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Abstract: In this study, possible changes in the expression of rat organic cationic transporters
(rOCTs) and rat multidrug and toxin extrusion proteins (rMATEs) following treatment with 1α,25-
dihydroxyvitamin D3 (1,25(OH)2D3) were investigated. Rats received intraperitoneal administrations
of 1,25(OH)2D3 for four consecutive days, and the tissues of interest were collected. The mRNA
expression of rOCT1 in the kidneys was significantly increased in 1,25(OH)2D3-treated rats compared
with the control rats, while the mRNA expressions of rOCT2 and rMATE1 in the kidneys, rOCT1
and N-acetyltransferase-II (NAT-II) in the liver, and rOCT3 in the heart were significantly decreased.
Changes in the protein expression of hepatic rOCT1 and renal rOCT2 and rMATE1 were confirmed by
western blot analysis. We further evaluated the pharmacokinetics of procainamide (PA) hydrochloride
and its major metabolite N-acetyl procainamide (NAPA) in the presence of 1,25(OH)2D3. When
PA hydrochloride was administered intravenously at a dose 10 mg/kg to 1,25(OH)2D3-treated
rats, a significant decrease in renal and/or non-renal clearance of PA and NAPA was observed. A
physiological model for the pharmacokinetics of PA and NAPA in rats was useful for linking changes
in the transcriptional and translational expressions of rOCTs and rMATE1 transporters to the altered
pharmacokinetics of the drugs.

Keywords: 1α,25-dihydroxyvitamin D3; rOCTs; rMATE1; procainamide; N-acetylprocainamide;
PBPK modeling

1. Introduction

Drug transporters are crucial factors that affect the pharmacokinetics of therapeutic
drugs. Changes in the expression and/or function of such biological proteins may alter
drug disposition, toxicology, and pharmacological responses at the site of action. Previous
studies [1,2] have reported changes in the expression of adenosine triphosphate (ATP)-
binding cassette or solute carrier membrane transporters in various tissues, including in
the kidney, liver, and brain, under pathological conditions. The administration of some
therapeutic drugs has also been reported to alter the expression levels of transporters [3,4].
The gene expression of transporters and drug-metabolizing enzymes, which may affect the
pharmacokinetic profiles of drugs, is known to be regulated by nuclear receptor proteins
including pregnane X receptor (PXR), constitutive androstane receptor (CAR), farnesoid X
receptor (FXR), and vitamin D receptor (VDR) [5,6].
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Among these nuclear receptor proteins, VDR is an intracellular hormone receptor,
which exerts its biological effects by stimulating downstream signaling involved in various
physiological activities such as calcium homeostasis, bone mineralization, and cell differ-
entiation [7,8]. In addition, VDR regulates cytochrome P450 (CYP) and the transporters
expressed in various tissues, as described above. For example, VDR has been reported to
regulate CYP3A4 expression in the human intestine [9] and CYP3A4, CYP2B6, and CYP2C9
in human hepatocytes [10] in the presence of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a
natural ligand of VDR, which may thus affect the first-pass drug metabolism and systemic
pharmacokinetic profiles. In addition, intestinal multidrug resistance protein 1 (MDR1)
expression was induced by 1,25(OH)2D3 via the binding of VDR and retinoid X receptor
α (VDR/RXRα) to several VDREs (i.e., vitamin D-response element) [11]. The treatment
of rats with 1,25(OH)2D3 reduced renal mRNA levels of rat oligopeptide transporter 1
(rPEPT1) and rat organic anion transporters 1 and 3 (rOAT1 and rOAT3), resulting in a
significant decrease in the renal clearance of cefdinir and cefadroxil [12,13]. Although
these observations support the importance of VDR in the molecular regulation of several
metabolizing enzymes/transporters and their potential impact on the pharmacokinetics
of therapeutic agents, information on the effect of 1,25(OH)2D3 on the expression of other
clinically recognized transporters, such as organic cation transporters (OCTs) or multidrug
and toxin extrusion proteins (MATEs), remains lacking.

Procainamide (PA), which is classified as a type IA antiarrhythmic drug, is commonly
used for the treatment of ventricular arrhythmias and stable sustained monomorphic
ventricular tachycardia [14,15]. PA exists in a cationic form in biological matrices (i.e.,
with a basic pKa value of 9.04) and is a substrate of hOCTs [16,17] and hMATE1 [18].
The elimination of PA occurs via renal excretion as well as hepatic metabolism by N-
acetyltransferase-II (NAT-II) to form N-acetylprocainamide (NAPA), which is also an
anti-arrhythmic agent [19–21]. Using a pharmacokinetic modeling approach, the findings
of a previous study [22] suggested that the functional variation of renal transporters such
as OCT2 and MATE1 may affect the pharmacokinetics of PA and NAPA. Therefore, we
hypothesized that functional changes in transporters, potentially due to VDR regulation,
in the presence of 1,25(OH)2D3 may impact on the pharmacokinetics of PA and NAPA.
Because of the narrow therapeutic indices of PA and NAPA [23], studies on the variable
expression of cationic transporters by VDR are needed.

Therefore, the primary objective of this study was to investigate the effects of 1,25(OH)2D3
on the expression levels of rOCTs in various tissues and of rMATE1 in the kidneys. To
further examine whether the observed changes in transporter expression influenced the
pharmacokinetics of PA and NAPA, the systemic pharmacokinetics, urinary excretion,
and tissue distribution of both drugs were studied in rats with and without 1,25(OH)2D3
treatment. Using a physiologically-based pharmacokinetic (PBPK) model established for
the pharmacokinetics of PA and NAPA in rats [22], the altered pharmacokinetics of the
drugs were quantitatively assessed in this study.

2. Materials and Methods
2.1. Materials

In this study, 1,25(OH)2D3, procainamide hydrochloride (PA HCl), N-acetylprocainamide
(NAPA), and N-propionylprocainamide (i.e., internal standard (IS) for ultra-high perfor-
mance liquid chromatography (UHPLC) analysis), acetic acid, triethylamine, and corn oil
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Water was purified in-house
using an aquaMAX™ ultra-pure water purification system (YL Instruments, Anyang, Korea).
Methanol was purchased from Honeywell Burdick and Jackson (Ulsan, Korea). All other
chemicals and solvents were of reagent or HPLC grade and used without further purification.

2.2. Experimental Animals and Treatment of Rats with 1,25(OH)2D3

The animal experiments were performed in accordance with the Guidelines for Animal
Care and Use of Gachon University (approval number: GIACUC-R2017011, approval date:
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25 May 2017). Sprague-Dawley (SD) rats (7–8-weeks old, 260–320 g) were purchased from
Nara Bio Technology, Seoul, Korea. Rats were acclimatized for 1 week with free access to
food and water. Animals were maintained under a 12:12 h light–dark cycle in accordance
with the animal protocols.

To investigate the effect of 1,25(OH)2D3 treatment on the expression of transporters in
rat tissues, SD rats were treated in the following manner, as previously reported [12,13,24,25].
Rats in the control and treatment groups intraperitoneally received a solution of 0.0452%
ethanol in corn oil filtered by a syringe filter (Sartorius, Goettingen, Germany) without or
with 1,25(OH)2D3 (at a concentration of 2.56 µM) for four consecutive days at the same
time of each day (9:30–10:00 a.m.). The rats were weighed daily during the treatment
period. On the 5th day (i.e., 24 h after the last dose), the control and 1,25(OH)2D3-treated
rats were anesthetized with an intraperitoneal injection of tiletamine HCl/zolazepam HCl
(20 mg/kg, Zoletil 50®; Virbac Laboratories, Carros, France) and xylazine HCl (10 mg/kg,
Rompun®; Bayer AG, Leverkusen, Germany), which were then used in subsequent studies.

2.3. Effect of 1,25(OH)2D3 on the Gene Expression of rOCTs, rMATE1, and rNAT-II in Rat Tissues

To examine whether 1,25(OH)2D3 treatment affects the expression of various genes
in rat tissues, heart, liver, and kidney samples were collected from anesthetized rats and
immediately frozen in liquid nitrogen. The expression levels of rOCT3 in heart, rOCT1,
rOCT2, rOCT3, and rMATE1 in kidney, and rOCT1 and NAT-II (i.e., metabolic converting
enzyme of PA into NAPA) in liver were determined by real-time quantitative polymerase
chain reaction (qPCR) and normalized to that of rat glyceraldehyde 3-phosphate dehy-
drogenase (rGAPDH), as previously reported [13,26]. Briefly, RNAiso Plus (Takara Bio
Inc., Shiga, Japan) was used to extract total RNA from 100 mg tissue samples accord-
ing to the manufacturer’s protocol. The purity and concentration of total RNA were
measured using a NanoDrop 2000c spectrophotometer (Thermo Scientific, Lenexa, KS,
USA). A first-strand cDNA kit (Takara Bio Inc., Shiga, Japan) was used to synthesize
cDNA from approximately 1 µg of total RNA. The synthesized cDNA was subjected to
qPCR assays using SYBR® Premix Ex Taq™ (Takara Bio Inc., Shiga, Japan) on a Strata-
gene Mx3005P system (Agilent Technologies, Cedar Creek, TX, USA). The qPCR primer
pairs used were as follows: rGAPDH forward primer 5′-CGCTGGTGCTGAGTATGTCG-3′;
rGAPDH reverse primer 5′-CTGTGGTCATGAGCCCTTCC-3′; rOCT1 forward primer 5′-
TTTAACCTGGTGTGTGGAGACG-3′; rOCT1 reverse primer 5′-AGGAAGAAGCCCAAGT
TCACAC-3′; rOCT2 forward primer 5′-CGGTGCTATGATGATTGGCTAC-3′; rOCT2 re-
verse primer 5′-CCAGGCATAGTTGGGAGAAATC-3′; rOCT3 forward primer 5′-ATATCCT
GTTTCGGCGTTGG-3′; rOCT3 reverse primer 5′-TTTCCAAACACCCCTTGCAG-3′; rMATE1
forward primer 5′-CTCTTCATCAACACCGAGCA-3′; rMATE1 reverse primer 5′-ACCCAT
CACCCCAAGATGTA-3′; rNAT-II forward primer 5′-GCGAGAAGTGGTCCTGAGTAG-3′;
rNAT-II reverse primer 5′-CAAAGGGAATAGCCCGTATCT-3′ [27–30]. Amplification and
detection were performed according to the manufacturer’s protocol, using the MxPro-
Mx3005P system (Agilent Technologies, Santa Clara, CA, USA) at 95 ◦C for 10 min, with
40 cycles of 95 ◦C for 15 s and 55 ◦C for 30 s, followed by dissociation curve analysis. The
fold expression was represented as 2−(∆∆CT) to quantify relative mRNA expression [12].

2.4. Effect of 1,25(OH)2D3 on the Protein Expression of rOCTs and rMATE1 in Rat Liver
and Kidney

In this study, the protein expression levels of rOCT1, rOCT2, and rMATE1 in kidney
and rOCT1 in liver were determined by western blotting. For protein extraction, RIPA
buffer (#89900, Thermo Fisher Scientific, Waltham, MA, USA) was used for homogeniza-
tion of rat liver or kidney tissues with protease/phosphatase inhibitors using a Diax 900
homogenizer. The homogenized liver or kidney lysates were incubated in ice for 30 min
(for complete lysis) by vortexing every 5 min, followed by centrifugation at 14,000 × g for
30 min. The supernatant proteins were collected and diluted by 10-fold, and then the pro-
tein concentrations were determined using BCA Protein Assay Kit (#23227, Thermo Fisher
Scientific, Waltham, MA, USA). Bovine serum albumin (BSA) was applied for standards.
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Lysates were mixed with 2× Laemmli buffer (Bio-Rad, Hercules, CA, USA) supplemented
with β-mercaptoethanol (Bio-Rad) and boiled for 5 min. Proteins were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
onto nitrocellulose membranes (0.45 µm, Bio-Rad; cat##162-0115) for immunoblotting.
Immunoblotting was accomplished with the specific antibodies, and the bands were visu-
alized via chemiluminescence (#34577, Thermo Fisher Scientific, Waltham, MA, USA). The
primary antibodies were used as follows: rabbit SLC47A1 (MATE1) antibody (#ANT-131,
Alomone Labs, Jerusalem, Israel), rabbit OCT2 antibody (#OCT21-A, ALPHA DIAGNOS-
TIC, San Antonio, TX, USA), rabbit OCT1 antibody (#OCT11-A, ALPHA DIAGNOSTIC,
TX, USA), and HRP-conjugated β-actin mouse antibody (Sigma; cat#A3854; 1:10,000). In
addition, the following secondary antibodies were used: HRP-conjugated goat anti-rabbit
IgG antibody (Genetex; cat# GTX-213110-01; 1:5000). Densitometric analysis of the bands
was performed using ImageJ software (NIH; rsb.info.nih.gov/ij, assessed on 4 March 2021).

2.5. Effect of 1,25(OH)2D3 on the Pharmacokinetics of PA and NAPA in Rats

On the 5th day after vehicle treatment with or without 1,25(OH)2D3, rats were anes-
thetized, and the femoral vein (for administrating drugs and replenishing body fluids)
and artery (for collecting blood samples) were cannulated with polyethylene tubing (PE50;
Clay Adams, Parsippany, NJ, USA). After recovery from anesthesia, 10 mg/mL PA HCl dis-
solved in normal saline (HK inno.N Corp., Seoul, Korea) was administered intravenously
at a dose of 10 mg/kg to both the control and treatment group (n = 9 rats each). Blood
was then collected at 0 (blank), 1, 5, 15, 30, 60, 120, 180, 240, 360, and 480 min after drug
administration. The plasma fraction was separated by centrifugation of blood samples
for 15 min at 14,000 rpm at 4 ◦C and then stored at −20 ◦C until subsequent analysis. To
quantify PA and NAPA in the plasma, 200 µL of internal standard (IS) solution (200 ng/mL
in methanol) was added to an aliquot of 100 µL of plasma and then vortexed for 1 min. The
mixture was centrifuged for 15 min at 14,000 rpm and 4 ◦C, and 2 µL of the supernatant
was then injected into the UHPLC system (see below).

2.6. Effects of 1,25(OH)2D3 on the Urinary and Fecal Excretion of PA and NAPA in Rats

To determine the effect of 1,25(OH)2D3 on the urinary and fecal excretion of PA and
NAPA, rats were administered 10 mg/kg PA HCl in normal saline (1 mL/kg) via the tail
vein (n = 7 for each group) on the 5th day of the treatment, and then placed in individual
metabolic cages. Urine and feces were collected separately using a urine-feces separator.
Water was freely available to the rats, while food was given 8 h after the administration of
PA HCl. Urine samples were collected at intervals of 0–2, 2–4, 4–6, 6–8, and 8–24 h after
drug administration. The samples obtained during 0–8 h were weighed and diluted 100-
fold with distilled deionized water (DDW), while those obtained at 8–24 h were centrifuged
for 30 min to separate food particles at 300 rpm and 4 ◦C, weighed, and then diluted 50-fold
with DDW. When necessary to analyze urine samples, an analytical method was used
as previously described, with slight modification [31]. A 90 µL volume of urine samples
was spiked with 10 µL of IS solution (2 µg/mL) followed by the addition of 40 µL of 4 N
NaOH. For the extraction of PA and NAPA, the resulting samples were added to 800 µL of
methylene chloride, and the mixture was vortexed for 1 min and centrifuged for 10 min at
10,000 × g and 4 ◦C. The organic extracts (from the bottom layer) obtained by a series of
liquid–liquid extraction processes were reconstituted with 100 µL methanol. The samples
were centrifuged at 14,000 rpm for 15 min at 4 ◦C, and then 2 µL of the supernatant was
injected into the UHPLC system (see below).

Feces were collected at intervals of 0–24 h and 24–48 h and added to an adequate
volume of 0.9% NaCl solution. Samples were homogenized to obtain a fecal slurry, which
was then centrifuged for 20 min at 3000 rpm and 4 ◦C. The supernatant was diluted five-fold
with DDW and stored at −80 ◦C until analysis.

rsb.info.nih.gov/ij
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2.7. Effects of 1,25(OH)2D3 on the Tissue Distribution of PA and NAPA at Steady State

To evaluate the effects of 1,25(OH)2D3 treatment on the tissue distribution of PA and
NAPA, the tissue-to-plasma partition coefficient at steady state (Kp,ss) was determined for
various tissues. As described above, the rats were anesthetized on the 5th day of treatment,
and the femoral vein and artery were cannulated. Following recovery from anesthesia,
PA HCl was injected at a loading dose of 1.4 or 1.5 mg/kg (for the control or treatment
group, respectively) dissolved in normal saline, followed by constant infusion of the drug
at a rate of 2.5 mg/kg/h (i.e., as a maintenance dose of 0.784 mg/rat for control and
0.640 mg/rat for 1,25(OH)2D3-treated rats) (n = 5 for each group), using a syringe pump
(model no. NE-1800, New Era Pump System Inc., Farmingdale, NY, USA). Blood samples
were obtained at 1, 5, 15, 30, 45, and 60 min after the initiation of PA administration via
the femoral artery. Based on no significant difference among plasma concentrations of the
drug at 30, 45, and 60 min from using one-way analysis of variance (ANOVA), the steady
state condition was confirmed at 60 min. After 60 min of PA administration, therefore, the
rats were rapidly sacrificed, and six major tissues (i.e., brain, heart, kidney, liver, lung, and
spleen) were collected. After the wet weights of tissue samples were measured, a two-fold
volume of PBS was added to homogenize brain and spleen, whereas a five-fold volume of
PBS was added for heart, kidney, liver, and lung. It was assumed that the densities of all
tissue samples are consistent in this study. The tissue homogenates were kept at −80 ◦C
until analysis. Kp,ss was calculated by dividing the tissue concentration of each drug by its
plasma concentration at 60 min.

2.8. Effects of 1,25(OH)2D3 on the In Vitro Metabolic Conversion of PA into NAPA in Rat Liver
S9 Fractions

In this study, rat liver S9 fractions were prepared according to a previously described
method, with slight modifications [32]. Briefly, rats were anesthetized on the 5th day of the
treatment schedule, and the liver was collected and immediately frozen by immersion in
liquid nitrogen. Liver samples were homogenized in a 2.5-fold volume of buffer consisting
of 0.154 M potassium chloride and 50 mM tris-hydrochloride in 1 mM ethylenediaminete-
traacetic acid (EDTA) adjusted to pH 7.4, using a Wheaton™ Dounce tissue grinder. The
resultant homogenate was centrifuged at 9000 × g for 20 min at 4 ◦C to obtain the liver S9
fraction (i.e., the supernatant). The protein concentration in the fractions was determined
by Lowry’s method using Lowry reagent (Sigma-Aldrich Co., St Louis, MO, USA), accord-
ing to the manufacturer’s protocol. The rat liver S9 fraction obtained was stored at −80 ◦C
until analysis.

For in vitro metabolism study, a reaction mixture of liver S9 fractions containing PA
was prepared at a concentration of 2 mg protein/mL in 100 mM potassium phosphate
buffer adjusted to pH 7.4, at a total volume of 500 µL. The final concentrations of PA in
the solutions were 50, 500, and 5000 µM. After the mixture was preincubated at 37 ◦C
for 5 min in a Benchmark Multi-Therm Shaking Vortexer set at 200 oscillations/min, the
reaction was initiated by adding 10 µL of acetyl-CoA (at a final concentration of 2 mM)
and then vortexing. An aliquot (50 µL) was aspirated from the mixture at 0, 15, and 30 min
after initiation, and the reaction was terminated by adding 100 µL of ice-cold methanol
containing IS (200 ng/mL). The samples were vortexed and centrifuged at 12,000 × g for
10 min at 4 ◦C. The supernatant was injected into the UHPLC system to determine the
concentration of NAPA (see below).

2.9. Determination of the Free Fraction of PA in Plasma and Incubation Mixture of Rat Liver
S9 Fractions

In the present study, the binding of PA in the plasma and liver S9 fraction mixture
obtained from the control and 1,25(OH)2D3 treated rats was examined using Amicon®

Ultra-3 K centrifugal filter units (Merck Millipore, Ltd., Tullagreen, Carrigtwohill, Ireland).
Plasma was obtained from control and 1,25(OH)2D3-treated rats (n = 3 each), and the rat
liver S9 fraction was prepared as described above (n = 5 each). Twenty-microliters of PA
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HCl stock solution was spiked into 980 µL of the plasma or S9 fraction mixture, resulting
in a final concentration of 5 µg/mL or 50 µM, respectively. After 100 µL of the aliquot was
aspirated (C1) as a plasma standard to calculate C2 concentration, the remaining solution
was incubated at 37 ◦C for 12 min. Then, 500 µL of the incubated sample was transferred to
an Amicon® Ultra centrifugal filter unit, and 100 µL was aspirated (C2) from the transferred
solution. The centrifugal filter units were centrifuged at 37 ◦C and 5000 rpm for 12 min.
The filtrate was weighed (C f ), and 100 µL of the sample remaining in the upper part of
the centrifugal unit was collected (C3). All obtained samples (C1, C2, and C3) were each
mixed with 200 µL of methanol containing 200 ng/mL IS, while the weighed filtrate (C f )
was added to a two-fold volume of the IS solution. The mixture was vortexed for 1 min
and centrifuged for 15 min at 14,000 rpm and 4 ◦C. The supernatant was then transferred
to vials for UHPLC analysis.

To determine non-specific binding in the preparation of ultrafiltrate samples, 20 µL
of PA HCl stock solution (250 µg/mL) was added to 980 µL of PBS. Similarly, 500 µL of
the mixture was transferred into centrifugal filter units and 100 µL was sampled from the
transferred mixture (CBe f ore). The centrifugal filter units were then centrifuged for 6 min at
37 ◦C and 5000 rpm, and the filtrate was weighed (CA f ter). Using IS solution in methanol
(200 ng/mL), the resulting samples were vortexed for 1 min and centrifuged for 15 min at
4 ◦C and 14,000 rpm min, as described above, and injected into UHPLC. The free fraction
was calculated as follows:

Non− specific binding (NSB)% =

(
CBe f ore − CA f ter

)
CBe f ore

× 100 (1)

Free fraction% =
Cr f

C2
× 100 (2)

Corrected filtrate concentration (Cr f ) =

[
Measured filtrate concentration

(
C f

)]
100 − NSB

× 100

(3)

Recovery% =

[
C f × filtrate wt. + C3 × (0.4 − filtrate wt.)

]
C2 × 0.4

× 100 (4)

2.10. UHPLC Analysis

UHPLC analysis was performed using an Agilent Technologies 1290 Infinity II UHPLC
system equipped with a multisampler (G7167B), a flexible pump (G7104A), a multicolumn
thermostat (MCT) (G7116B), and a diode array detector (DAD) detector (G7117A). A
Synergi polar-RP column 80A (150 × 2.0 mm, 4 µm; Phenomenex, Torrnce, CA, USA)
column was used for analysis. The mobile phase was composed of 1% acetic acid (pH 5.5)
and methanol (76:24, v/v) and eluted in isocratic mode at a flow rate of 0.2 mL/min. The
injection volume was 2 µL, and the detection wavelength was 280 nm. The column and
autosampler trays were maintained at 25 and 4 ◦C, respectively.

2.11. Application of Physiologically-Based Pharmacokinetic Modeling for PA and NAPA in the
Absence and Presence of 1,25(OH)2D3 Treatment in Rats

PA has previously [18,33] been reported to be a substrate of OCT and MATE trans-
porters, which are thus considered to play crucial roles in the disposition of PA [34–36]. In
this study, mRNA and protein expression levels of renal transporters, including rOCT2
and rMATE1, were found to be reduced in the presence of 1,25(OH)2D3 treatment. In
addition, mRNA and protein expression levels of rOCT1 in rat kidney increased following
1,25(OH)2D3 treatment (see Section 3). Since the pharmacokinetics of PA and NAPA in rats
was also changed following 1,25(OH)2D3 treatment, we reasoned that the relevance of the
observed change may be mechanistically addressed by applying a physiological model for
the pharmacokinetics of PA and NAPA. In the literature [22], a PBPK model integrating
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the active transport kinetics in a semi-mechanistic kidney model was proposed to predict
drug–drug interactions of PA and NAPA with cimetidine in rats. Therefore, we utilized the
same model structure to predict the pharmacokinetic changes in PA and NAPA following
1,25(OH)2D3 treatment, along with slightly modified parameter values.

The parameters necessary for PBPK calculations, in accordance with the previous
model [22], were applied (see Section 3). Briefly, while the systemic pharmacokinetic pro-
files of PA and NAPA in the control group were consistent with those reported previously,
the cumulative urinary recovery was somewhat affected following treatment with vehicle
for 4 consecutive days (i.e., 0.0452% ethanol in filtered corn oil; 1 mL/kg) with a factor
of 1.29 and 0.836 for PA and NAPA, respectively. In addition, the Kp,ss values in a few
tissues differed from those reported previously (e.g., brain and lung for PA, and brain,
heart, and liver for NAPA; greater than a factor of two). Therefore, an approach similar to
that previously used to calculate PBPK model parameters was considered, utilizing the
currently observed Kp,ss values in our PBPK model.

Using a semi-mechanistic kidney model [37], the clearances of basolateral uptake
(PSin) and apical efflux (CLu,int,r) of PA and NAPA were incorporated. Similarly, PSin was
assumed to consist of active and passive drug uptake (i.e., PSact and PSpas). Despite the
relatively lower expression of rOCT1 compared to rOCT2 in rat kidneys (38.3 compared
to 254 pmol/g kidney) [38], PSact was assumed to be composed of PSrOCT1 and PSrOCT2
since this study revealed a significant increase in rOCT1 expression along with a significant
decrease in rOCT2 by 1,25(OH)2D3 treatment. Interestingly, there has been some evidence
of a marked difference in the affinity of PA between rOCT1 (e.g., IC50 values for representa-
tive substrate uptake, ranging from 3.56 to 12 µM) and rOCT2 (from 90 to 748 µM) [39–41].
However, the estimation of PSrOCT1 and PSrOCT2 could not be separated because of the
absence of information on the flipping rate (kcat) of PA or NAPA by each transporter. To
apply the PBPK model in the presence of 1,25(OH)2D3 treatment, therefore, we estimated
the fold change in the overall active uptake (Ract = PSact,vitD/PSact; Equation (A14), see
Appendix A), which was assumed to be consistent for PA and NAPA, while the level of
rMATE1 protein expression observed in this study was used for the functional change of
the proteins. Detailed description of differential equations used for the current modeling
analysis are shown in Appendix A.

2.12. Statistical Analysis

As an evaluation of the predictability of PBPK model for PA and NAPA, the abso-
lute average fold error (AAFE) was calculated for the comparison of model-predicted
concentrations/amounts with the observed values as follows:

AAFE = 10
1
n ∑ |log

Cpred
Cobs
|

(5)

where Cpred and Cobs refer to the predicted and observed concentrations, respectively, and
n indicates the number of observations.

Pharmacokinetic parameters were calculated by non-compartmental analysis (NCA)
using WinNonlin software (Version 5.0.1., Pharsight Corporation, Mountain View, CA,
USA). Renal clearance (CLR) was calculated by dividing the amount of drug excreted in
the urine by the area under the plasma concentration-time curve from time 0 to infinity
(AUCin f ). Non-renal clearance (CLNR) was obtained by subtracting CLR from total clear-
ance (CL). Ract was fitted to the PBPK model using ADAPT 5 with the variance model as
follows [42]:

Vi = (σ1 + σ2·Yi)
2 (6)

where, Vi is the variance of the ith data point, Yi is the ith model prediction, and σ1 and σ2 are
variance model parameters. The ADAPT model code used for estimating Ract is provided
in the Supplementary Material. When the numerical integration is necessary, computations
were conducted using the fourth-order Runge–Kutta method built in Berkeley Madonna
software (version 8.3.18; University of California, Berkeley, CA, USA).
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Differences between two groups were analyzed using a two-tailed Student’s t-test. In
this study, data are expressed as the mean ± standard deviation (S.D.), and p values less
than 0.05 were regarded as statistically significant.

3. Results
3.1. Effects of 1,25(OH)2D3 on the mRNA/Protein Expression of OCT and MATE Transporters
in Rats

The primary objective of this study was to investigate the potential effect of 1,25(OH)2D3
on the expression of cationic transporters in various tissues. Figure 1 shows the changes
in the mRNA expression of the OCT and MATE transporters and the rNAT-II enzyme in
various tissues from the control and 1,25(OH)2D3-treated rats. qPCR analysis revealed
that the mRNA expression of rOCT1 was significantly increased in kidney tissue from
1,25(OH)2D3-treated rats compared with that from control rats (i.e., 1.98-fold of control),
whereas the mRNA levels of rOCT2 and rMATE1 were significantly decreased (i.e., 0.366-
and 0.248-fold of control, respectively). No change in the mRNA expression of rOCT3 in
the kidneys was observed between the two groups (0.921-fold). In addition, the mRNA
expressions of heart rOCT3 and hepatic rOCT1 and rNAT-II enzymes were significantly
lower than that in the control following treatment with 1,25(OH)2D3, with 0.342, 0.688, and
0.248-fold of the control values, respectively. Moreover, as shown in Figure 2, a western
blot analysis confirmed that the rOCT1 protein levels were significantly reduced in the
liver (0.31-fold of control, p < 0.01, Figure 2B) and that the rOCT2 (0.35-fold of control) and
rMATE1 (0.31-fold of control) levels were significantly reduced in the kidneys (p < 0.05,
Figure 2D) by 1,25(OH)2D3 treatment, whereas the rOCT1 expression in the kidneys was
induced by treatment with 1,25(OH)2D3 (p < 0.01, Figure 2D). Collectively, these results
indicate that the mRNA/protein expression levels of cationic transporters and enzymes
were altered by 1,25(OH)2D3 treatment in rats.

3.2. Effects of 1,25(OH)2D3 on the Pharmacokinetics of PA and NAPA Following the Intravenous
Administration of PA HCl to Rats

Following the intravenous administration of PA HCl at 10 mg/kg to the control and
1,25(OH)2D3-treated rats, the plasma concentration-time profiles of PA and its metabolite
NAPA were determined, as shown in Figure 3. The relevant pharmacokinetic parame-
ters determined in the control group (Table 1) were not significantly different from those
obtained in a previous study [22]. This suggests that treating rats with the vehicle (i.e.,
0.0452% ethanol in filtered corn oil; 1 mL/kg) had no significant effect on the systemic
pharmacokinetics of PA and NAPA. Following treatment with 1,25(OH)2D3 for four consec-
utive days, however, significant changes in the pharmacokinetic parameters for PA were
observed in this study. Regarding the systemic pharmacokinetics, significant decreases in
CL and the steady state volume of distribution (VSS), along with increased AUCin f were
observed in the 1,25(OH)2D3 treatment group (Table 1). In addition, the CLNR of PA was
significantly reduced by 23.4%. However, the T1/2β (terminal phase half-life) and mean
residence time (MRT) were unchanged by 1,25(OH)2D3 treatment.

Treatment with 1,25(OH)2D3 also increased the AUCin f and peak plasma concentra-
tion (Cmax) and decreased the CLR of NAPA following the intravenous administration of
10 mg/kg PA HCl. In this study, no significant change was observed in the T1/2β and the
AUCin f ratio of NAPA to PA (AUCNAPA/AUCPA).
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Figure 3. Plasma concentration-time profiles of (A) PA and (B) NAPA following intravenous administration of 10 mg/kg
PA HCl to control (open circles) and 1,25(OH)2D3-treated rats (closed circles) (n = 9 per group).

Table 1. Pharmacokinetic parameters of PA and NAPA following intravenous administration of
10 mg/kg PA HCl to control and 1,25(OH)2D3-treated rats.

Parameter Control (n = 9) 1,25(OH)2D3 (n = 9)

Initial body weight (g) 309.1 ± 15.3 326.1 ± 14.7
Final body weight (g) 297.6 ± 19.3 282.3 ± 16.0 **
Procainamide
AUCin f (µg·min/mL) 146.6 ± 19.4 208.5 ± 42.1 *
T1/2β (min) 52.01 ± 5.9 68.09 ± 22.95
MRT (min) 31.62 ± 5.50 33.05 ± 4.46
VSS (mL/kg) 2153 ± 432 1616 ± 236 *
CL (mL/min/kg) 69.24 ± 8.95 49.72 ± 9.88 **
CLR (mL/min/kg) 16.29 ± 2.11 8.696 ± 1.728 **
CLNR (mL/min/kg) 52.95 ± 6.85 41.02 ± 8.15 *
N-acetylprocainamide
AUCin f (µg·min/mL) 196.7 ± 57.9 402.5 ± 228.6 *
T1/2β (min) 132.3 ± 24.6 151.6 ± 49.4
Cmax (µg/mL) 0.9958 ± 0.2004 1.740 ± 0.476 **
Tmax (min) 23.33 ± 7.91 16.67 ± 5.00 *
CLR (mL/min/kg) 12.67 ± 2.96 8.971 ± 4.241 *
AUCNAPA/AUCPA 1.328 ± 0.256 1.853 ± 0.799

Key: AUCin f , area under the plasma concentration-time curve from time zero to infinity; MRT, mean residence
time; T1/2β, terminal phase half-life; VSS, apparent volume of distribution at steady state; CL, total clearance; CLR,
renal clearance; CLNR, non-renal clearance; Cmax , peak plasma concentration; Tmax , time to reach Cmax . * p < 0.05
and ** p < 0.001 between control and 1,25(OH)2D3-treated rats.

3.3. Effects of 1,25(OH)2D3 on the Urinary and Fecal Excretion of PA and NAPA in Rats

To determine the effects of 1,25(OH)2D3 on the urinary excretion of PA and NAPA, the
cumulative urinary recovery of both drugs (% dose) was calculated 24 h after intravenous
administration of 10 mg/kg PA HCl. As shown in Figure 4A, the cumulative urinary
recovery of PA was significantly lower for the 1,25(OH)2D3-treated group (i.e., 14.8 and
20.1% for the treated and control groups, respectively), leading to a decrease in CLR
(Table 1). In contrast, no significant difference in the cumulative urinary recovery of NAPA
was found between the two groups (Figure 4B), while CLR of NAPA decreased by 29.2%
following the intravenous administration of PA HCl to the 1,25(OH)2D3-treated rates due to
increased AUCin f following 1,25(OH)2D3 treatment. PA was not detected in fecal samples,
while fecal recovery of NAPA decreased significantly by 47% in the 1,25(OH)2D3-treated
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rats compared with the control rats (data not shown). Although NAPA was detected in rat
feces, clearance via the fecal pathway was minimal compared to the CLR (i.e., fecal recovery
of 1.64% in the control); thus, this was not considered for the current PBPK modeling.
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3.4. Effects of 1,25(OH)2D3 on the Tissue Distribution of PA and NAPA at Steady State in Rats

The effects of 1,25(OH)2D3 on the tissue distribution of PA and NAPA were determined
at steady state. Kp,ss values of both drugs for the brain, heart, kidneys, liver, lung, and
spleen are summarized in Table 2. No statistically significant changes in Kp,ss values were
observed for the six major tissues following treatment with 1,25(OH)2D3 (i.e., p > 0.05).
In general, the observed Kp,ss values for the control group (i.e., 1,25(OH)2D3-free group)
fell within a factor of two compared with those reported previously [22], except for the
following tissues: liver and lung for PA (i.e., decrease to 15.9% and 36.0%, respectively), and
brain, heart, and liver for NAPA (i.e., decrease to 17.8%, 21.0%, and 47.2%, respectively).
Due to these discrepancies in the systemic pharmacokinetics of PA and NAPA between the
two studies, altered Kp,ss values were used for PBPK modeling in the present study.

Table 2. Tissue-to-plasma partition coefficient at steady state (Kp,ss) for PA and NAPA in major tissues from control and
1,25(OH)2D3-treated rats. Data are represented as the mean ± S.D. (n = 5).

Tissue
PA NAPA

Control 1,25(OH)2D3 p Value Control 1,25(OH)2D3 p Value

Brain 0.3904 ± 0.0917 0.2861 ± 0.0646 0.0714 0.1268 ± 0.0457 0.2458 ± 0.1361 0.1010

Heart 2.362 ± 0.912 1.658 ± 0.217 0.1317 2.670 ± 0.248 2.290 ± 0.689 0.2794

Kidney 8.484 ± 1.671 8.775 ± 1.078 0.7517 11.86 ± 4.30 13.93 ± 3.67 0.4360

Liver 0.4561 ± 0.1680 0.3059 ± 0.0605 0.0968 8.410 ± 4.092 6.338 ± 2.285 0.3517

Lungs 0.9077 ± 0.1073 0.9282 ± 0.0511 0.7092 5.448 ± 1.140 4.191 ± 1.130 0.1180

Spleen 2.027 ± 0.329 1.507 ± 0.454 0.0718 6.432 ± 0.958 5.186 ± 1.825 0.2137

3.5. Effects of 1,25(OH)2D3 on the In Vitro Metabolic Conversion of PA into NAPA in Rat Liver
S9 Fractions

In this study, the amount of NAPA formed in rat liver S9 fractions obtained from
the control or the 1,25(OH)2D3-treated rats was measured. The conversion rate for the
treatment group was significantly decreased by 9.5%, 19.9%, and 17.1% at PA concentrations
of 50, 500, and 5000 µM, respectively (Figure 5). While the non-renal clearance was reduced
by 22.5% in the presence of 1,25(OH)2D3 treatment (Table 1), a well-stirred assumption
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of the liver compartment led to decreased CLu,int with a factor of 1.92 (see Section 3.7).
As a result, the fraction of NAPA formation during the hepatic elimination of PA (FNAPA)
increased from 0.562 to 0.845 by 1,25(OH)2D3 treatment. In addition to the weak change in
NAPA formation in the S9 fractions (Figure 5), it was suggested that miscellaneous hepatic
elimination of PA may be more significantly affected rather than PA metabolism to NAPA
by rNAT-II. Considering that the expression level of rNAT-II enzyme was also markedly
reduced by 75.2% based on the qPCR data (Figure 1G), the alteration of mRNA expression
level did not appear to quantitatively correlate with the functional change in the metabolic
activity for NAPA formation by 1,25(OH)2D3 treatment.
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3.6. Free Fraction of PA in the Plasma and the Incubation Mixture of Rat Liver S9 Fractions

The extent of plasma protein binding by PA HCl (5 µg/mL) was compared between the
control and 1,25(OH)2D3-treatment groups. The non-specific binding of PA was 7.52%, sug-
gesting that non-specific binding of the drug to the ultrafiltration membrane or apparatus
may be negligible. The free fraction of PA HCl in the plasma of control rats (87.1 ± 0.85%)
did not differ from that in the plasma of 1,25(OH)2D3-treated rats (87.4 ± 3.42%), which is
consistent with the results of the previous study [22]. The recovery was 99.4 ± 4.36% and
108 ± 4.11% for the plasma from the control and 1,25(OH)2D3-treated rats, respectively.

The extent of PA HCl (50 µM) binding to liver S9 fraction protein was compared be-
tween the control and 1,25(OH)2D3-treated rats. The free fraction of PA HCl in the reaction
mixture of liver S9 fractions obtained from 1,25(OH)2D3-treated rats (38.0 ± 0.920%) was
not significantly different from that in the reaction mixture of liver S9 fractions obtained
from control rats (38.3 ± 3.57%). The recovery was 84.7 ± 5.80% and 88.9 ± 2.88% for the
liver S9 fraction from the control and 1,25(OH)2D3-treated rats, respectively.

3.7. Application of a PBPK Model for the Pharmacokinetics of PA and NAPA after Intravenous
Administration of PA HCl in the Absence or Presence of 1,25(OH)2D3 Treatment

In this study, a PBPK model [22] was used to elucidate the pharmacokinetics and
urinary excretion of PA and NAPA in the absence or presence of 1,25(OH)2D3. Using
the parameters from a series of retrograde calculations (Table 3), the PBPK simulations
reasonably captured the observed profiles of the plasma concentration and cumulative
urinary excretion in the control group, as shown in Figure 6. When the model parameters
in this study are compared with those in the previous report [22], the Kp,ss values for kidney
(8.484 for PA and 11.86 for NAPA in this study) were observed to be changed from those of
the previous literature (5.68 for PA and 21.0 for NAPA). Considering the fraction escaping
from the elimination in the kidney (1− ER) consistent between the two studies (i.e., 0.747
for PA and 0.805 for NAPA in this study, and 0.684 for PA and 0.673 for NAPA in the
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previous study [22]), the observed difference in Kp,ss may have resulted from the altered
tissue partitioning by the vehicle treatment for four consecutive days that is independent
of elimination kinetics. Based on the assumption of a lack of difference in PSout, fup, and
fu,kidney for PA and NAPA in the current kidney model, PSin (22.1 (PA) and 9.59 mL/min
(NAPA), Table 3) was also differently estimated from the previous literature (16.2 (PA) and
20.3 mL/min (NAPA)).

Table 3. Input parameters for PBPK modeling of PA and NAPA in the absence or presence of 1,25(OH)2D3 treatment.

Parameter
Control 1,25(OH)2D3 Treatment

CommentPA NAPA PA NAPA

Physchem and Blood Binding
Molecular weight 235.33 277.36 235.33 277.36
Compound type Monoprotic base Monoprotic base

pKa 9.04 9.04 9.04 9.04
log P 0.83 0.93 0.83 0.93

fup 0.87 0.688 0.87 0.688
B/P ratio 1 1 1 1

Distribution (Kp)
Kidney 11.4 14.7 10.7 b 14.5 b Kp,ss/(1− ER)
Liver 1.44 9.62 0.649 7.25 Kp,ss/(1− ER)
Brain 0.3904 0.1268 0.2861 0.2458 Kp,ss
Heart 2.362 2.67 1.658 2.29 Kp,ss
Lung 0.9077 5.448 0.9282 4.191 Kp,ss

Spleen 2.027 6.432 1.507 5.186 Kp,ss
Adipose 0.721 0.967 0.721 0.967 Predicted [43]

Bone 1.96 2.2 1.96 2.2 Predicted [43]
Gut 4.87 6.23 4.87 6.23 Predicted [43]

Muscle 3.93 4.61 3.93 4.61 Predicted [43]
Skin 2.96 3.64 2.96 3.64 Predicted [43]

Non-Renal Elimination
CLu,int (mL/min) a 47.9 4.04 25 4.04 QLI · CLNR

fup · (QLI−CLNR)

Extraction ratio a 0.682 0.125 0.529 0.125 CLNR/QLI
CLint,m (mL/min) 16.3 28.3 CLm/Kp,ss,LI

FNAPA
a 0.562 0.845 CLint,m/CLint

Semi-Mechanistic Kidney
CLu,int,r (mL/min) 4.67 9.16 1.46 c 2.86 c From the previous model [22]

PSout (mL/min) 7.61 7.61 7.61 7.61 From the previous model [22] (= PSpas)
PSin (mL/min) 22.1 9.59 17.4 d 8.95 d PSact + PSpas

CLrabs (mL/min) 0.415 0.415 0.415 0.415 From the previous model [22]
Extraction ratio a 0.253 0.195 0.0892 0.116 CLsec/QKI

fu,kidney 0.223 0.0588 0.223 0.0588 From the previous model [22]
a Determined from non-compartmental analysis of the observed data; b Model-based Kp,KI values were calculated using the relationship

Kp,KI =
fup PSin

fu,kidney PSout
(Equation (A12)); c For 1,25(OH)2D3 treatment group, CLu,int,r,vitD = CLu,int,r ·RMATE, where RMATE = 0.312 from

protein expression data; d Using the fitted Ract value (0.675, with Coefficient of Variation of 61.6%), the uptake clearance into the
proximal tubule cell compartment in the presence of 1,25(OH)2D3 treatment (PSin,vitD) was calculated by PSin,vitD = PSact,vitD + PSpas =
PSactRact + PSpas.

In the presence of 1,25(OH)2D3 treatment, the expression of rOCT1 transporter protein
in liver decreased to 30.9% (Figure 2C), consistent with the reduced Kp,ss in liver for PA and
NAPA (Table 2). However, this decrease was not considered in the current analysis because
the in silico prediction of Kp based on the tissue binding properties of PA and NAPA [43]
overestimated the observed Kp values. The protein expression of rMATE1 was reduced to
31.2% of that of the control (Figure 2D), which was used to correct CLu,int,r in the model.
Due to indistinguishable PSrOCT1 and PSrOCT2, the fold change in the overall active uptake
(Ract = PSact,vitD/PSact, Equation (A14)) was determined by fitting our PBPK model to
the profiles of plasma concentration and cumulative urinary excretion of PA and NAPA.
The fitted pharmacokinetic profiles also adequately described the plasma concentration
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and urinary excretion profiles of PA and NAPA in the presence of 1,25(OH)2D3 treatment
(Figure 6C,D). Although divergent changes in rOCT1 and rOCT2 expression in kidney
(Figure 2D) complicated the kinetic interpretation along with the marked difference in the
affinity (e.g., IC50) of PA to both transporters [39–41], the estimated Ract value of 0.675
(CV% of 61.6) suggested that 1,25(OH)2D3 treatment in rats may lead to a reduction in the
basolateral uptake of PA and NAPA. Based on this calculation, a slight increase (with no
statistical significance) in the Kp,ss values for PA and NAPA in the kidneys in the presence
of 1,25(OH)2D3 treatment (Table 2) may be ascribed to the reduced apical efflux of PA and
NAPA by the rMATE1 transporter. Based on AAFE values within a factor of two for all
the plasma and urinary excretion profiles (i.e., 1.43, 1.21, 1.03, and 1.15 from Figure 6A to
Figure 6D for the control, and 1.83, 1.58, 1.16, and 1.35 for the treatment group), our PBPK
calculation may be generally applicable for the quantitative interpretation of PA and NAPA
pharmacokinetics in the presence of 1,25(OH)2D3 treatment.
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4. Discussion

VDR, which adopts 1,25(OH)2D3 as its ligand, regulates the expression of various
proteins that may potentially impact the pharmacokinetics of drugs. In human-derived
intestinal cell lines (i.e., Caco-2 and LS180), for example, 1,25(OH)2D3 treatment has been
shown to upregulate the mRNA expression of CYP3A4 [44] and increase the expression of
P-gp via the VDR pathway [45], which increased the efflux of digoxin from kidney and
brain tissues of mice. Increased expression and function of rat multidrug resistance protein
4 (MRP4) following treatment with 1,25(OH)2D3 [26,46,47] resulted in an increase in the
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Cmax (i.e., maximal plasma concentration) and systemic exposure (e.g., AUC) of adefovir
(a substrate of rMRP4) via increased basolateral efflux into the blood in rat intestines [25].
In addition, VDR is abundantly expressed in the kidneys, and 1,25(OH)2D3 treatment
was found to decrease renal mRNA levels of rPEPT1, rOAT1, and rOAT3, resulting in a
significant decrease in the renal clearance of cefdinir and cefadroxil [12,13]. These findings
indicate that changes in the expression of various transporters following treatment with
1,25(OH)2D3 via VDR activation can lead to changes in the pharmacokinetics of drugs.

In addition to these transporters, OCT and MATE transporters are crucial determi-
nants of the renal elimination kinetics of various drugs [34,35]. Studies have shown that
hormonal control is a potential mechanism regulating the expression of OCT transporter(s);
for example, rOCT2 expression (both mRNA and protein levels) in the kidneys was in-
creased by testosterone treatment and reduced by estradiol (cf. not for rOCT1 expression),
suggesting sex differences in the regulation mechanism of the transporter [48]. Thereafter,
the regulation of rOCT2 expression was attributed to involvement of the androgen recep-
tor, which interacts with androgen response element (ARE)-1 and ARE-3 in the rOCT2
promoter region [49]. In addition, steroids, including dexamethasone (2.0-fold), hydrocorti-
sone (2.4-fold), and testosterone (1.8-fold), were found to increase the mRNA expression
of endogenous OCT2 in Madin-Darby canine kidney (MDCK) cells [50]. To the best of
our knowledge, the present study is the first to report the involvement of another nuclear
receptor protein (i.e., VDR) in regulating the mRNA expression of several rOCTs in rat
tissues and rMATE1 in the rat kidney.

In this study, a real-time qPCR analysis revealed a significant decrease in renal rOCT2
and rMATE1 mRNA expressions in 1,25(OH)2D3 treated rats (Figure 1B,D), which were
consistent with the altered protein expression (Figure 2D). PA, a substrate of OCT and
MATE transporters [34,35], was used as a model drug to investigate the effect of variable
expression of the transporters on the renal elimination kinetics of the drug. The results of a
previous report showing that active transport accounted for approximately 80% of the total
apical uptake of PA by LLC-PK1 cells [51] were consistent with our PBPK model parameters
(i.e., PSact/PSin of 65.6%). Consistent with the evidence that the basal mRNA level of renal
rOCT2 was 10.3-fold higher than that of renal rOCT1 [52], a lower expression of rOCT1
relative to that of rOCT2 in rat kidneys (38.3 compared to 254 pmol/g kidney) was reported
using quantitative proteomics [38]. Considering the higher affinity of PA for rOCT1 than
for rOCT2 [39–41], the elevated expression level of renal rOCT1 by 1,25(OH)2D3 treatment
(Figure 1) may offset the decreased uptake of PA into rat kidneys by rOCT2. While the
protein expression of rOCT2 in kidney was decreased to 34.8% in the control following
1,25(OH)2D3 treatment (Figure 2D), our model-fitted Ract indicated that the overall active
uptake of PA and NAPA was reduced to 67.5%, supporting the offsetting effect of the
rOCT1 transporter. However, no statistical difference in Kp,ss values was observed for PA
and NAPA in kidneys between the control and the 1,25(OH)2D3-treated groups (Table 2).
Despite the decrease in overall active uptake of PA into the kidneys, the reduction in renal
intrinsic clearance (CLu,int,r) due to decreased rMATE1 expression may compensate for the
potential reduction in the apparent extent of drug distribution to the kidneys: Our PBPK
calculation indicated that the Kp,KI values determined from Kp,ss/(1− CLsec/QKI) (i.e.,
based on NCA, model-independent) for PA (9.63) and NAPA (15.8) were consistent with
the model-based Kp,KI values (i.e., calculated by Equation (A12) using the fitted Ract value)
for PA (10.7) and NAPA (14.5) (Table 3). This suggests that the PBPK model, including the
active transport by rOCTs and rMATE1, is useful for understanding the renal disposition
kinetics of PA and NAPA. Nevertheless, it may warrant further studies for determining the
flipping rate (kcat) of rOCT1 and rOCT2 activities for PA and NAPA, which could lead to
quantitatively evaluating the contribution of each transporter in the active uptake of these
drugs into the kidney.

In the case of the liver, the tissue distribution of PA and NAPA was slightly decreased
in the 1,25(OH)2D3 treatment group, despite no statistical difference in the values (Table 2).
In addition, the non-renal clearance (CLNR; assumed to be equivalent to hepatic clearance
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(CLhep)) of PA was significantly decreased in the presence of 1,25(OH)2D3 treatment. We
reasoned that these phenomena may be explained in part by reduced expression of rOCT1
and rNAT-II in the liver (e.g., in terms of mRNA, 0.68- and 0.248-fold expression versus
the control, Figure 1). According to the extended clearance concept [53], the uptake
clearance (PSin) is proportional to the apparent intrinsic clearance (i.e., CLu,int,all = PSin ×
CLu,met/(PSout + CLu,met) = PSin× β), and thus, the decrease of PSin and CLu,met may also
result in the reduction of CLu,int,all . Assuming that a portion of the saturable component
in the hepatic uptake of PA-ethobromide is equivalent to that of PA (i.e., 55.7%) [54]
and the observed 0.309-fold change in the protein level of hepatic rOCT1 (Figure 2C) is
directly applicable to functional change in the transporter, the calculated hepatic PSin
was decreased by 38.5%. However, the in silico Kp predictions based on partitioning
properties to tissue constituents [43] resulted in a value of 8.02 for both PA and NAPA,
suggesting that additional mechanisms may be involved in the liver distribution of these
drugs. Therefore, although reduced expression of hepatic rOCT1 and rNAT-II may provide
insight into the significant reduction in CLNR of PA and NAPA, further studies are needed
to understand the potential involvement of the basolateral efflux of the drugs back into the
blood circulation. In addition, although the level of rOCT3 mRNA expression in the heart
decreased following 1,25(OH)2D3 treatment (Figure 1), the tissue distribution of PA and
NAPA to heart tissue appeared unchanged in this study.

Based on the in vitro metabolism study in liver S9 fractions, the use of 50 µM con-
centration in the control resulted in 1.45 µL/min/mg protein. Considering S9 protein per
gram liver of 135 mg/g liver and 9 g liver (obtained from Simcyp V19 Release 1; Simcyp
Ltd., Certara Co., Sheffield, UK) [55], the unbound intrinsic formation clearance corrected
by the free fraction of PA in the incubation mixture (i.e., fu,inc = 0.380) was calculated to be
4.64 mL/min. In terms of the in vitro–in vivo extrapolation (IVIVE) of PBPK parameters,
an additional scaling factor of 5.80, was needed to describe the unbound intrinsic forma-
tion clearance (CLu,int·FNAPA of 26.9 mL/min, Table 3). Moreover, the increase in FNAPA
following 1,25(OH)2D3 treatment, as well as the weak reduction of NAPA formation in the
S9 fractions (Figure 5), suggested that the miscellaneous hepatic elimination of PA may
be more significantly affected rather than PA metabolism to NAPA by rNAT-II. Despite
the practical utility of our PBPK model, further studies are warranted to examine the
unaccounted factors affecting the altered pharmacokinetics of PA and NAPA.

In this study, we aimed to elucidate the effect of 1,25(OH)2D3 on the expression of
rOCTs and rMATE1 transporters and hence the pharmacokinetics of their substrate drugs,
PA and NAPA. Since the current PBPK model was useful for linking the transporter activity
with renal elimination kinetics for the drugs in rat, this consideration may be also applicable
for assessing the potential alteration in the pharmacokinetics of the substrate drugs for
OCTs and MATE1 in man, and thus for predicting unexpected toxicity and maximizing
drug efficacy when taking the related medicines in the presence of 1,25(OH)2D3. Based
on a lot of clinical observations showing that renal transporters play an important role
on drug elimination and systemic exposures, further research on the alterations in OCTs
and MATE1 expressions depending on the 1,25(OH)2D3 level in different clinical settings
would be interesting.

Although this is the first study to report the possible involvement of VDR in the
regulation of organic cation transporters, the mechanism underlying this regulation re-
quires further investigation to elucidate the different effects of VDR among the tissues
(i.e., OCT1 increased in kidney and decreased in liver) or the transporters (i.e., increased
rOCT1 and decreased rOCT2 in kidney). The determination of VDR binding sites for the
gene of each transporter or the investigation of the profiles/property of VDR translocation
may provide important insight into the detailed mechanisms underlying organic cation
transporter regulation.
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5. Conclusions

To our knowledge, the current study is the first to reveal that 1,25(OH)2D3 treatment
affects the expression levels of OCT isoforms and MATE transporters in rats, suggesting
VDR as a regulating mechanism for the proteins. The mRNA/protein expression of rOCT1
was significantly increased in the kidneys of 1,25(OH)2D3-treated rats compared with
control rats, whereas the mRNA or protein levels of rOCT2 and rMATE1 in the kidney,
rOCT1 and rNAT-II in the liver, and rOCT3 in the heart were significantly decreased. In
addition, 1,25(OH)2D3 treatment resulted in a significant decrease in the systemic CL of PA,
a substrate of rOCT2 and rMATE1. The diminished renal clearance of PA and NAPA was
successfully addressed by decreased rOCT2 and rMATE1 expression levels in the kidney
following 1,25(OH)2D3 treatment, using a PBPK model for PA and NAPA. A physiological
model for the pharmacokinetics of PA and NAPA in rats was useful for linking changes
in the transcription and expression of the rOCTs and rMATE1 transporters to the altered
pharmacokinetic of the drugs.
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Appendix A

In the previous study [22], a whole-body PBPK model was proposed for the phar-
macokinetics of PA and NAPA in rats, and the same model structure was utilized in this
study along with slightly modified parameter values. Based on the perfusion-limited
model [22,56], the differential equation for non-eliminating organs (i.e., tissues except for
kidney and liver) may be expressed as follows (Equation (A1)):

VT
dCT
dt

= QT ·
(

Cart −
CT ·R

Kp

)
(A1)

where VT is the volume of tissue compartment; CT and Cart are the drug concentrations
in the tissue and arterial blood compartments, respectively; QT is the blood flow to the
tissue; R is the blood-to-plasma concentration ratio; Kp is the equilibrium tissue-to-plasma
concentration ratio.

For liver tissue compartment (Equation (A2)):

VLI
dCLI

dt
= (QLI −QGU −QSP)·Cart + QGU

CGU ·R
Kp,GU

+ QSP
CSP·R
Kp,SP

−QLI
CLI ·R
Kp,LI

− CLu,int
fup

Kp,LI
CLI (A2)

where VLI is the volume of the liver; CLI , CGU , and CSP are the drug concentrations in
the liver, gut, and spleen, respectively; QLI , QGU , and QSP are the blood flow to the liver,

https://www.mdpi.com/article/10.3390/pharmaceutics13081133/s1
https://www.mdpi.com/article/10.3390/pharmaceutics13081133/s1


Pharmaceutics 2021, 13, 1133 18 of 23

gut, and spleen, respectively; Kp,LI , Kp,GU , and Kp,SP are the equilibrium tissue-to-plasma
concentration ratios for the liver, gut, and spleen, respectively; and CLu,int is the intrinsic
clearance of drug molecules in the liver compartment.

In the venous blood compartment (i.e., dosing compartment), (Equation (A3)):

Vven
dCven

dt = QAD
CAD ·R
Kp,AD

+ QBO
CBO ·R
Kp,BO

+ QBR
CBR ·R
Kp,BR

+ QHE
CHE ·R
Kp,HE

+ QLI
CLI ·R
Kp,LI

+QMU
CMU ·R
Kp,MU

+ QSK
CSK ·R
Kp,SK

+ (QKI −QU)·CRBL + QRE·Cart

−QCO·Cven − Dose rate

(A3)

where Vven is the volume of venous blood; CAD, CBO, CBR, CHE, CMU , CSK, CRBL, and Cven
are the drug concentrations in the adipose, bone, brain, heart, muscle, skin, renal blood,
and venous blood compartments, respectively; QAD, QBO, QBR, QHE, QMU , QSK, QKI , and
QRE are the blood flows to the adipose, bone, brain, heart, muscle, skin, and kidney and
the residual blood flow, respectively; QU and QCO are the urinary flow and cardiac output,
respectively; and Kp,AD, Kp,BO, Kp,BR, Kp,HE, Kp,MU , and Kp,SK are the equilibrium tissue-
to-plasma concentration ratio of adipose, bone, brain, heart, muscle, and skin, respectively.
Dose rate is the dosing rate of drugs to the venous blood.

In the lung compartment, (Equation (A4)):

VLU
dCLU

dt
= QCO·

(
Cven −

CLU ·R
Kp,LU

)
(A4)

where VLU is the volume of the lung; CLU is the drug concentration in the lung; Kp,LU is
the equilibrium tissue-to-plasma concentration ratio for lung.

In the arterial blood compartment (Equation (A5)):

Vart
dCart

dt
= QCO·

(
CLU ·R
Kp,LU

− Cart

)
(A5)

where Vart is the volume of arterial blood.
In addition, a semi-mechanistic kidney model was incorporated into the PBPK model

to predict the effect of the altered expressions of renal transporters on the pharmacokinetics
of PA/NAPA in terms of basolateral uptake and apical efflux. We used the same values
of physiological input parameters as applied in the previous study [22]. It was noted that
the pharmacokinetic variables in the differential equations, especially for semi-mechanistic
kidney compartments, are applied for each compound (e.g., fup, R, and Kp,KI). Since drug
molecules delivered to rat glomerulus may be drained with a filtration rate of fupGFR/R,
the differential equation for the glomerulus is expressed as follows (Equation (A6)):

VGLM
dCGLM

dt
= QKI ·Cart − fupGFR/R·CGLM −

(
QKI − fupGFR/R

)
·CGLM (A6)

where CGLM is the drug concentration in the glomerulus. Fluid reabsorption from the three
S1 segments of proximal tubules was described as follows (Equations (A7)–(A9)):

VS1_1
dCS1_1

dt
= fupGFR/R·CGLM −QS1_2·CS1_1 (A7)

VS1_2
dCS1_2

dt
= QS1_2·CS1_1 −QS1_3·CS1_2 (A8)

VS1_3
dCS1_3

dt
= QS1_3·CS1_2 −QS2+S3·CS1_3 (A9)

where CS1_1, CS1_2, and CS1_3 are the drug concentration in the first, second, and third
compartments of the S1 segment of proximal tubules, respectively. The renal secretion
and reabsorption processes were assumed to occur in the S2 and S3 segments of proximal
tubules as follows (Equation (A10)):
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VS2+S3
dCS2+S3

dt
= QS2+S3·CS1_3 −QLOH ·CS2+S3 + CLu,int,r· fu,kidney·CPTC − CLrabs·CS2+S3 (A10)

where CS2+S3 and CPTC are the drug concentrations in the S2 and S3 segments and proximal
tubule cell compartment, respectively; CLu,int,r is the renal intrinsic clearance of drugs
from the proximal tubule cell compartment into the S2 and S3 segments; CLrabs is the
reabsorption clearance of drugs into the proximal tubule cell compartment; and fu,kidney is
the free fraction of drugs in kidney cells (i.e., renal proximal tubule cells).

The remaining fraction of drugs avoiding glomerular filtration was considered to be
delivered to a renal blood compartment, in which drug molecules are transported into and
out of the proximal tubule cell compartment (Equation (A11)):

VRBL
dCRBL

dt
=
(
QKI − fupGFR/R

)
·CGLM − (QKI −QU)·CRBL − fupPSin/R·(CRBL −

CPTC·R
Kp,KI

) (A11)

where CPTC is the drug concentration in the proximal tubule cell compartment, and Kp,KI
is the equilibrium tissue-to-plasma concentration ratio, which could be also expressed as
the following (Equation (A12)):

Kp,KI =
fupPSin

fu,kidneyPSout
(A12)

where PSin and PSout are the tissue permeabilities of drugs into and out of proximal tubule
cells, respectively. Essentially, Kp,uu can be calculated as the ratio of PSin to PSout. PSin
may be involved with the active (PSact) and passive transport (PSpas):

Kp,KI =
PSin
PSout

Kp,KI,pass =
PSact + PSpas

PSpas
Kp,KI,pass (A13)

where Kp,KI,pass is the tissue partitioning coefficient only by tissue binding (i.e., symmetrical
passive transport) and thus the ratio of fup to fu,kidney [43]. The drug efflux from the
proximal tubule cells to the blood was assumed to be dependent on the passive diffusion
across the basolateral membrane (PSout). Due to the indistinguishable PSrOCT1 and PSrOCT2
(see main text), the effect of 1,25(OH)2D3 treatment on PSact was described as the overall
fold-difference (Ract):

Ract = PSact,vitD/PSact (A14)

For the proximal tubule cell compartment, the differential equation may be described
as follows (Equation (A15)):

VPTC
dCPTC

dt
= fupPSin/R·(CRBL −

CPTC·R
Kp,KI

)− CLu,int,r· fu,kidney·CPTC + CLrabs·CS2+S3 (A15)

After two third of fluid was reabsorbed from the proximal tubules, one-third of the
remaining fluid enters the Loop-of-Henle, in which 15% of the filtered fluid is reabsorbed,
as described in Equation (A16):

VLOH
dCLOH

dt
= QLOH ·CS2+S3 −QDT+CD·CLOH (A16)

where CLOH is the drug concentration in the Loop-of-Henle. As described in previous
literature [37,57], the kidney model used in this study assumes that the lumen of the distal
nephron segments mainly consists of the distal tubules and collecting ducts, which are
considered to be kinetically indistinguishable, and receives approximately 18% of the
filtered fluid. Since about 16% of fluid reabsorption of the total filtrate was known to occur
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from this compartment, the urine flow rate (QU) of 2% of the filtration rate was considered
as described below (Equations (A17)–(A19)) [58–60]:

VDT+CD
dCDT+CD

dt
= QDT+CD·CLOH −QU ·CDT+CD (A17)

VU
dCU
dt

= QU ·CDT+CD −QU ·CU (A18)

dAE
dt

= QU ·CU (A19)

For the case of liver and kidney, Kp,ss was corrected to the equilibrium tissue-to-plasma
partition coefficient (Kp), using the following relationship [61] (Equation (A20)):

Kp =
Kp,ss

1− ER
(A20)

where ER is the extraction ratio, which could be calculated as the ratio of hepatic (i.e.,
equivalent to non-renal clearance, CLH = CLNR = CL− CLR) or renal secretion clearance
(i.e., CLSEC = CLR − fupGFR) to blood perfusion rate to the liver or kidney (QLI or QKI).

The AUC values for the plasma concentration of PA (AUCPA) and NAPA (AUCNAPA)
after the intravenous administration of PA were used to calculate the apparent formation
clearance (CLm) from PA to NAPA using the following relationship (Equation (A21)):

CLm =
AUCNAPA

AUCPA
CL(m) (A21)

where CL(m) is the disposition clearance of NAPA (22.4 mL/min/kg for the control
group) [62]. Due to the absence of direct measurement of non-renal clearance of NAPA,
CL(m) for the 1,25(OH)2D3 treatment group was considered to be 18.7 mL/min/kg, based
on the assumption that the change in CL(m) is only dependent on the alteration of renal
clearance of NAPA. Assuming that PA is metabolized to NAPA only in liver, the intrin-
sic formation clearance from PA to NAPA in the liver (CLint,m, with respect to the liver
concentration of PA) was calculated as follows (Equation (A22)):

CLint,m =
AUCPA

AUCPA,LI
CLm =

CLm

Kp,ss,LI
(A22)

where AUCPA,LI is the area under the liver concentration curve of PA; Kp,ss,LI is the steady-
state liver-to-plasma concentration ratio. Total hepatic intrinsic clearance of PA (CLint) was
calculated based on the well-stirred assumption of liver compartment (Equation (A23)):

CLint =
QLI ·CLH

(QLI − CLH)/Kp,LI
(A23)

where Kp,LI is the equilibrium tissue-to-plasma partition coefficient corrected from Kp,ss,LI .
The fraction of NAPA formation (FNAPA) during the hepatic elimination of PA was then cal-
culated as the ratio of CLint,m to CLint. All the parameters necessary for PBPK calculations
in accordance with the previous model are summarized in Table 3.
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