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Abstract: The current treatment of depression involves antidepressant synthetic drugs that have a
variety of side effects. In searching for alternatives, natural compounds could represent a solution,
as many studies reported that such compounds modulate the nervous system and exhibit antide-
pressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural
compounds with neuroleptic activity, reported in the literature. For all compounds we computed
their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles.
Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built
by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine
receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following
molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results
showed that all compounds present drug-likeness features as well as promising ADME features and
no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A
and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets,
neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for
5-HT1A and D2 receptors.

Keywords: antidepressant; natural compounds; QSAR; molecular docking

1. Introduction

Depression is a common mental disorder, 264 million persons being affected world-
wide, according to the WHO. A severe consequence of depression is suicide, and near
800,000 people commit suicide every year [1]. Depression can be treated by psychotherapy
and medication involving antidepressant and antipsychotic drugs. Although these drugs
have beneficial effects in the management of depression, their usage could lead to severe
side effects like hepatotoxicity, weight gain, sexual dysfunction, cardiovascular disorders,
central nervous system disturbances, etc. [2].

Natural compounds may represent a viable alternative in depression treatment with
possibly fewer side effects, supporting their administration even in patients with comor-
bidities [3,4]. Here we used an in silico approach to predict the antidepressant activity of
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the following natural compounds: resveratrol, quercetin, limonene, sabinene, 1,8-cineole,
chamazulene, linalyl acetate, germacrene D, nerol, and neryl acetate.

Resveratrol is a polyphenol with benefits in inflammation, brain diseases, and de-
pression [4]. A study on irritable bowel syndrome rat model shows that resveratrol had
inhibitory activity on the 5-hydroxytryptamine receptor 1A (5-HT1A), thus improving the
brain–gut axis [5]. A review of twenty-two studies concludes that resveratrol has positive
effects on animal models with depression, comparable with those of antidepressant drugs.
Regarding safety, the same review concludes that resveratrol has an exceptional safety
profile and only a few side effects [6].

Quercetin is a flavonoid whose antidepressant activity was studied on diabetic
mice and compared with antidepressants fluoxetine and imipramine. Results show that
quercetin had similar results with those drugs in diabetic mice but not in naive mice [7]. An-
other study on mice concludes that pre-administrated quercetin decreases stress-induced
behaviour, regulates cholinergic and serotoninergic functions, has an anxiolytic and an-
tidepressant effect, and boosts memory function [8]. Quercetin also inhibits the behavioral
effects induced by corticotropin-releasing factor (anxiety and depression) in mice model
study [9].

Limonene is a monocyclic monoterpene known for its antiviral, antibacterial, anti-
cancer, and anti-inflammatory activities [10]. This compound also shows neuroprotective
effects in a Drosophila model [11] and antidepressant-like activity (mediated by its anti-
neuroinflammatory action and by lowering hippocampal nitrite levels) in a mice model [12].
Studies on mice models showed that limonene regulates dopamine levels and 5-HT func-
tion [13] and increases dopamine and norepinephrine levels [14].

Sabinene is a monoterpene with antimicrobial and antifungal activity, with possible
effects on the central nervous system [15,16]. Sabinene is a component of Origanum vul-
gare (oregano) essential oil (4.95%), and it may show antidepressant-like activity in a rat
model [17].

Eucalyptol, 1,8-cineole, is a monoterpenoid with benefits as an anti-mucolytic or anti-
spasmolytic [18]. Additionally, 1,8-cineole inhalation shows an anxiolytic effect in both mice
and humans [19,20]. Eucalyptol is found in various plants, including Rosmarinus officinalis
(rosemary) aerial plants oil (8.58%). This oil shows inhibitory activity on 5-HT1A [21]. Even
if this compound had antidepressant effects, the mechanism of action is not clear yet [14].

Chamazulene is an aromatic compound found in Matricaria chamomilla (chamomile)
and is known as a compound with antioxidant, anti-inflammatory, and hepatoprotective
effects [22]. Chamomile is known for its benefits in generalized anxiety and insomnia [23].

The monoterpene linalyl acetate is the main constituent of Lavandula angustifolia (la-
vander) essential oil. Lavender essential oil is known for its antidepressant and anxiolytic
properties [24,25]. Linalyl acetate’s mechanism of action as an antidepressant is well
studied: this compound has binding affinity for N-methyl-D-aspartate (NMDA) recep-
tor [26], and reduces the activity of 5-HT1A receptor [24], but not of serotonin transporter
(SERT) [26]. Nerol monoterpene can also be found in Lavandula angustifolia essential oil [27]
or in Rosa damascene (damask rose) oil. It can decrease the lipid peroxidation levels, a
process occurring under chronic mild stress [28].

Germacrene D is a sesquiterpenoid found in Anthriscus nemorosa (chervil) essential
oil in a proportion of 5.6%. Studies on rats revealed that scopolamine-induced memory
impairment, anxiety, and depression can be improved using chervil essential oil [14]. Neryl
acetate is one of the main constituents of Cananga odorata (ilang-ilang) essential oil. This oil
decreases dopamine levels and increases serotonin levels in mice [29].

The compounds that we have chosen to analyze are indexed in FooDB, a resource
on food constituents, comprising detailed descriptions of compound, including their
physiological and presumed health effects [30]. Except for sabiene, linalyl acetate, nerol,
and neryl acetate, the compounds are also indexed in DrugBank, a database comprising
extensive information on drugs and drugs targets, including natural compounds and herbs
used in therapeutic products [31]. The applications of selected compounds as indexed in
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the two databases are summarized in Table 1. It is essential to highlight that DrugBank—
or any other database, for that matter—does not index the considered compounds as
antidepressants. Taking into account their promising benefits in depression, as revealed
mostly by studies conducted in animal models, we considered here the possibility to
reposition some of these compounds as antidepressants and even as neuroleptics to be
used in the treatment of humans.

Table 1. Applications of the natural compounds indexed in the critical data bases DrugBank 5.1.8 [31] and Foodb [30].

Compound DrugBank
Accession Number

Medical
Applications

Foodb
Accession Number

Medical
Applications

resveratrol DB02709
anti-inflammatory,

antioxidant,
anticancer effects

FDB031212
suppresses NF-kappa B

activation in HSV
infected cells

quercetin DB04216

specific quinone reductase 2
(QR2) inhibitor,

may contribute to killing the
malaria causing parasites

FDB011904

non-specific protein
kinase enzyme inhibitor,

agonist of the G
protein-coupled estrogen
receptor in human breast

cancer cell lines

limonene DB08921

common in cosmetic
products,

a flavoring to mask the bitter
taste of alkaloids, a fragrance

in perfumery

FDB013567 antimicrobial,
expectorant

sabinene not available not available FDB001456 not available

1,8-cineole DB03852

controls airway mucus
hypersecretion and asthma

via anti-inflammatory
cytokine inhibition,
eucalyptol reduces

inflammation and pain

FDB014616 antibronchitis,
antiallergic

chamazulene DB15931 not available FDB015363 analgesic, antioxidant

linalyl acetate not available not available FDB019133 antimicrobial,
antioxidant, flavor

germacrene D DB11276

as component of pine needle
oil is used as disinfectant,

lubricant, sanitizer,
antimicrobial, insecticide

FDB003856 pesticide

nerol not available not available FDB014945 antimicrobial, flavor,
perfumery

neryl acetate not available not available FDB013794 antimicrobial, flavor,
perfumery

Previously, we used structure-activity relationship (SAR) models to investigate the
potential of natural compounds from Mentha spicata essential oil to modulate acetyl-
cholinesterase and NMDA receptor, two important targets considered in Alzheimer’s
disease therapy [32]. A similar approach can be applied in the case of other nervous system
diseases, like depression. In depression, important therapy targets are SERT, dopamine
receptor 2 (D2), and 5-HT1A [33,34]. In our previous work, we built quantitative structure-
activity relationship (QSAR) models to predict the effect of candidate compounds against
these targets [33,34].

Particularly useful in drug design, discovery, and development is 3D-QSAR method-
ology, which helps to understand the relationship between spatial parameters of molecules
and their biological properties [35]. Recent studies have used 3D-QSAR as a screening step



Pharmaceutics 2021, 13, 1449 4 of 19

in drug repositioning strategies, some examples being [36–39]. In these cases, QSAR mod-
els were used to screen compounds from: (i) DrugBank database [31] in order to identify
promising candidates that modulate histone deacetylases [37] or inhibit SARS-CoV main
protease [38]; (ii) FDA approved drugs from ZINC database [40] that inhibit Sirt2 [39]; or
(iii) FDA approved drugs from e-Drug3D database [41] to identify druggable compounds
for iatrogenic botulism treatment [36]. 3D-QSAR is valuable in drug repositioning, being
complementary to other methods like molecular docking, because it predicts the activity
of compounds (high/low activity) and yields the molecular features important for their
effect [39].

In the present study we built three QSAR models to screen our collection of natural
compounds identified from the literature against SERT, D2, and 5-HT1A receptor in order
to identify the most promising compound with antidepressant and neuroleptic activity.
Additionally, we analyzed the interactions between receptors and lead ligands using
molecular docking.

2. Materials and Methods
2.1. Preparation of Natural Compounds Structures

The present study looked at ten natural compounds, including resveratrol, quercetin,
limonene, sabinene, 1,8-cineole, chamazulene, linalyl acetate, germacrene D, nerol, and
neryl acetate, based on their potential antidepressant effects identified in the literature, as
described in the Section 1. The antidepressant efficacy of these drugs is determined using
SERT and 5-HT1A receptors, as well as the neuroleptic effect on the D2 receptor.

MOE software was used to model and optimize the 3D structures of molecules. We
minimized the energy using the MMFF94x force field at a 0.005 gradient and Gasteiger-type
charges [42].

2.2. Prediction of Compounds Drug- and Lead-Likeness Features

The Lipinski [43], Veber [44], Ghose [45], and Egan [46] filters, which were predicted
in the SwissADME online tool [47], were used to evaluate the drug-likeness of the natural
compounds. The analyzed compounds should not violate more than three of these rules.
According to the Lipinski criteria, compounds must have a molecular weight lower than
500 Daltons, no more than 10 hydrogen bond acceptors, no more than 5 hydrogen bond
donors, and a log octanol/water (Log P(o/w)) lower than 5.

The molecular weight must be between 160 and 480, the Log P(o/w) must be between
0.4 and 5.6, the molar refractivity must be between 40 and 130, and the number of atoms
must be between 20 and 70, according to the Ghose filter.

If the total polar surface area is less than 140 and the number of rotatable bonds is less
than 10, the Veber rule applies. The Log P(o/w) must be less than 5.88, and the total polar
surface area must be less than 131, according to the Egan filter.

2.3. Computational Pharmacokinetics and Pharmacogenomics Profiles of Natural Compounds

The SMILES files of natural compounds were used to predict their absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET) profiles using the pkCSM database [48].

We started by calculating all of the ADMET entries that the bioinformatics portal
sent us. The following were chosen as related to our research: (i) intestinal absorption
(percentage)—a molecule with an absorption rate of less than 30% is deemed poorly ab-
sorbed; (ii) permeability of the blood-brain barrier (BBB) represented as log BBB (logarithm
of the brain to plasma drug concentration ratio)—higher than 0.3 indicates high BBB per-
meability, while lower than 1 indicates low BBB permeability; (iii) central nervous system
(CNS) permeability—a compound with a permeability-surface area product (logPS) higher
than −2 can penetrate the CNS; (iv) fraction unbound (human) is represented by the ratio
of the unbounded compound on plasmatic proteins; (v) substrate of renal organic cation
transporter 2 (OCT2), the main renal uptake transporter that is expressed on the basolateral
side of the proximal tubule.
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We investigated the potential of the compounds to serve as inhibitors or substrates
for cytochromes involved in the metabolization of neuropsychiatric medications, such as
CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, to predict their pharmacogenomic
profile. The prediction of toxicity was a significant aspect of our research.

We assessed AMES toxicity, hepatotoxicity, LD50 (median lethal dose), and maximum
tolerated dose (human).

2.4. Building 3D-ALMOND-QSAR to Predict Natural Compounds Effects

We used Pentacle software to create three 3D-QSAR-ALMOND models to predict the
action of natural compounds on SERT, D2, and 5-HT1A receptors [33,49]. The three models
are further called QSAR-SERT, QSAR-D2, and QSAR-5-HT1A in correlation with the target
they address.

For each molecule, we computed several molecular descriptors. Each descriptor’s
contribution to biological activity was assessed singly or in groups of different combinations.
The hydrophobicity, electrostatic, and hydrogen bond donor/acceptor features were found
to be the most important statistical combination of molecular descriptors for all QSAR
models.

The chemometric analysis was made using the regression analysis, partial least squares
(PLS) within PENTACLE. The number of PLS components (latent variables, LVs = 5) was
chosen to achieve optimum values of statistical parameters. These are r2 > 0.8 (fitted
correlation coefficient) and q2 > 0.6 (cross-validated correlation coefficient). Additionally,
SDEP (standard deviation of error prediction) and SDEC (standard deviation of error
calculation) were evaluated.

The generation of consistent statistical models depends on the quality of training,
validation, and testing sets in terms of structural diversity and property values distribution.

QSAR-SERT model has amitriptyline, citalopram, clomipramine, desipramine, dox-
epin, escitalopram, fluoxetine, imipramine, lofepramine, paroxetine, sertraline, trazodone,
venlafaxine, aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, risperi-
done, sertindole, and zotepine in the training set and, in the validation set, bupropion,
olanzapine, quetiapine, thioridazine, ziprasidone, and fluvoxamine.

QSAR-5-HT1A model has amitriptyline, desipramine, doxepin, escitalopram, fluox-
etine, trazodone, aripiprazole, chlorpromazine, fluphenazine, haloperidol, iloperidone,
loxapine, olanzapine, prochlorperazine, quetiapine, risperidone, spiperone, trifluoper-
azine, and ziprasidone in the training set and, in the validation set, clozapine, sertindole,
thioridazine, and zotepine.

QSAR-D2 model has amitriptyline, despyramine, flufenazine, haloperidol, iloperi-
done, loxapine, prochlorperazine, risperidone, spiperone, trifluoperazine, clomipramine,
clozapine, mesoridazine, olanzapine, promazine, remoxipride, sertindole, thioridazine, and
zotepine in the training set and, in the validation set, doxepine, aripriprazole, quetiapine,
chlorpromazine, and ziprasidone.

The test set used in all QSAR models is represented by the ten natural compounds
that we investigated.

The biological activities of compounds in training and validation sets expressed as Ki
values (inhibition constants) were retrieved from PDSP Ki Database—Psychoactive Drug
Screening Program [50]. The three models that we built predict the biological activities of
compounds as pKi values (log 1/Ki) for a better statistical analysis.

2.5. Molecular Docking Protocol

The interactions of the lead compounds identified using our QSAR models with SERT,
D2, and 5-HT1A receptors were predicted using molecular docking.

The 3D protein structures were imported from Protein Data Bank in the case of SERT
(PDB ID: 6VRH [51]) and D2 (PDB ID:6CM4 [52]) receptors; the structure of the 5-HT1A
receptor was imported from AlphaFold [53].
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The molecular docking was performed using the CDOCKER algorithm [54] imple-
mented in Biovia Discovery Studio v16.1.0.15350 (BIOVIA Dassault Systemes, San Diego,
CA, USA).

The ligands were docked in the drug binding cavities according to the PDB files
used [51,52]. In the case of 5-HT1A, the binding site was identified by similarity with the
site of the D2 receptor [52]. The Docking protocol was applied as described in the study of
Rao et al. [55].

3. Results
3.1. Drug-Likeness, Pharmacokinetics, and Pharmacogenomics Profiles of Compounds

The structures of compounds were retrieved from PubChem database [56] as SMILES
(Simplified Molecular Input Line Entry) files, as presented in Table 2.

Table 2. The name of natural compounds and PubChem ID, 2D structure, SMILES [56], natural source, compound FooDB
ID [30], and the druglikness features [47].

Compound Smiles Natural Source/
FooDB Id Lipinski Veber Ghose Egan

1,8-cineole
[PubChem
ID = 2758]
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Table 2. Cont.
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To determine the drug-likeness of compounds, we applied different filters, as pre-
sented in Table 2. As can be seen, all compounds comply with Lipinski, Veber, and Egan
rules. In the case of the Ghose rule, only 1,8-cineole, limonene, and sabiene present one
violation of the rule. These results show that the compounds present drug-likeness features
and could present a good bioavailability.

ADME and toxicity profiles of compounds were computed, with an emphasis on
human intestinal absorption (HIA), BBB and CNS permeabilities, human fraction unbound
(HFU), renal OCT2 substrate, mutagenesis features-AMES, hepatotoxicity, maximum of
tolerated dose (human), and LD50 (Table 3).

Table 3. Computed human intestinal absorption (HIA), blood-brain barrier permeability (log BBB), CNS permeability,
human fraction unbound (HFU), maximum tolerated dose (human), and LD50 for selected compounds.

Compound HIA Log BBB CNS
Permeability HFU Max. Tolerated Dose

(Human) LD50

1,8-cineole 96.50 0.36 −2.97 0.55 0.55 2.01
limonene 95.89 0.72 −2.37 0.48 0.77 1.88
sabinene 95.35 0.83 −1.46 0.29 0.36 1.54

resveratrol 89.05 −0.04 −2.09 0.18 0.48 1.79
chamazulene 94.50 0.79 −1.82 0.24 0.05 1.45
germacrene D 95.59 0.72 −2.13 0.26 0.49 1.63
linalyl acetate 95.27 0.51 −2.37 0.42 0.54 1.72

nerol 93.46 0.62 −2.17 0.44 0.85 1.71
neryl acetate 96.06 0.56 −2.19 0.37 0.74 1.95

quercetin 77.20 −1.09 −3.06 0.20 0.49 2.47

Here, we also computed the biological activities of considered natural compounds at
some very important human cytochromes involved in neuropsychiatric disorders, namely
CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9 [57].

The biological activities of natural compounds were expressed as inhibitors or sub-
strates of human cytochromes, as presented in Table 4.



Pharmaceutics 2021, 13, 1449 9 of 19

Table 4. The inhibitor/substrate features of natural compounds at CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9.

Compound CYP2D6 Substrate/
Inhibitor

CYP3A4 Substrate/
Inhibitor CYP1A2 Inhibitor CYP2C19

Inhibitor
CYP2C9
Inhibitor

1,8-cineole no/no no/no no no no
limonene no/no no/no no no no
sabinene no/no no/no no no no

resveratrol no/yes no/yes yes yes yes
chamazulene no/no no/no no no no
germacrene d no/no no/no no no no
linalyl acetate no/no no/no no no no

nerol no/no no/no no no no
neryl acetate no/no no/no no no no

quercetin no/no no/no yes no no

We intended to generate a pharmacogenomic pathway of natural compounds through
these predictions, establishing if these are metabolized by the same cytochromes as classical
antidepressants or neuroleptics, which is relevant when a combinatorial therapy involving
classical antidepressants, classical neuroleptics, and natural compounds is indicated.

3.2. Natural Compounds’ Antidepressant Activities Predicted by 3D-ALMOND-QSAR

Three QSAR models (QSAR-SERT, QSAR-D2, and QSAR-5-HT1A) were built to predict
the biological effect of natural compounds against SERT, 5-HT1A, and D2 receptors. In
building the models we initially considered individual descriptors like hydrophobicity,
hydrogen bond donor/acceptor, electrostatic, or steric. These models could not predict
biological activities in correlation with experimental activities.

Further, we considered the contribution of several descriptors at the same time, which
led to a significant improvement of the prediction accuracy of our models (r2 > 0.9, q2 > 0.8,
SDEP < 0.5), the statistical parameters being given in Table 5.

Table 5. Summary of the ALMOND statistical parameters in QSAR-SERT, QSAR-5-HT1A, and
QSAR-D2.

Statistical Parameters QSAR-SERT QSAR-5HT-1A QSAR-D2

No. of molecules in a training set 21 19 19
q2 0.80 0.90 0.83
r2 0.96 0.95 0.95

SDEP 0.50 0.29 0.40

The predicted activity of classical neuropsychiatric drugs in the training and valida-
tion sets was calculated according to the QSAR equations previously generated and was
compared with experimental activity on SERT, 5-HT1A, and D2 receptors (Table 6).

Our QSAR models are described by very good statistical parameters, which allow us to
predict the biological activities of 1,8-cineole, limonene, sabinene, resveratrol, chamazulene,
germacrene D, linalyl acetate, nerol, neryl acetate, and quercetin at SERT, 5-HT1A, and D2
by following the QSAR equation generated in ALMOND-Pentacle (Table 6).
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Table 6. Predicted and experimental biological activities of compounds at SERT, 5-HT1A, and D2
receptors. The biological activities of molecules in the validation set are in italics. In brackets are
the predicted biological activities of natural compounds versus the most active compounds of each
QSAR model (paroxetine in QSAR-SERT; ziprasidone in QSAR-5HT-1A; spiperone in QSAR-D2).

Compounds pKiSERTexp/
pKiSERTpredicted

pKi 5-HT1Aexp/
pKi 5-HT1Apredicted

pKi D2exp/
pKi D2predicted

amitriptyline 8.55/8.68 6.34/6.62 6.70/7.17
citalopram 9.00/8.74 - -

clomipramine 9.85/9.66 - 7.11/7.29
desipramine 7.75/8.07 5.19/5.29 5.80/5.42

doxepin 7.16/7.58 6.55/6.45 6.44/7.35
escitalopram 8.95/8.85 5.00/5.06 -

fluoxetine 9.09/9.23 5.00/4.96 -
imipramine 9.82/9.31 - -
lofepramine 7.15/7.19 - -
paroxetine 10.09/9.83 - -
sertraline 9.58/9.57 - -
trazodone 6.79/6.72 7.00/6.91 -

venlafaxine 8.12/8.02 - -
aripiprazole 5.74/5.87 8.25/8.40 9.18/8.53

chlorpromazine 8.88/9.23 6.93/6.78 9.18/8.22
clozapine 6.00/5.49 6.97/5.32 7.55/8.23

fluphenazine 5.22/5.22 6.83/6.68 9.69/9.95
haloperidol 6.00/5.51 5.92/5.97 9.45/9.38
risperidone 6.00/6.04 6.72/6.87 9.52/9.65
sertindole 6.00/6.42 6.55/7.19 9.02/9.11
zotepine 6.82/7.35 6.89/6.26 8.09/8.06

bupropion 5.04/5.62 - -
olanzapine 6.00/5.69 5.68/5.61 8.52/8.13
quetiapine, 6.00/5.20 6.63/6.47 7.79/8.66
thioridazine 5.89/7.29 6.96/6.50 9.39/8.69
ziprasidone 7.27/6.57 8.72/8.80 8.92/8.67
fluvoxamine 8.79/8.64 - -
iloperidone - 7.48/7.52 9.45/9.38

loxapine - 5.60/5.73 8.28/8.22
prochlorperazine - 5.22/5.30 9.69/9.07

spiperone - 7.76/7.50 10.15/10.06
trifluoperidine - 6.02/5.93 -
mesoridazine - - 8.36/8.52

promazine - - 6.79/7.07
remoxipride - - 7.79/7.72

trifluoperazine - - 8.92/9.16
Natural compounds

1,8-cineole 8.57 (−1.52) 7.09 (−1.63) 8.11 (−2.04)
limonene 9.45 (−0.64) 6.73 (−1.99) 7.99 (−2.16)
sabinene 9.37 (−0.72) 6.68 (−2.04) 7.98 (−2.17)

resveratrol 8.68 (−1.41) 5.23 (−3.49) 6.72 (−3.43)
chamazulene 9.50 (−0.59) 6.51 (−2.21) 7.96 (−2.19)
germacrene D 9.52 (−0.57) 6.49 (−2.23) 7.90 (−2.25)
linalyl acetate 9.40 (−0.69) 6.89 (−1.83) 8.11 (−2.04)

nerol 9.74 (−0.35) 6.17 (−2.55) 8.05 (−2.10)
neryl acetate 10.61 (0.52) 6.06 (−2.66) 8.14 (−2.01)

quercetin 6.42 (−3.67) 5.87 (−2.85) 8.39 (−1.76)

The correlation between the training and validation sets of our QSAR models is also
represented in Figure 1.
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Figure 1. The correlation between experimental and predicted values of QSAR SERT (a), QSAR
5-HT1A (b), and QSAR D2 (c) models. Data were plotted and fitted using Origin Pro, version 9.2
(2015), OriginLab Corporation, Northampton, MA, USA.

3.3. Molecular Docking

The interaction of the most promising compounds acting on the three protein targets
were investigated by molecular docking. Therefore, we docked linalyl acetate at SERT,
D2, and 5-HT1A; neryl acetate was docked at SERT and 5-HT1A; and 1,8-cineole was
docked at D2 and 5-HT1A (see Section 4.3). The binding of ligands was evaluated based
on CDOCKER energy and CDOCKER interaction energy; values are presented in Table 7.

Table 7. Molecular docking predictions of interactions between molecular targets in depression, natural compounds linalyl
acetate, neryl acetate, and 1,8-cineole and CDOCKER scores calculated for analyzed ligands.

Compound Target -CDOCKER_ENERGY -CDOCKER_INTERACTION_ENERGY

linalyl acetate SERT 4.65 31.46
linalyl acetate D2 −3.94 30.82
linalyl acetate 5-HT1A −1.96 27.17
neryl acetate SERT −11.64 31.29
neryl acetate 5-HT1A −9.79 33.85
1,8-cineole D2 −14.66 17.25
1,8-cineole 5-HT1A −8.22 19.07

We further analyzed the structural basis of the interaction between ligands and targets.
The 2D interaction maps are presented in Figure 2.
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Figure 2. Interaction maps (2D) calculated based on the complexes formed by linalyl acetate with 5-HT1A (a), SERT (c), or 
D2 (g); 1,8-cineole with 5-HT1A (b) or D2 (f) and neryl acetate with SERT (d) or D2 (e). The maps were generated using 
Discovery Studio Visualizer v21.1.0.20298 (BIOVIA Dassault Systemes, San Diego, CA, USA). 

Figure 2. Interaction maps (2D) calculated based on the complexes formed by linalyl acetate with 5-HT1A (a), SERT (c), or
D2 (g); 1,8-cineole with 5-HT1A (b) or D2 (f) and neryl acetate with SERT (d) or D2 (e). The maps were generated using
Discovery Studio Visualizer v21.1.0.20298 (BIOVIA Dassault Systemes, San Diego, CA, USA).
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4. Discussion

Drug repositioning involves the identification of novel treatments for diseases based
on “old” drugs or compounds [58]. Several strategies were developed to achieve the identi-
fication of druggable compounds against novel targets, like QSAR studies, in conjunction
with molecular docking [36], with molecular docking and molecular dynamics [37,38],
and even with quantum mechanics/molecular mechanics methods [39]. High perfor-
mance QSAR models can be obtained by using machine learning approaches to classify
the molecular descriptors of compounds from large datasets [59]. Repositioning drug
candidates can be identified using drug-drug interaction networks [60]; the method even
allows the ranking of compounds into simple and complex multi-pathology therapies [61].
Unsupervised machine learning approaches can be used to establish dug–drug similarity
networks based on drug–target interactions, which also lead to the identification of reposi-
tioning candidates [62]. Other approaches in drug repositioning, as well as limitations and
recommendations, are presented in [58].

In the present study we performed a computational investigation on the possibility of
repositioning some natural compounds as antidepressants and neuroleptics. Our tentative
hypotheses were supported by previous experimental studies that report their antidepres-
sant effects mainly in animals, as presented in the Section 1. Our strategy involved an
initial filtering of compounds based on their drug-like properties, their predicted phar-
macokinetic, and pharmacogenomic profiles (Sections 4.1 and 4.2). In the following step,
QSAR models were built to predict the most active inhibitors of three druggable targets in
depression, namely SERT, 5-HT1A, and D2 receptors. We selected the potent compounds
that modulate three or at least two targets at once (Section 4.3). The interactions between
lead compounds and the targets were addressed by molecular docking (Section 4.4).

4.1. Assessment of Compounds Drug-Likeness Features

Generally, all the natural compounds studied here are in agreement with the medicinal
chemistry rules (Table 2). One rule of the Ghose filter (MW < 160) was violated only by
1,8-cineole, limonene, and sabinene. The molecular descriptors of resveratrol, chamazulene,
germacrene D, linalyl acetate, nerol, neryl acetate, and quercetin presented values within
the ranges defined by Lipinski, Veber, Ghose, and Egan rules. Our results suggest that the
natural compounds considered here present drug-likeness features and should be further
characterized by computing their pharmacokinetic and pharmacodynamic profiles.

4.2. Computational Pharmacokinetics and Pharmacogenomics Profiles of Natural Compounds

The ADME profiles predicted for the compounds showed that the human intestinal
absorption parameter lies in the 77.20% (quercitin) to 96.50% (1,8-cineole) range, as shown
in Table 3. Very good human intestinal absorption values were recorded for 1,8-cineole,
neryl acetate, and limonene.

Regarding the distribution of the natural compounds in the human body, the human
fraction unbound parameter presented a large variation, from 0.18 (resveratrol) to 0.55
(1,8-cineole). Unfortunately, the selected natural compounds presented low human fraction
unbound percents. Other critical parameters for describing the natural compounds’ distri-
bution in the body are BBB and CNS permeabilities. As shown in Table 3, the considered
natural compounds recorded very good BBB permeability values, log BBB ranging from
0.83 (sabinene) to −1.09 (quercitin). An easy BBB penetration was recorded for sabinene,
limonene, chamazulene, germacrene D, and nerol, our results being in good agreement with
the experimental studies [14,63]. The predicted CNS permeability values range from −1.46
(sabinene) to −3.06 (quercitin). These suggest that the considered natural compounds
should have a good CNS permeability, the most permeable compounds being sabinene,
chamazulene, resveratrol, germacrene D, and nerol (Table 3). These results are supported
by experimental studies showing a possible activity of these compounds at CNS level [15].

The metabolism of compounds was addressed by predicting their affinities for hu-
man cytochrome P450 proteins (CYPs): CYP2D6, CYP3A4, CYP1A2, CYP2C19, and
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CYP2C9 (Table 4). Our results revealed that resveratrol inhibits CYP2D6, CYP3A4, CYP1A2,
CYP2C19, and CYP2C9, quercitin and chamazulene inhibit CYP1A2. Our results are in
agreement with an experimental study mentioning that resveratrol modified the metabolism
of aripiprazole by CYP2D6 and CYP3A4 [64]. The predicted inhibitory activity of quercetin
on CYP1A2 is supported by a previous study [65] showing that quercetin is able to change
the metabolism of melatonin by CYP1A2. Quercetin was also reported to be a strong
inhibitor of CYP2D6 and a moderate inhibitor of CYP3A4 [66]. Chamazulene was experi-
mentally proved to be a potent inhibitor of CYP1A2, CYP4A4, and CYP2D6 [67].

Important results were recorded for the elimination rate: none of the ten natural com-
pounds are renal OCT2 substrates. In our study, high importance was given to predicting
the toxicity of compounds. Our results predict that none of the compounds should present
hepatotoxicity, cardiotoxicity, or AMES features. Additionally, we evaluated the maximum
tolerated dose (human) and LD50 of natural compounds. Predicted LD50 values vary in a
short range, from 1.54 (sabinene) to 2.47 (quercetin). A significant fluctuation was recorded
for the maximum tolerated dose, from 0.05 mol/Kg (chamazulene) to 0.85 mol/Kg (nerol).
Taken together, our results suggest that none of the natural compounds that we considered
are toxic.

4.3. Predicted Pharmacodynamic Profiles of Natural Compounds on SERT, 5H-T1A, and D2
Active Sites by 3D-ALMOND-QSAR

The application of the QSAR-SERT model to molecules from the training and testing
sets resulted in a suitable correlation between experimental and calculated biological
activities. The differences between experimental and predicted biological activities for
the molecules in the training set vary from 0.00 (fluphenazine) and −0.53 (zotepine),
while the differences between experimental and predicted biological activities for the
molecules in the validation set vary from 0.15 (fluvoxamine) and −1.40 (thioridazine).
The statistical parameters (Table 5) and the good correlation between experimental and
predicted biological activities of classical neuropsychiatric drugs support the strong power
of prediction of QSAR-SERT model. Therefore, the model was used to predict the biological
activities of natural compounds against SERT. These are presented in Table 6.

In order to evaluate the potency of natural compounds against SERT, their predicted
biological effects were subtracted from the value obtained for paroxetine, the most active
compound from the training set (pKi experimental = 10.09). The results show that natural
compounds such as limonene (pKiparoxetine-pKilimonene = −0.64), sabinene (pKiparoxetine-
pKisabinene = −0.72), chamazulene (pKiparoxetine-pKichamazulene = −0.59), germacrene D
(pKiparoxetine-pKigermacrene D = −0.57), linalyl acetate (pKiparoxetine-pKilinalyl acetate = −0.69),
nerol (pKiparoxetine-pKinerol = −0.35), and neryl acetate (pKiparoxetine-pKineryl acetate = 0.52)
have a strong antidepressant character.

Our results are in accord with other studies [14,68] which mention that limonene and
sabinene reduce the depression-related behaviors in a similar manner with fluoxetine [69],
linalyl acetate increases 5-HT levels in the amygdala, hypothalamus, and hippocampus of
mice [70] and nerol effectively reduces the symptoms of depression and sensitivity.

In QSAR-5-HT1A model, a good correlation between predicted and experimental
biological activities was noticed for molecules from the training set, where residual value
varies from 0.04 (fluoxetine, iloperidone) to−0.28 (amitriptyline) and also for the validation
set, where the residual value varies from 0.46 (thioridazine) to 1.65 (clozapine). The
biological activities of natural compounds at 5-HT1A were evaluated relative to the activity
of ziprasidone, the most active compound of the training set (pKi experimental = 8.72).
We noticed that the natural compounds presented a middle antidepressant activity. A
good affinity was predicted in the case of 1,8-cineole (pKiziprasidone-pKi1,8-cineole = 1.83) and
linalyl acetate (pKiziprasidone-pKilinalyl acetate = 1.83) (Table 6).

The neuroleptic activity of natural compounds was evaluated by their affinity at
D2 receptor. The power of prediction of QSAR-D2 model was sustained by the good
statistical parameters (Table 5). Similar to previous QSAR models, a good correlation
between predicted and experimental biological activities were obtained in both train-
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ing and validation sets (Table 6). The neuroleptic activity of natural compounds was
evaluated versus spiperone (pKi experimental = 10.15) and we noticed that a good neu-
roleptic activity is recorded by quercetin (pKispiperone-pKiquercetin = −1.76), neryl acetate
(pKispiperone-pKineryl acetate = −2.01), linalyl acetate (pKispiperone-pKilinalyl acetate = −2.04),
and 1,8-cineole (pKispiperone-pKi1,8-cineole = −2.04). The affinity of quercitin at D2 is close
to the affinity of mesoridazine, loxapine, and olanzapine, our results being supported by
experimental studies [71].

4.4. Molecular Basis of the Interaction between Lead Compounds and Targets

The docking scores that we calculated were CDOKER energy (calculated based on
ligand strain energy and receptor-ligand interaction energy) and CDOCKER interaction
energy (calculated based on ligand-receptor nonbonded interaction energy). In the case of
linalyl acetate acting on the three targets, neryl acetate acting on SERT, and 5-HT1A and
1,8-cineole acting on D2 and 5-HT1A we obtained negative CDOCKER interaction energies,
confirming that the ligands present favorable interaction energies with the targets (Table 7).
The most favorable interaction energies were obtained for linalyl acetate and neryl acetate,
while less favorable energies were calculated for 1,8-cinole.

By analyzing the 2D interaction maps presented in Figure 2 we observe that com-
pounds form hydrogen bonds with the targets in the case of linalyl acetate with SERT and
5-HT1A or in the case of neryl acetate and SERT. Other types of interactions established
by the compounds and the targets fall in the category of: (i) van der Waals interactions—
important for the binding of linalyl acetate to SERT, linalyl acetate to D2, or 1,8-cineole
to D2; (ii) alkyl or π-alkyl interactions—important for the binding of linalyl acetate to
5-HT1A or D2, neryl acetate to D2, or 1,8-cineole to D2; and (iii) µ-σ interactions—which
appear only in the case of linalyl acetate binding to SERT. The types of interactions that we
identified are consistent with the molecular properties relevant for target binding that we
identified using our QSAR models.

5. Conclusions

Medication repositioning is a quick way to employ an existing drug to treat new
diseases [72–74]. The present study has investigated the opportunity to reposition ten
natural compounds identified from the literature, namely resveratrol, quercetin, limonene,
sabinene, 1,8-cineole, chamazulene, linalyl acetate, germacrene D, nerol, and neryl acetate,
as antidepressants and even as neuroleptics. These compounds are found in common
fruits, spices, and tea herbs. All compounds are indexed in databases (DrugBank, FooDB)
with different effects like anti-inflammatory, antioxidant, antimicrobial, antiallergic, or anti
cancer, but none of them are indexed as antidepressants. Several experimental studies
conducted mostly in animal models point toward their antidepressive effects. Therefore,
we used computational methods to address the ability of compounds to modulate three
major targets in depression, namely SERT, 5-HT1A, and D2 receptors and compared their
predicted effect with the effect of potent drugs used in clinics.

All ten compounds present drug-likeness features and no toxicity, meaning that they
could be used in therapy. Their ADME features showed a very good intestinal absorption,
as well as a good BBB and CNS permeability, suggesting that the compounds can reach the
brain, where they should exert their biological effects.

Their biological activities relevant to depression were determined against SERT, 5-
HT1A, and D2 receptors. For each target, we built powerful QSAR models that were trained
and validated based on synthesis drugs that modulate their function. When predicting
the effect of natural compounds, we determined that most compounds, namely limonene,
sabiene, chamazulene, germacrene D, linalyl acetate, nerol, and neryl acetate, should
inhibit SERT to an extent similar to paroxetine. Only two compounds appear as candidates
to modulate 5-HT1A, namely 1,8-cineole and linalyl acetate, in a manner comparable
with fluoxetine. Concerning the neuroleptic effect of compounds, quercetin, neryl acetate,
linalyl acetate, and 1,8-cineole could be active against D2 receptors, in a similar manner
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with ziprasidone. Overall, we identified linalyl acetate as a strong affinity ligand for
all three targets (SERT, 5-HT1A, and D2 receptor), and we consider it to be a promising
antidepressant compound. Neryl acetate appeared as a promising ligand for both SERT and
D2, while 1,8-cineole appears as a common ligand for 5-HT1A and D2 receptors. Molecular
docking results confirm the favorable interaction between lead compounds and the targets.

The results obtained here show that linalyl acetate, neryl acetate, and 1,8-cineole target
the proteins relevant in depression and present drug-likeness features, suitable ADME
profiles, and no toxicity, suggesting they represent viable candidates for repurposing as
antidepressants. Our simulation study offers evidence on the molecular mechanism of these
compounds and the results should be confirmed experimentally. Results obtained here can
be the starting point for studies on the repositioning of natural compounds and plants for
an alternative treatment of depression, with significant efficiency, but reduced side effects,
that can be administered even to patients with comorbidities or during pregnancy.
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