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Abstract: HER2 is a prognostic and predictive marker widely used in breast cancer. Lapatinib
is a tyrosine kinase inhibitor that works by blocking the phosphorylation of the receptor HER2.
Its use is related to relatively good results in the treatment of women with HER2+ breast cancer.
Thus, this study aimed to verify the effects of lapatinib on four canine primary mammary gland
carcinoma cell cultures and two paired metastatic cell cultures. Cultures were treated with lapatinib
at concentrations of 100, 500, 1000 and 3000 nM for 24 h and the 50% inhibitory concentration (IC50)
for each cell culture was determined. In addition, a transwell assay was performed to assess the
ability of lapatinib to inhibit cell migration. Furthermore, we verified HER2 expression by RT-qPCR
analysis of cell cultures and formalin-fixed paraffin-embedded tissues from samples corresponding
to those used in cell culture. Lapatinib was able to inhibit cell proliferation in all cell cultures, but it
was not able to inhibit migration in all cell cultures. The higher the expression of HER2 in a culture,
the more sensitive the culture was to treatment. This relationship may be an indication that the
expression of HER2 may be a predictive factor and opens a new perspective for the treatment of
primary and metastatic mammary gland cancer.

Keywords: dog; cancer; comparative oncology; molecular targets

1. Introduction

Mammary gland neoplasms exhibit several similarities between women and dogs,
such as their high incidence, spontaneous appearance, common environmental risk factors,
hormone receptor expression and neoplastic growth markers. Therefore, research related
to one species may have aspects that can be studied in a comparative manner [1,2].

Estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor 2
(HER2) are among the most commonly used markers in human medicine with validated
predictive value. Breast cancer in women can be classified according to the expression of
the receptors ER, PR and HER2. Breast tumors can be divided into the molecular subtypes
luminal A, luminal B, HER2 overexpressing and triple negative. Luminal A tumors are
ER+, PR+ and HER2−, while luminal B tumors are divided into two groups and can be
ER+, PR+ or − and HER2+ or ER+, PR+ or − and HER2−; HER2 tumors are ER−, PR−
and HER2+, and triple-negative tumors are ER−, PR− and HER2− [3–6].

HER2 is a tyrosine kinase receptor member of the epidermal growth factor receptor
(EGFR) family, which is composed of EGFR (also known as HER1), HER2, HER3 and
HER4 [7]. The receptors in this family are located in the cell membrane, and when they
bind to an external ligand, with the exception of HER2, which does not contain this binding
site, they form dimers with other members of the family so that the internal phosphate
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domain is phosphorylated, triggering an intracellular response [8]. In addition, there is
evidence that HER2 is the receptor that most often forms dimers with other members of
the EGFR family [9]. Activation of these receptors is associated with increased survival,
proliferation, and cell cycle progression [10].

HER2+ tumors have a prevalence of 13–15% among molecular subtypes, have a high
Ki67 index and are generally high-grade tumors with a histology indicative of invasive
carcinoma of no special type with aggressive disease characteristics; however, it is possible
to use targeted therapies as treatment [5]. HER2 overexpression is related to shorter disease-
free survival; reduced survival time; decreased ER and PR expression; increased cell
proliferation, migration, tumor invasiveness, frequency of metastases, and angiogenesis;
and decreased apoptosis [6]. Without targeted therapy, HER2+ cancers have a recurrence
rate of up to 15% [4]. The survival rate of women diagnosed with tumors that overexpress
HER2 is 92% over 20 months, 88% over 30 months, and decreases to almost 80% over
50 months [11]. In addition, brain metastasis of HER2+ breast tumors is common, affecting
50% of patients with metastatic disease [12].

Treatment of HER2-overexpressing tumors with targeted therapy produces a positive
response when compared to treatments without the addition of targeted therapy [13].
Trastuzumab has been widely used, adding approximately 1 year to the disease-free interval
of patients with this disease subtype [12], but even with this positive effect, some patients
will still develop metastases or tumor recurrence after completion of the treatment [14,15];
therefore, new anti-HER2 drugs are being studied.

Lapatinib is an inhibitor of HER2 tyrosine kinase activity; it is considered a therapeutic
alternative in the treatment of HER2+ neoplasms and acts as a reversible blocker of receptor
phosphorylation. Lapatinib use is related to reduced disease progression and decreased
axillary lymph node metastasis rates in women. Furthermore, because lapatinib is a small
molecule, it can permeate the blood-brain barrier, making it an alternative therapy in cases
of brain metastasis [16,17]. Lapatinib is an inhibitor of HER1/HER2 heterodimerization,
and its action is independent of the HER1 status of tumors; it is also effective against HER2+
tumors resistant to treatment with trastuzumab [18,19] and is still an option in countries
without access to other HER2 inhibitors and in cases of cardiac toxicity [19]. It should
be used in combination, showing good results with capecitabine, and can be used as a
second-line treatment for recurrent or metastatic HER2+ tumors [12,15,20]. In cell cultures
of feline mammary cancer, lapatinib showed promising results, being able to inhibit cell
viability when used as a single therapy and increase the action of anti-HER2 monoclonal
antibodies such as trastuzumab and pertuzumab when used in combination. These results
were observed both in cell cultures with high and low HER2 expression [21,22].

According to Nguyen et al. [23], the overall survival rate of dogs with mammary
gland tumors is 41.5% at one year and 54.1% at two years after surgery. The average sur-
vival times of animals after surgery for grade II and III tumors are 32.68 and 7.78 months,
respectively [24]. In addition, the rate of metastasis of mammary gland tumors in dogs
in general is 53% [25], and the recurrence rate of grade III tumors is 71.42% [24]. HER2+
mammary gland neoplasms in dogs represent approximately 8% of all the diagnosed molec-
ular subtypes and are generally associated with a worse prognosis; larger tumors; higher
histological grades, invasion, and proliferative indexes; and the presence of necrosis [25].

Canine mammary gland tumors are treated by surgical removal, and in some cases,
the use of adjuvant chemotherapy is indicated, such as tumors with a more aggressive
histological type, which have a higher rate of metastasis development. According to
Cassali et al. [26], dogs that present with micropapillary carcinoma, solid carcinoma,
carcinosarcoma, or pleomorphic lobular carcinoma, regardless of the degree, clinical stage
and molecular subtype, are always indicated for chemotherapy. In addition, patients with
tumors of a less aggressive subtype should undergo chemotherapy if the disease is grade
III or above, and in any case when metastasis is present [26].

In veterinary medicine, there are no indications for selection of different chemotherapy
protocols for different types of tumors, so carboplatin is widely applied in cases of female
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mammary tumors, regardless of the stage, histopathological type, molecular classification
of the tumor and metastasis status [26]. The use of adjuvant carboplatin, when compared to
surgical treatment alone, increased the survival time of animals with breast cancer [27], and
the administration of carboplatin with mitoxantrone seems to promote a longer survival
period, even if a study was carried out with a limited number of animals [28]. Clinical
studies to evaluate the effectiveness of chemotherapy in animals are scarce, and therefore,
information varies considerably.

To the best of our knowledge, the effect of lapatinib on canine mammary gland tumors
has not been published. Since canine mammary gland tumors are very common, with
most tumors being potentially malignant, and the standard therapy is radical mastectomy
with no effective chemotherapy protocols for the treatment of animals with metastatic
disease [26], this study aimed to evaluate the antitumor effect of lapatinib on HER2+ and
HER2− primary and metastatic canine mammary gland carcinoma cells cultured in vitro.

2. Materials and Methods
2.1. Reagents

All reagents used were of high purity and purchased from GE Healthcare (Upp-
sala, Sweden), Sigma-Aldrich (São Paulo, Brazil), and Merck SA (São Paulo, Brazil);
otherwise, the manufacturer is indicated. In addition, mammary epithelial cell growth
medium (MEGM™; Lonza Inc., Allendale, NJ, USA), Dulbecco’s modified Eagle’s medium
(DMEM; Lonza Inc.), fetal bovine serum (FBS; LGC Biotechnology, Cotia, SP, Brazil),
Dulbecco’s phosphate-buffered saline (DPBS; Sigma Aldrich, St. Louis, MO, USA) and
antibiotic/antimycotic solution (Thermo Fisher Scientific, Waltham, MA, USA) were used.

2.2. Inclusion Criteria

Samples that met all of the following criteria were included in this research: cell
cultures of primary tumors that had paired formalin-fixed paraffin-embedded (FFPE)
material and were classified according to Goldschmidt et al. [29], cell cultures characterized
by cell phenotype and tumorigenicity in vitro, cell cultures with sufficient aliquots for
triplicate analysis in all experiments and free of bacterial, mycoplasma and/or fungal
contamination. Cell lines were previously established and characterized [30]. A total of
six cell lines met the criteria. Among the cell lines, four cell lines were primary mammary
carcinoma cells (UNESP-CM1, UNESP-CM5, UNESP-CM9 and UNESP-CM60) and two
were mammary carcinoma metastases (UNESP-MM1 and UNESP-MM4) (Supplementary
Materials Table S1)

2.3. In Silico Analysis of HER2 Homology

To assess the three-dimensional protein structure homology between human and
canine HER2, an in silico analysis was performed. The amino acid sequences of the human
(UniProtKB/Swiss-Prot: P04626.1) and canine (NCBI Reference Sequence: NP_001003217.2)
proteins were obtained from NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/
(accessed on 14 May 2021)). Prediction analysis of the homology of the three-dimensional
structure of the HER2 protein was performed using Swiss software (Swiss Institute of Bioin-
formatics, Basel, Switzerland) (https://swissmodel.expasy.org/ (accessed on 14 May 2021)).

2.4. Experimental Groups

The determination of the sample number in the study was based on that described
by Lazic et al. [31]. Four samples of primary mammary carcinoma and two samples of
metastatic tumors were selected and divided into two groups with three samples each
according to the HER2 expression in the tissue: one group contained the HER2+ samples
(UNESP-CM1, UNESP-CM9 and UNESP-CM60), and the other contained the HER2- sam-
ples (UNESP-MM1, UNESP-MM4 and UNESP-CM5). Both groups (HER2+ and HER2−
cells) were treated with lapatinib. The cell culture UNESP-CM1 was used on the 15th
passage, UNESP-CM5 on the 16th, UNESP-CM9 on the 17th, UNESP-CM60 on the 35th,

https://www.ncbi.nlm.nih.gov/genbank/
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UNESP-MM1 on the 19th, and UNESP-MM4 on the 22nd. The passages used were chosen
according to cell stability and aliquot availability [30].

2.5. HER2 Immunoreactivity

FFPE samples, paired with the cell cultures, were cut on a microtome (5 µm), trans-
ferred to positively charged slides (StarFrost™, Braunschweig, Germany) and dewaxed.
The slides were subjected to antigen retrieval with citrate buffer (pH 6.0) in a pressure
cooker (Pascal, Dako, Agilent Technologies, Santa Clara, CA, USA). Endogenous peroxi-
dase activity was blocked with 8% hydrogen peroxide in methanol for 20 min and blocking
of nonspecific proteins was carried out with 8% skim milk for 60 min; both steps were
performed at room temperature. Antibody detection was performed using a polymer
system (EnVision™ Dako, Agilent Technologies, Santa Clara, CA, USA). The anti-HER2 an-
tibody from the HerceptestTM Kit (Dako, Carpinteria, CA, USA) was used according to the
manufacturer’s instructions, and 3 3’-diaminobenzidine (EnVision™ FLEX, High pH, Dako,
Agilent Technologies, Santa Clara, CA, USA) was used as the chromogen. Counterstaining
was performed with Harris hematoxylin. Negative controls were generated by omission of
the primary antibody. The positive control used was provided with the manufacturer’s kit.
To consider canine samples HER2+, the criteria described in the commercial kit approved
by the US Food and Drug Administration, HerceptestTM, were followed. In summary, a
score of 0 was given when no staining was observed or membrane staining was observed
in <10% of tumor cells; a score of 1+ was given when faint or barely perceptible membrane
staining was detected in >10% of tumor cells and the cells exhibited incomplete membrane
staining; a score of 2+ was given when weak to moderate complete membrane staining
was observed in >10% of tumor cells; and a score of 3+ was given when strong complete
membrane staining was observed in >10% of tumor cells.

Six samples were submitted for immunohistochemistry. Among these, three were
classified as negative for HER2 (two with a score of 1+ and one with a score of 0), and three
were considered HER2 positive (three with a score of 3+) (Table 1, Figure 1).

Table 1. Classification of samples used in the study according to the expression of HER2 determined by immunohistochem-
istry using HerceptestTM. The samples received scores according to the recommendations of the kit used.

Cell Type UNESP-MM1 UNESP-MM4 UNESP-CM1 UNESP-CM5 UNESP-CM9 UNESP-CM60

HER2
expression 0 1+ 3+ 1+ 3+ 3+

2.6. Lapatinib Treatment and Evaluation of Cellular Metabolic Activity

To evaluate the antitumor effect of lapatinib (50% inhibitory concentration, IC50), an
in vitro MTT assay was performed. The drug was diluted in DMSO to a concentration of
2 mg/mL, and the highest dilution was used as the parameter for the control containing
DMSO (at the same concentration as the highest concentration of lapatinib). Cells were
cultured according to Lainetti et al. [30].

The concentrations of lapatinib tested were 100, 500, 1000, and 3000 nM [32], and cells
were treated for 24 h to determine the IC50. Tumor cells were seeded in 96-well plates at a
concentration of 10,000 cells/well and incubated for 24 h at 37 ◦C in DMEM containing
5% FBS. Subsequently, lapatinib was added to fresh medium without FBS, and the culture
was incubated for an additional 24 h in a humidified atmosphere with 5% CO2.

After 24 h of cultivation, 10 µL of MTT solution (Sigma Aldrich, St. Louis, MO, USA)
at a concentration of 0.5 mg/mL diluted in DPBS was added to each well, and the plate was
incubated at 37 ◦C for 4 h. After the incubation, the formazan resulting from MTT cleavage
was solubilized with DMSO. After 10 min of homogenization, the absorbance at 550 nm
was determined with a microplate reader (Biochrom Asys Expert Plus Microplate Reader,
Biochrom Ltd., Harvard Bioscience, Holliston, MA, USA). Based on the test results, the
IC50 [33] was determined using the formula: % of antioxidant activity = 100 − (absorbance
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of the treated sample − absorbance of the blank) × 100/absorbance of the control cells,
where the blank was DPBS and the cells in the control group were not treated with lapatinib.
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indicates a positive cell for HER2 expression (arrows). (a) UNESP-CM1; (b) UNESP-CM5; (c) UNESP-CM9; (d) UNESP-
CM60; (e) UNESP-MM1; (f) UNESP-MM4.

2.7. RNA Extraction from Paraffin-Embedded Tissue and Cell Culture Samples and
RT-qPCR Analysis

mRNA was extracted from FFPE samples and the corresponding cell cultures for
HER2 gene expression analysis. For mRNA extraction from the paraffin-embedded tissues,
samples were cut on a microtome, and three sections of 10 micrometers were macrodis-
sected and placed in 1.5 mL tubes. The extraction protocol of the RecoverAll™ Total
Nucleic Acid Isolation Kit for FFPE (Invitrogen, Carlsbad, CA, USA) was followed. At
the end of the protocol, the samples were treated with DNase to purify the RNA, and
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the RNA concentration and purity were measured by determining the A280 absorbance
and A260/A280 ratio on a spectrophotometer (NanoDropTM, ND-8000, Thermo Scientific,
Waltham, MA, USA).

mRNA extraction from the six cell cultures was carried out in triplicate, and for this
purpose, cryopreserved cells were thawed in a water bath at 37 ◦C, centrifuged (450 g,
5 min) and resuspended in DMEM supplemented with 1% antibiotic/antimycotic solution
and 10% FBS. The cells were transferred to 6-well plates and cultured until they reached a
minimum confluence of 70%. Then, they were washed 3 times with DPBS in an ice bath.

mRNA extraction followed the protocol recommended by the manufacturer (RNeasy
Mini Kit, Qiagen, Hilden, Germany). The concentration and purity of the extracted mRNA
were evaluated by determining the A280 absorbance and A260/A280 ratio on a spectropho-
tometer (NanoDropTM, ND-8000, Thermo Scientific, Waltham, MA, USA). To eliminate
any contamination with genomic DNA, the total extracted RNA was treated with 1 U
of DNase I amplification grade (Life Technologies, Carlsbad, CA, USA) in 10× DNase I
reaction buffer and 25 mM EDTA, pH 8.0.

For both mRNA extracted from paraffin embedded tissue and that extracted from
cells in culture, RNA was reverse transcribed into cDNA with 1 µg of total RNA and the
Super-script III™ Reverse Transcriptase enzyme (Invitrogen). For this protocol, 1 µL of
OligodT (500 µg/mL), 1 µL of random primers (100 µg/mL), 1 µL of dNTPs and RNase-free
water were used. The mixture was heated to 65 ◦C for 5 min, 4 µL of 5× First-Strand Buffer
transcription buffer (250 mM Tris-HCl, pH 8.3; 375 mM KCl; and 15 mM MgCl2) and 1 µL
of 0.1 M DTT were added, and then 1 µL of the Super-script III enzyme (200 U/µL) was
added, with the final volume of the mixture being 19 µL. The mixtures were incubated
at 25 ◦C for 5 min and then at 50 ◦C for 1.5 h, followed by incubation at 70 ◦C for 15 min.
Reactions were carried out on a PTC-100 thermocycler (Peltier-EffectCycling-MJ Research).
At the end of transcription, cDNA was stored at −20 ◦C.

RT-qPCR amplifications were evaluated on an automatic thermocycler (QuantStudio™
12K Flex Real-Time PCR System, 4471087, Applied Biosystems™, ThermoFisher Scientific,
Carlsbad, CA, USA) and processed by the detection system after a variable number of
cycles in the exponential phase.

The values obtained for expression in all samples were normalized as the ratio between
the gene of interest (HER2) and reference genes hypoxanthine phosphoribosyltransferase 1
(HPRT), ribosomal protein S5 (RPS5) and ribosomal protein S19 (RPS19) (selected in previous
studies by the group). The primers used in this reaction are listed in Table 2.

Transcript expression was analyzed as the relative quantification (RQ) of the RNA ex-
pression in a sample using the formula 2−∆∆Ct [34]. The RQ of each sample was determined
by comparison with normal FFPE mammary tissue samples.

2.8. Cell Migration Assay

For evaluation of the effect of lapatinib on cell migration, a transwell assay was used.
All cell cultures evaluated in this assay went through a 24 h period “starvation” period
in medium containing 0.2% FBS. After they were treated with trypsin and incubated in a
humidified atmosphere containing 5% CO2 at 37 ◦C for 5 min, the cells were loosened from
the bottom of the bottle. Then, the trypsin was inactivated with MEGM™ supplemented
with 5% FBS. Samples were centrifuged (450 g, 5 min) to remove the medium with a high
concentration of FBS and then resuspended in MEGM™ supplemented with 0.2% FBS.
Two hundred microliters of each cell culture suspension was placed in inserts (Greiner
Bio-One, Kremsmünster, Austria) with a porous membrane of 8 µM at a concentration
of 1 × 106 cells/mL, and each insert was placed in a well of a 24-well plate containing
MEGM™ supplemented with 10% FBS.
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Table 2. Oligonucleotide sequences of the primers used for RT-qPCR.

Access Gene Symbol 1 Oligonucleotide Sequence (5′ > 3′)

HPRT

Forward primer (5′-3′)
AGCTTGCTGGTGAAAAGGAC

Reverse primer (3′-5′)
TTATAGTCAAGGGCATATCC

RPS19

Forward primer (5′-3′)
CCTTCCTCAAAAAGTCTGGG

Reverse primer (3′-5′)
GAACGAGGGATGCTACTCTTG

RPS5

Forward primer (5′-3′)
TCACTGGTGAGAACCCCCT

Reverse primer (3′-5′)
TCACTGGTGAGAACCCCCT

HER2

Forward primer (5′-3′)
GCTCTGGAGGGAGTCACAGGTTA

Reverse primer (3′-5′)
ACTGAGGTTAGGCAGGCTGTCT

1 GenBank (www.ncbi.nlm.nih.gov (accessed on 12 January 2021)).

Each cell culture was placed in six different inserts, three were used as control wells
and three were used as treatment wells. For treatment wells, lapatinib was added to the
insert at the IC50 of each culture. After 24 h, the inserts were removed from the plate and
placed in a new 24-well plate containing preheated trypsin. The samples were incubated
in trypsin for 10 min in a humidified atmosphere containing 5% CO2 at 37 ◦C. After that
period, the trypsin-treated cells that released from the bottom of the inserts were placed in
a Neubauer chamber, and the cells were counted.

2.9. Statistical Analysis

RQs were evaluated to determine the correlation of HER2 expression in paraffin-
embedded tissue and that in culture samples by Spearman’s correlation analysis. In
addition, the Mann–Whitney test was used to assess the difference in HER2 expression
between paraffin-embedded tissue and cell culture samples. Data obtained from the
migration assay were statistically analyzed using the Mann–Whitney test. MTT results
were analyzed using the Mann–Whitney test. The results of MTT and RT-qPCR assay were
evaluated for correlations using the Spearman test. Statistical differences were considered
significant when p < 0.05.

3. Results
3.1. HER2 Homology

When compared on the Swiss model platform (Swiss Institute of Bioinformatics,
Basel, Switzerland) (https://swissmodel.expasy.org/ (accessed on 14 May 2021)), the three-
dimensional structures of canine and human HER2 showed 95% homology (Figure 2),
demonstrating high homology between the human and canine HER2 proteins.

3.2. Gene Expression

There was no statistical correlation between the expression of HER2 in paraffin-
embedded samples and the immunohistochemical score (p = 0.13).

www.ncbi.nlm.nih.gov
https://swissmodel.expasy.org/
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3.3. Cell Viability

All primary cultures showed decreased cellular metabolic activity at all tested drug
concentrations in an MTT assay. The IC50 values of the six cell cultures were between
14.06 nM and 584.80 nM (Figure 3).

There was no significant difference between the IC50 of the HER2+ group and that
of the HER2− group (p = 4) (Figure 4), and there was no significant difference in the IC50
among the primary and metastatic cell lines (p = 0.53).

3.4. Correlation between HER2 Expression and the IC50

Spearman’s correlation analysis revealed a negative correlation (p = 0.04) between the
RQ of cell culture samples and the IC50; that is, the higher the HER2 expression of a sample
was, the lower the IC50 of lapatinib for that culture.

3.5. Cell Migration

In a migration assay, there was no significant difference between the group treated
with lapatinib and the control group in any cell culture (Figure 5). Additionally, there was
no difference when grouping the cells by HER2 expression and their origin (non-metastatic
primaries, metastatic primaries and metastases) as seen on the Supplementary Materials
Figures S1 and S2.

https://swissmodel.expasy.org/
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4. Discussion

In clinical practice, trastuzumab is considered the first-line choice for treatment of
human breast cancer overexpressing HER2 [35]. However, advanced tumors can become
resistant to trastuzumab, and in these cases, the use of lapatinib alone or in combination
leads to a better antitumor response [36–38]. Female dogs can be considered a model of
human breast cancer, but only for some specific subtypes, such as the micropapillary, solid,
and anaplastic subtypes [39] and inflammatory breast cancer [40].

Singer et al. [41] studied the homology between canine and human HER2 and pre-
dicted the binding of anti-HER2 drugs with canine HER2. The HER2 proteins of humans
and dogs showed high homology of 92.31% in the amino acid sequence. In addition,
important sequences, such as the binding region for trastuzumab and cetuximab, were con-
served in canine HER2. Moreover, there was predicted binding between these monoclonal
antibodies and canine HER2.

In our assessment of the three-dimensional homology of the structures of human and
canine HER2, the homology was even greater, with 95% similarity, so it is very likely that
polyclonal antibodies developed to recognize human HER2 can recognize canine HER2.
Thus, this similarity in proteins is also important, as it indicates that targeted therapies
developed for human use should be applicable in dogs.

Lapatinib efficiently inhibited the proliferation of HER2+ and HER2− canine mam-
mary carcinoma cell cultures in vitro. Interestingly, the cell lines exhibited dose-dependent
cell viability. Thus, higher concentrations produced lower cell viability. This result agrees
with the findings in humans, which showed that lapatinib was able to reduce the viability
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and proliferation of breast cancer cells and induce breast cancer cell death [41–44]. Similar
results were also reported in feline mammary cancer cell cultures, where lapatinib both
alone and in association with other drugs such as rapamycin, trastuzumab and pertuzumab,
was able to inhibit cell proliferation [21,22].

In assessing the ability of lapatinib to inhibit the migration of canine mammary
cancer cells, we confirmed that just as in human breast cancer cells, lapatinib alone is not
able to satisfactorily inhibit migration regardless of the cell sensitivity to the drug [45].
However, when associated with isothiocyanates, compounds present in abundance in
cruciferous vegetables, lapatinib was shown to inhibit the migration of breast cancer cells in
women [45,46]. Lapatinib in combination with foretinib, an inhibitor of hepatocyte growth
factor receptor, was also found to inhibit migration in triple-negative human breast cancer
cell lines due to its action on EGFR [47]. These findings create interesting possibilities
for future studies in canine mammary gland tumors assessing the combination of other
pharmaceutical compounds with lapatinib.

In our study, lapatinib inhibited cell viability in samples of primary and metastatic
neoplasms even with low or negative HER2 expression. This action is also observed in
humans and makes lapatinib an excellent therapeutic option in the treatment of metastatic
breast neoplasms [48,49]. Therefore, lapatinib is a possible alternative that should be
studied for the treatment of dogs with metastatic disease. Another important factor to be
considered in the use of lapatinib to treat metastases is its good ability to penetrate different
body tissues due to the small size of the molecule [8].

Although our study focused on HER2+ neoplasms, lapatinib has also been studied
as a possible therapeutic alternative for triple-negative breast neoplasms, which generally
show increased EGFR expression [47,48,50]. Studies on this subtype have demonstrated
the ability of lapatinib, when combined with other drugs, to inhibit the migration of triple-
negative human breast cancer cells [47]. In addition, in a study of human patients with
metastatic triple-negative breast cancer treated with lapatinib and veliparib, 35% (6/17) of
the patients responded to the therapy, with less than 10% of the patients having adverse
effects, all of which were moderate [48].

Therefore, although lapatinib inhibited cell proliferation in all cell cultures, even in
three of them considered negative for HER2, we emphasize that five of the six tumors had
HER2 expression, even if at a low level. Thus, the drug may have acted on the few HER2
molecules present, and in the case of the cell line UNESP-MM1, the action could be related
to binding to EGFR [16,51], this ability of lapatinib to inhibit EGFR phosphorylation has
already been described in feline mammary cancer cells [22]. In addition, similar to the
activity of any tyrosine kinase inhibitor, nonspecific binding with other tyrosine kinase
receptors can occur [16,51].

The negative correlation between the expression of HER2 in cells and the IC50, that is,
the higher the expression of HER2 in a cell culture was, the lower the IC50 of lapatinib of
that sample, is an indication that, as in humans, lapatinib acts mainly on HER2 in canine
cells, reducing the viability of neoplastic cells [32,52]. In addition, the correlation between
HER2 expression in cultured cells and cell sensitivity to lapatinib is a strong indication
that the level of expression of this receptor may be a predictive factor for therapies using
lapatinib, which opens the door for further in vivo studies in dogs.

5. Conclusions

Lapatinib was able to reduce the viability of primary and metastatic canine mammary
carcinoma cells cultured in vitro, and its effectiveness was directly linked to the expression
of HER2, which opens a perspective for the treatment of animals with both primary
mammary neoplasms and metastasis, especially those that overexpress HER2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13060897/s1, Figure S1: Mann-Whitney analysis of cell migration. There was no
statistical difference in any analysis (a): All cell cultures. (b): HER2+ cell cultures. (c): HER2− cell
cultures, Figure S2: ANOVA evaluation of cell culture migration when grouped into non-metastatic

https://www.mdpi.com/article/10.3390/pharmaceutics13060897/s1
https://www.mdpi.com/article/10.3390/pharmaceutics13060897/s1
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primaries, metastatic primaries and metastases. Non-metastatic primaries versus metastatic primaries
p = 0.2873; Non-metastatic primaries versus metastases p = 1; Metastatic primaries versus metastases
p = 0.1822. Table S1. Clinical data from animals with mammary carcinoma used for primary
cell culture.
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