R.D. Early local immune defences in the respiratory tract. Nat. Rev. Immunol. 2017, 17, 7–20.

[CrossRef]
11. Brandtzaeg, P. Immune Functions of Nasopharyngeal Lymphoid Tissue. Adv. Oto-Rhino-Laryngol. 2011, 72, 20–24. [CrossRef]
12. Date, Y.; Ebisawa, M.; Fukuda, S.; Shima, H.; Obata, Y.; Takahashi, D.; Kato, T.; Hanazato, M.; Nakato, G.; Williams, I.R.; et al.

NALT M cells are important for immune induction for the common mucosal immune system. Int. Immunol. 2017, 29, 471–478.
[CrossRef] [PubMed]

13. Kuper, C.F.; Koornstra, P.J.; Hameleers, D.M.; Biewenga, J.; Spit, B.J.; Duijvestijn, A.M.; Vriesman, P.J.V.B.; Sminia, T. The role of
nasopharyngeal lymphoid tissue. Immunol. Today 1992, 13, 219–224. [CrossRef]

14. Fujimura, Y. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch.
Int. J. Pathol. 2000, 436, 560–566. [CrossRef]

15. Kim, S.; Jang, Y.-S. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp. Mol. Med. 2014, 46, e85.
[CrossRef]

16. Yamamoto, M.; Pascual, D.W.; Kiyono, H. M Cell-Targeted Mucosal Vaccine Strategies. Curr. Top. Microbiol. Immunol. 2011,
354, 39–52. [CrossRef]

17. Brandtzaeg, P.; Pabst, R. Let’s go mucosal: Communication on slippery ground. Trends Immunol. 2004, 25, 570–577. [CrossRef]
18. Dunne, P.J.; Moran, B.; Cummins, R.C.; Mills, K.H.G. CD11c+CD8alpha+ dendritic cells promote protective immunity to

respiratory infection with Bordetella pertussis. J. Immunol. 2009, 183, 400–410. [CrossRef]
19. Kiyono, H.; Fukuyama, S. NALT- versus PEYER’S-patch-mediated mucosal immunity. Nat. Rev. Immunol. 2004, 4, 699–710.

[CrossRef]
20. Brandtzaeg, P.; Farstad, I.N.; Haraldsen, G. Regional specialization in the mucosal immune system: Primed cells do not always

home along the same track. Immunol. Today 1999, 20, 267–277. [CrossRef]
21. McGhee, J.R.; Fujihashi, K. Inside the Mucosal Immune System. PLOS Biol. 2012, 10, e1001397. [CrossRef] [PubMed]
22. Nizard, M.; Diniz, M.O.; Roussel, H.; Tran, T.; Ferreira, L.C.; Badoual, C.; Tartour, E. Mucosal vaccines: Novel strategies and

applications for the control of pathogens and tumors at mucosal sites. Hum. Vaccin. Immunother. 2014, 10, 2175–2187. [CrossRef]
[PubMed]

23. Brandtzaeg, P. Potential of Nasopharynx-associated Lymphoid Tissue for Vaccine Responses in the Airways. Am. J. Respir. Crit.
Care Med. 2011, 183, 1595–1604. [CrossRef]

http://doi.org/10.1371/journal.pone.0082765
http://doi.org/10.3109/10611869609015965
http://doi.org/10.1172/jci.insight.85832
http://doi.org/10.18433/J3NC79
http://doi.org/10.1016/j.it.2020.10.004
http://doi.org/10.4103/2231-4040.90876
http://doi.org/10.2174/1389557520666200509235945
http://doi.org/10.1038/nri.2016.117
http://doi.org/10.1159/000324588
http://doi.org/10.1093/intimm/dxx064
http://www.ncbi.nlm.nih.gov/pubmed/29186424
http://doi.org/10.1016/0167-5699(92)90158-4
http://doi.org/10.1007/s004289900177
http://doi.org/10.1038/emm.2013.165
http://doi.org/10.1007/82_2011_134
http://doi.org/10.1016/j.it.2004.09.005
http://doi.org/10.4049/jimmunol.0900169
http://doi.org/10.1038/nri1439
http://doi.org/10.1016/S0167-5699(99)01468-1
http://doi.org/10.1371/journal.pbio.1001397
http://www.ncbi.nlm.nih.gov/pubmed/23049482
http://doi.org/10.4161/hv.29269
http://www.ncbi.nlm.nih.gov/pubmed/25424921
http://doi.org/10.1164/rccm.201011-1783OC


Pharmaceutics 2022, 14, 1983 19 of 26

24. Tan, G.; McKenna, P.M.; Koser, M.L.; McLinden, R.; Kim, J.H.; McGettigan, J.P.; Schnell, M.J. Strong cellular and humoral anti-HIV
Env immune responses induced by a heterologous rhabdoviral prime-boost approach. Virology 2005, 331, 82–93. [CrossRef]

25. Woodrow, K.A.; Bennett, K.M.; Lo, D.D. Mucosal Vaccine Design and Delivery. Annu. Rev. Biomed. Eng. 2012, 14, 17–46.
[CrossRef] [PubMed]

26. Mantis, N.J.; Forbes, S.J. Secretory IgA: Arresting Microbial Pathogens at Epithelial Borders. Immunol. Investig. 2010, 39, 383–406.
[CrossRef]

27. Kaetzel, C.S. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces.
Immunol. Rev. 2005, 206, 83–99. [CrossRef]

28. Price, G.E.; Soboleski, M.R.; Lo, C.-Y.; Misplon, J.A.; Quirion, M.R.; Houser, K.V.; Pearce, M.B.; Pappas, C.; Tumpey, T.M.;
Epstein, S.L. Single-Dose Mucosal Immunization with a Candidate Universal Influenza Vaccine Provides Rapid Protection from
Virulent H5N1, H3N2 and H1N1 Viruses. PLoS ONE 2010, 5, e13162. [CrossRef]

29. Hemann, E.A.; Kang, S.-M.; Legge, K.L. Protective CD8 T Cell-Mediated Immunity against Influenza A Virus Infection following
Influenza Virus-like Particle Vaccination. J. Immunol. 2013, 191, 2486–2494. [CrossRef]

30. Stolley, J.M.; Johnston, T.S.; Soerens, A.G.; Beura, L.K.; Rosato, P.C.; Joag, V.; Wijeyesinghe, S.P.; Langlois, R.A.; Osum, K.C.;
Mitchell, J.S.; et al. Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. J. Exp.
Med. 2020, 217, e20192197. [CrossRef]

31. Son, Y.M.; Cheon, I.S.; Wu, Y.; Li, C.; Wang, Z.; Gao, X.; Chen, Y.; Takahashi, Y.; Fu, Y.X.; Dent, A.L.; et al. Tissue-resident CD4(+)
T helper cells assist the development of protective respiratory B and CD8(+) T cell memory responses. Sci. Immunol. 2021,
6, eabb6852. [CrossRef] [PubMed]

32. Swarnalekha, N.; Schreiner, D.; Litzler, L.C.; Iftikhar, S.; Kirchmeier, D.; Künzli, M.; Son, Y.M.; Sun, J.; Moreira, E.A.; King, C.G. T
resident helper cells promote humoral responses in the lung. Sci. Immunol. 2021, 6, eabb6808. [CrossRef] [PubMed]

33. Carter, N.J.; Curran, M.P. Live attenuated influenza vaccine (FluMist®; Fluenz™): A review of its use in the prevention of seasonal
influenza in children and adults. Drugs 2011, 71, 1591–1622. [CrossRef] [PubMed]

34. Ambrose, C.; Luke, C.; Coelingh, K. Current status of live attenuated influenza vaccine in the United States for seasonal and
pandemic influenza. Influ. Other Respir. Viruses 2008, 2, 193–202. [CrossRef]

35. Turner, P.J.; Abdulla, A.F.; Cole, M.E.; Javan, R.R.; Gould, V.; O’Driscoll, M.E.; Southern, J.; Zambon, M.; Miller, E.; Andrews, N.J.;
et al. Differences in nasal immunoglobulin A responses to influenza vaccine strains after live attenuated influenza vaccine (LAIV)
immunization in children. Clin. Exp. Immunol. 2020, 199, 109–118. [CrossRef]

36. Maassab, H.F.; Bryant, M.L. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev. Med.
Virol. 1999, 9, 237–244. [CrossRef]

37. Hoft, D.F.; Lottenbach, K.R.; Blazevic, A.; Turan, A.; Blevins, T.P.; Pacatte, T.P.; Yu, Y.; Mitchell, M.C.; Hoft, S.G.; Belshe, R.B.
Comparisons of the Humoral and Cellular Immune Responses Induced by Live Attenuated Influenza Vaccine and Inactivated
Influenza Vaccine in Adults. Clin. Vaccine Immunol. 2017, 24, e00414-16. [CrossRef]

38. Lartey, S.; Zhou, F.; Brokstad, K.A.; Mohn, K.G.-I.; Slettevoll, S.A.; Pathirana, R.D.; Cox, R.J. Live-Attenuated Influenza Vaccine
Induces Tonsillar Follicular T Helper Cell Responses That Correlate With Antibody Induction. J. Infect. Dis. 2020, 221, 21–32.
[CrossRef]

39. Jahnmatz, M.; Richert, L.; Al-Tawil, N.; Storsaeter, J.; Colin, C.; Bauduin, C.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N.; et al.
Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: A phase 1b, double-blind, randomised,
placebo-controlled dose-escalation study. Lancet Infect. Dis. 2020, 20, 1290–1301. [CrossRef]

40. Lin, A.; Apostolovic, D.; Jahnmatz, M.; Liang, F.; Ols, S.; Tecleab, T.; Wu, C.; Van Hage, M.; Solovay, K.; Rubin, K.; et al. Live
attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J. Clin. Investig. 2020, 130, 2332–2346.
[CrossRef]

41. Bull, N.; Stylianou, E.; Kaveh, D.A.; Pinpathomrat, N.; Pasricha, J.; Harrington-Kandt, R.; Garcia-Pelayo, M.C.; Hogarth, P.J.;
McShane, H. Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung
tissue-resident PD-1+ KLRG1− CD4+ T cells. Mucosal Immunol. 2019, 12, 555–564. [CrossRef] [PubMed]

42. Haller, A.A.; Mitiku, M.; MacPhail, M. Bovine parainfluenza virus type 3 (PIV3) expressing the respiratory syncytial virus (RSV)
attachment and fusion proteins protects hamsters from challenge with human PIV3 and RSV. J. Gen. Virol. 2003, 84, 2153–2162.
[CrossRef]

43. Garg, R.; Brownlie, R.; Latimer, L.; Gerdts, V.; Potter, A.; van Drunen Littel-van den Hurk, S. A chimeric glycoprotein formulated
with a combination adjuvant induces protective immunity against both human respiratory syncytial virus and parainfluenza
virus type 3. Antivir. Res. 2018, 158, 78–87. [CrossRef]

44. Awadasseid, A.; Wu, Y.; Tanaka, Y.; Zhang, W. Current advances in the development of SARS-CoV-2 vaccines. Int. J. Biol. Sci.
2021, 17, 8–19. [CrossRef] [PubMed]

45. Chen, S.-C.; Eiting, K.; Cui, K.; Leonard, A.K.; Morris, D.; Li, C.-Y.; Farber, K.; Sileno, A.P.; Houston, M.E.; Johnson, P.H.; et al.
Therapeutic utility of a novel tight junction modulating peptide for enhancing intranasal drug delivery. J. Pharm. Sci. 2006, 95,
1364–1371. [CrossRef] [PubMed]

46. Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal Delivery of High Molecular Weight Drugs. Molecules 2009, 14, 3754–3779. [CrossRef]
47. Marasini, N.; Skwarczynski, M.; Toth, I. Intranasal delivery of nanoparticle-based vaccines. Ther. Deliv. 2017, 8, 151–167.

[CrossRef]

http://doi.org/10.1016/j.virol.2004.10.018
http://doi.org/10.1146/annurev-bioeng-071811-150054
http://www.ncbi.nlm.nih.gov/pubmed/22524387
http://doi.org/10.3109/08820131003622635
http://doi.org/10.1111/j.0105-2896.2005.00278.x
http://doi.org/10.1371/journal.pone.0013162
http://doi.org/10.4049/jimmunol.1300954
http://doi.org/10.1084/jem.20192197
http://doi.org/10.1126/sciimmunol.abb6852
http://www.ncbi.nlm.nih.gov/pubmed/33419791
http://doi.org/10.1126/sciimmunol.abb6808
http://www.ncbi.nlm.nih.gov/pubmed/33419790
http://doi.org/10.2165/11206860-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/21861544
http://doi.org/10.1111/j.1750-2659.2008.00056.x
http://doi.org/10.1111/cei.13395
http://doi.org/10.1002/(SICI)1099-1654(199910/12)9:4&lt;237::AID-RMV252&gt;3.0.CO;2-G
http://doi.org/10.1128/CVI.00414-16
http://doi.org/10.1093/infdis/jiz321
http://doi.org/10.1016/S1473-3099(20)30274-7
http://doi.org/10.1172/JCI135020
http://doi.org/10.1038/s41385-018-0109-1
http://www.ncbi.nlm.nih.gov/pubmed/30446726
http://doi.org/10.1099/vir.0.19079-0
http://doi.org/10.1016/j.antiviral.2018.07.021
http://doi.org/10.7150/ijbs.52569
http://www.ncbi.nlm.nih.gov/pubmed/33390829
http://doi.org/10.1002/jps.20510
http://www.ncbi.nlm.nih.gov/pubmed/16625659
http://doi.org/10.3390/molecules14093754
http://doi.org/10.4155/tde-2016-0068


Pharmaceutics 2022, 14, 1983 20 of 26

48. Napolioni, V.; MacMurray, J. Infectious diseases, IL6 −174G > C polymorphism, and human development. Brain Behav. Immun.
2016, 51, 196–203. [CrossRef]

49. Amidi, M.; Romeijn, S.G.; Verhoef, J.C.; Junginger, H.E.; Bungener, L.; Huckriede, A.; Crommelin, D.J.; Jiskoot, W. N-Trimethyl
chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and
immunogenicity in a mouse model. Vaccine 2007, 25, 144–153. [CrossRef]

50. Gilmore, J.L.; Yi, X.; Quan, L.; Kabanov, A.V. Novel Nanomaterials for Clinical Neuroscience. J. Neuroimmune Pharmacol. 2008,
3, 83–94. [CrossRef]

51. Garmise, R.J.; Staats, H.; Hickey, A.J. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination.
AAPS PharmSciTech 2007, 8, 2–10. [CrossRef] [PubMed]

52. Fortuna, A.; Alves, G.; Serralheiro, A.; Sousa, J.; Falcão, A. Intranasal delivery of systemic-acting drugs: Small-molecules and
biomacromolecules. Eur. J. Pharm. Biopharm. 2014, 88, 8–27. [CrossRef]

53. de Haan, A.; Geerligs, H.; Huchshorn, J.; van Scharrenburg, G.; Palache, A.; Wilschut, J. Mucosal immunoadjuvant activity of
liposomes: Induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with an influenza subunit
vaccine and coadministered liposomes. Vaccine 1995, 13, 155–162. [CrossRef]

54. Lobaina, Y.; Urquiza, D.; Garay, H.; Perera, Y.; Yang, K. Evaluation of Cell-Penetrating Peptides as Mucosal Immune Enhancers
for Nasal Vaccination. Int. J. Pept. Res. Ther. 2021, 27, 2873–2882. [CrossRef]

55. Mielcarek, N.; Debrie, A.-S.; Raze, D.; Bertout, J.; Rouanet, C.; Ben Younes, A.; Creusy, C.; Engle, J.; Goldman, E.W.; Locht, C.
Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough. PLOS Pathog. 2006, 2, e65. [CrossRef]
[PubMed]

56. Clements, J.D.; Norton, E.B. The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere 2018, 3, e00215-18. [CrossRef]
57. Newly described cell type may prove valuable in development of plague vaccines against biowarfare. Expert Rev. Vaccines 2011,

10, 259.
58. Hiremath, G.S.; Omer, S.B. A Meta-Analysis of Studies Comparing the Respiratory Route with the Subcutaneous Route of Measles

Vaccine Administration. Hum. Vaccines 2005, 1, 30–36. [CrossRef]
59. Weniger, B.G.; Papania, M.J. Alternative vaccine delivery methods. Vaccines 2012, 1357–1392. [CrossRef]
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